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Abstract: A study of Triassic sandstones in the central North Sea, UK, has shown that combined
detrital zircon and apatite geochronology and apatite trace element analysis is a powerful tool for
reconstructing provenance for sandstones with diagenetically impoverished heavy mineral suites.
Sandstones in the earlier part of the succession (Bunter Sandstone Member and Judy Sandstone
Member) have characteristics that indicate derivation from Moinian–Dalradian metasediments af-
fected by Caledonian tectonothermal events, in conjunction with a Palaeoproterozoic-Archaean
source unaffected by Caledonian metamorphism. Palaeogeographic reconstructions indicate that the
sediment cannot have been input directly from either of these cratonic areas. This, in conjunction with
the presence of common rounded apatite, indicates that recycling is the most likely possibility. The
zircon-apatite association in the younger Joanne Sandstone Member sandstones indicates derivation
from lithologies with mid-Proterozoic zircons (either crystalline basement or metasediments in the
Caledonian Nappes), subjected to Caledonian metamorphism to generate early Palaeozoic apatites.
This combination is compatible with a source region in southern and western Norway. The low degree
of textural maturity associated with the detrital apatite, together with the unimodal Caledonian age
grouping, indicates the Joanne sandstones have a strong first-cycle component.

Keywords: central North Sea; Triassic; Skagerrak; provenance; zircon U-Pb; apatite U-Pb

1. Introduction

Triassic sandstones form important hydrocarbon reservoirs in the central North Sea,
with production having taken place over several decades [1,2]. Hydrocarbon exploration
and production of this play continues to the present day, despite the North Sea Basin now
having reached a super-mature phase. The fundamental controls on Triassic reservoir
distribution are extensional tectonics, halokinesis, climate, depositional facies and diage-
nesis, all of which have been extensively studied [2–9]. In contrast, studies of sediment
sourcing for the central North Sea Triassic succession have been comparatively scarce,
despite provenance playing a fundamental role in controlling the distribution and quality
of reservoir sandstones [10]. As a consequence, there are continued uncertainties over the
palaeogeographic framework, in particular regarding the respective roles of the most likely
source regions, Scotland to the west and Scandinavia to the east (Figure 1), and whether
sediment supply was axial, lateral, or a combination of the two [9,11–13].
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supercontinent, a considerable distance from the Boreal and Tethyan seas (Figure 1), at a 
latitude of ~20° N [20,21]. The Triassic depocentre of the Central North Sea is superim-
posed over the site of the Northern Permian Basin [22], where evaporites of the Late Per-
mian Zechstein Group were deposited. In the Triassic, continental clastic sedimentation 
led to the deposition of red-bed mudstones, siltstones and sandstones above the Zechstein 
evaporites, which consequently were subject to syn- and post-depositional halokinetic 
mobilisation. The effects of halokinesis on Triassic sediment thickness and facies distribu-
tion have been the subject of considerable debate [3,4,11,23–25] To generalise, sedimenta-
tion models can be grouped into two categories: (a) initially unconfined sands that are 
now only preserved within salt synclines, and (b) confined sediment pathways that were 
limited to salt-withdrawal pod synforms that resulted from vertical and/or lateral dia-
pirism. Variations in salt thickness, reflecting the burial of remnant topography during 
the Permian [26], resulted in localised instances of grounding of mini-basins onto the sub-
salt substrate at points of complete salt withdrawal, typically upon horsts comprising 
Early Permian sandstones of the Rotliegend Group [5]. Such grounding led to spatial dif-
ferences in accommodation space and the generation of localised intra-Triassic uncon-
formities [27]. Resultant halokinetic modification of the intra-basinal topography poten-
tially influenced sediment distribution patterns, and resultant highs separating mini-ba-
sins may have exposed older Triassic sequences susceptible to sedimentary reworking. 

Figure 1. Middle Triassic (Judy Sandstone Member) palaeogeographic reconstruction of NW Europe
showing location of the study area and wells discussed in this paper, modified from McKie [5].

Establishing provenance of central North Sea Triassic sandstones is especially chal-
lenging owing to the extensive diagenetic modification of mineralogy as a result of deep
burial. To date, there have been only three published heavy mineral studies of the central
North Sea Triassic [14–16]. These were undertaken primarily for correlation purposes
since the central North Sea Triassic is characterised by poor palynological recovery and
has thus proven difficult to correlate on conventional biostratigraphic grounds except in
relatively small areas [17,18]. Heavy mineral suites are extremely restricted in diversity,
with only four minerals (apatite, rutile, tourmaline and zircon) being present in significant
amounts [14–16]. Reconstructing provenance on the basis of such limited information
requires detailed mineral-chemical investigations of the stable components [19]. In this
paper, we present isotopic and trace element data from zircon and apatite, in order to place
constraints on the location and nature of source regions and the relative importance of
first-cycle and recycled detritus for the central North Sea Triassic.

2. Geological Background
2.1. Structure

During the Triassic, the central North Sea region was located within the Pangean
supercontinent, a considerable distance from the Boreal and Tethyan seas (Figure 1), at a
latitude of ~20◦ N [20,21]. The Triassic depocentre of the Central North Sea is superimposed
over the site of the Northern Permian Basin [22], where evaporites of the Late Permian
Zechstein Group were deposited. In the Triassic, continental clastic sedimentation led
to the deposition of red-bed mudstones, siltstones and sandstones above the Zechstein
evaporites, which consequently were subject to syn- and post-depositional halokinetic mo-
bilisation. The effects of halokinesis on Triassic sediment thickness and facies distribution
have been the subject of considerable debate [3,4,11,23–25] To generalise, sedimentation
models can be grouped into two categories: (a) initially unconfined sands that are now only
preserved within salt synclines, and (b) confined sediment pathways that were limited to
salt-withdrawal pod synforms that resulted from vertical and/or lateral diapirism. Varia-
tions in salt thickness, reflecting the burial of remnant topography during the Permian [26],
resulted in localised instances of grounding of mini-basins onto the sub-salt substrate
at points of complete salt withdrawal, typically upon horsts comprising Early Permian
sandstones of the Rotliegend Group [5]. Such grounding led to spatial differences in accom-
modation space and the generation of localised intra-Triassic unconformities [27]. Resultant
halokinetic modification of the intra-basinal topography potentially influenced sediment
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distribution patterns, and resultant highs separating mini-basins may have exposed older
Triassic sequences susceptible to sedimentary reworking. Whilst extensional faulting af-
fected the Central Graben during the Early Triassic [28], rifting was focused primarily
on the Norwegian-Danish Basin and Viking Graben areas [29,30], with the present-day
configuration of the Central Graben largely reflecting post-Triassic westwards-directed rift
migration [31]. Relatively complete (Early Triassic to Rhaetian) sections are found only in
these graben areas, with the Triassic being truncated over most of the central North Sea by
post-Triassic unconformities.

2.2. Stratigraphy

The Triassic succession in the central North Sea is assigned to the Heron Group
(Figure 2). Early Triassic strata comprise mudstones and siltstones of the Smith Bank For-
mation, overlain by the Bunter Sandstone Member [32,33]. Middle-Late Triassic sediments
belong to the Skagerrak Formation [34], which Goldsmith et al. [17] further subdivided into
mudstone-dominated (Julius, Jonathan and Joshua mudstones) and intervening sandstone-
dominated members (Judy, Joanne and Josephine sandstones) in the Q30 area. In parts of
the central North Sea, the Bunter Sandstone is separated from the Judy Sandstone Member
by the ‘Marnock Shale’ [11], which Archer et al. [35] assigned member status as part of
the Smith Bank Formation. Mouritzen et al. [16] showed that the J-nomenclature can be
extended into the Culzean and Marnock Field areas in Q22 using a combination of palyno-
logical and heavy mineral analysis. Burgess et al. [18] used new processing techniques to
enhance palynological recovery, enabling correlation over a wider area and clarifying the
ages of the mudstone members in the Skagerrak Formation.
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2.3. Depositional Setting

Whilst Early Triassic deposits were deposited under relatively arid conditions across
NW Europe, amelioration of the climate due to the northward drift of Pangaea resulted
in the deposition of the Skagerrak Formation under mostly semi-arid conditions during
the Middle-Late Triassic [12,35]. However, climatic reconstructions for the Late Triassic
suggest that the region occasionally experienced subtropical arid to tropical summers [37],
particularly during the Carnian [5,38].

Channelised, sheet-flood and splay sandstones of the Heron Group were deposited by
distributive fluvial or terminal fluvial dryland systems [5,9,11], whilst argillaceous intervals
of the Skagerrak Formation were largely deposited under floodplain, playa or marshy
palustrine conditions [18,35,39,40]. Goldsmith et al. [33], Archer et al. [2] and McKie [5]
attributed the cyclical nature of the Skagerrak Formation, represented by the alternation of
sandstone- and mudstone-dominated intervals, to climatic changes. However, there are
contrasting opinions on the nature of the climatic forcing: Goldsmith et al. [33] suggested
that the mudstones were deposited in humid lacustrine or swamp conditions and that the
sandstone members represent more arid conditions, whereas Archer et al. [2] and McKie [5]
proposed that the sandstone members were deposited during wetter climate phases during
basinward expansion of the fluvial systems, with the mudstone members being deposited
during more arid conditions when the fluvial systems contracted. However, the detailed
palaeoenvironmental study carried out by Burgess et al. [40] showed that there is no simple
relationship between climate change and sandstone or mudstone development in the basin
centre, and that hydrological conditions varied between different mudstone members.

2.4. Hinterland Uplift

Recent tectonothermal studies [41–44] have provided constraints on Triassic uplift
events in Scotland and Scandinavia. In northern Scotland, progressive exhumation oc-
curred throughout the Mesozoic with the uplift of the western Highlands occurring at
245–225 Ma (earliest Anisian to early Norian) [42,45]. In southern Fennoscandia, cool-
ing associated with rift-flank uplift was initiated during Induan to the earliest Anisian
times [46], in conjunction with Late Triassic faulting along major lineaments [43,44]. In
Norway, exhumation is estimated to have removed ~1.5–3 km of overburden in the form
of Caledonian nappes and possibly late Palaeozoic to Early Triassic sediments [46]. This
exhumation exposed metamorphic basement during the Late Triassic across parts of SW
Norway and the Utsira High [47]. On the basis of this evidence, therefore, sediment could
have been supplied to the central North Sea region from both east and west.

3. Previous Provenance Studies

Petrographic studies indicate that the Skagerrak sandstones of UK Quadrant 30 are
typically subarkosic–arkosic and contain lithic fragments indicating low- to high-grade
metamorphic input [8]. Triassic sandstones of UK Quadrant 22 have similar composi-
tions [48], except that lithic fragments are dominantly of sedimentary origin, with igneous
and metamorphic lithologies being subordinate [49]. Feldspar contents have been variably
reduced during burial diagenesis [8].

Jeans et al. [14] determined the proportions of detrital minerals within heavy mineral
assemblages from twenty-one central North Sea wells, and observed fluctuations in apatite
and zircon abundances that they attributed to changes in provenance. However, apatite
and zircon have contrasting hydrodynamic behaviour owing to their different densities,
and it is therefore likely that at least some of the observed variations resulted from differing
hydraulic conditions at the time of deposition [50–52].

In order to obviate hydrodynamic and diagenetic controls in heavy mineral assem-
blage compositions, Mange-Rajetzky [15] focused on varietal studies, whereby variations
shown by individual mineral components are quantified. On the basis of grain morpholo-
gies, an intra-Skagerrak Formation marker horizon was recognised, separating polycyclic,
well-rounded detritus in the earlier part of the succession from less-rounded, apparently
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first-cycle material in the later Triassic. Mange-Rajetzky [15] considered this change to
reflect a change from reworking of Permian aeolianites to the influx of Fennoscandian-
sourced material introduced by fluvial systems. However, it is possible that the observed
morphological changes reflect a transition from aeolian-dominated to fluvially dominated
transport processes, rather than to provenance.

The existence of systematic variations in heavy mineral grain morphology identified
by Mange-Rajetzky [15] was verified by Mouritzen et al. [16] in their stratigraphic study
on Triassic sandstones in the Culzean Field and adjacent areas. They observed that the
influx of apparently first-cycle detritus with very low apatite roundness coincided with
the consistent presence of trace amounts of the ultramafic/mafic indicator mineral chrome
spinel. This relationship confirms that the change in mineral morphology was at least in
part related to a change in provenance, attributed to a switch in supply from the Scottish
margin to Fennoscandia [15,16]. This inference was based on the distribution of ophiolites
in Scandinavia and Scotland, which are widely distributed in southwestern Norway [53]
but less common and unfavourably situated in the Scottish Caledonides (Highland Border
Complex of the Midland Valley of Scotland, plus Unst in Shetland; Bluck [54]; Crowley
and Strachan [55]. On the basis of biostratigraphic correlation between Culzean and
Q30, Mouritzen et al. [16] showed that the sandstones with high apatite roundness and
scarce chrome spinel represent the Judy Sandstone Member (and the underlying Bunter
Sandstone Member), whereas the sandstones with low apatite roundness and common
chrome spinel belong to the Joanne Sandstone Member. The intervening Julius Mudstone
Member, which is relatively sand-rich in the Culzean area, has a similar character to the Judy
Sandstone Member although has some intermediate features, such as gradually reducing
apatite roundness [16].

A major problem in linking central North Sea Triassic heavy mineral assemblages to
provenance is that dissolution of unstable and metastable minerals during burial diagenesis
has led to impoverished assemblages and a consequent loss of provenance information. In
this paper, we augment existing heavy mineral assemblage and textural data with U-Pb
geochronological data from two of the stable detrital components, zircon and apatite, plus
trace element mineral chemical data from apatite, in order to provide more definitive
constraints on provenance. Although detrital zircon geochronology is now commonplace
in sediment provenance studies worldwide, for example in Indonesia [56], Australia [57],
the Middle East [58], east Greenland [59] and North America [60], applications have been
comparatively scarce in a central North Sea context, having been restricted to just two stud-
ies on Devonian and Carboniferous sandstones in the UK and Norwegian sectors [61,62].
U-Pb studies of detrital apatite are, by contrast, in their infancy, and this study is to our
knowledge the first time the method has been used in the North Sea. The use of apatite as a
provenance tracer differs from zircon in three important respects: (i) apatite is strongly sus-
ceptible to dissolution during surficial weathering, and therefore is significantly less readily
recycled; (ii) it occurs in a wider range of source lithologies than zircon, and therefore pro-
vides more comprehensive information on provenance, and (iii) it has a lower crystallisation
temperature [63]. The temperature sensitivity of the U-Pb system is governed by the diffu-
sion of Pb, with the partial retention zone for Pb having been experimentally determined
as ~ 350–475 ◦C [64]. Furthermore, since apatite is prone to dissolution-reprecipitation
during metamorphism [65], U-Pb ages of apatite in metamorphic rocks may reflect the
most recent reordering of the crystal lattice [63]. Integrating provenance information from
zircon and apatite, therefore, offers the opportunity to evaluate the relative importance of
first-cycle and recycled detritus as well as enabling the identification of a wider range of
source lithologies than zircon alone.

In order to achieve this purpose, zircon and apatite U-Pb age data have been ac-
quired from two wells (22/25a-9Z and 22/25a-10) in the Culzean Field, and from Marnock
Field well 22/24b-5Z. These wells were all included in the heavy mineral correlation
study by Mouritzen et al. [16], and 22/24b-5Z was also a key well in the study by
Mange-Rajetzky [15]. Five samples, three from 22/24b-5Z, one from 22/25a-9Z and one
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from 22/25a-10, were selected for geochronological analysis in order to cover the observed
changes in heavy mineral characteristics between the Bunter Sandstone Member, the Judy
Sandstone Member, and the Joanne Sandstone Member. The positions of the five analysed
samples are shown on heavy mineral stratigraphic profiles in Figure 3. Apatite trace ele-
ment data were acquired from the same sample set in order to establish source lithologies
as well as ages.
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Figure 3. Stratigraphic variations in key heavy mineral parameters for the Triassic in the three wells
discussed in this paper, showing locations of samples with zircon and apatite isotopic and trace element
data. Profiles are based on data from Greig [66], consistent with previous results of Mouritzen et al. [16].
ATi = apatite:tourmaline index, RuZi = rutile:zircon index, ZAi = zircon:apatite index, ARi = apatite
roundness index; see Morton and Hallsworth [67], Morton et al. [68] and Mouritzen et al. [16] for
definitions. MK-1, MK-2, MK-3, CLZ-1 and CLZ-2: see Supplementary Materials.

4. Analytical Methods

Zircon U-Pb age data were obtained at the Central Analytical Facility (CAF), Stellen-
bosch University, by laser ablation—single collector—magnetic sectorfield—inductively
coupled plasma—mass spectrometry (LA-SF-ICP-MS) employing a Thermo Finnigan El-
ement2 mass spectrometer coupled to a NewWave UP213 laser ablation system. All age
data presented here were obtained by single spot analyses with a spot diameter of 30 µm
and a crater depth of approximately 15–20 µm, corresponding to an ablated zircon mass of
approximately 150–200 ng. The methods employed for analysis and data processing are
described in detail by Gerdes and Zeh [69] and Frei and Gerdes [70]. For quality control,
the Plešovice [71] and M127 [72,73] zircon reference materials were analysed, and the
results were consistently in excellent agreement with the published ID-TIMS ages. Full
analytical details and the results for all quality control materials analysed are reported
in Table 1. Plotting of Concordia diagrams was performed using Isoplot/Ex 3.0 [74] and
probability-density plots (Figure 4) were generated using AgeDisplay [75].
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Table 1. LA-SF-ICP-MS U-Th-Pb dating methodology for zircons discussed in this paper.

Laboratory & Sample Preparation

Laboratory name Central Analytical Facility,
Stellenbosch University

Sample type/mineral Detrital zircons

Sample preparation Conventional mineral separation, 1 inch resin
mount, 1 µm polish to finish

Imaging CL, Zeiss Merlin, 10 nA, 15 mm
working distance

Laser ablation system

Make, Model & type Resonetics Resolution S155, ArF Excimer

Ablation cell & volume Laurin Technology S155 double Helix large
volume cell

Laser wavelength 193 nm

Pulse width 20 ns

Fluence Approx. 2 J/cm−2

Repetition rate 5.5 Hz

Spot size 30 µm

Sampling mode/pattern 30 µm single spot analyses

Carrier gas
100% He, Ar make-up gas combined using a
T-connector close to double Helix
sampling funnel

Pre-ablation laser warm-up (background
collection)

3 cleaning shots followed by 20 s
background collection

Ablation duration 15 s

Wash-out delay 15 s

Cell carrier gas flow 300 mL/min He & 0.06 mL/min N2

ICP-MS Instrument

Make, Model & type Thermo Finnigan Element2 single collector
HR-SF-ICP-MS

Sample introduction Via conventional tubing

RF power 1350 W

Make-up gas flow 1.0 L/min Ar

Detection system Single collector secondary electron multiplier

Masses measured 202, 204, 206, 207, 208, 232, 233, 235, 238

Integration time per peak 4 ms

Total integration time per reading 1 sec (represents the time resolution of the data)

Sensitivity 30,000 cps/ppm Pb

Dead time 6 ns

Data Processing

Gas blank 20 s on-peak

Calibration strategy
GJ-1 used as primary reference material, M127
& 91500 used as secondary reference material
(Quality Control)
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Table 1. Cont.

Laboratory & Sample Preparation

Reference Material info
M127 (Nasdala et al. [72]; Mattinson [73]),
91500 (Wiedenbeck et al. [76]), GJ-1
(Jackson et al. [77])

Data processing package used/Correction
for LIEF

In-house spreadsheet data processing using
intercept method for LIEF correction

Mass discrimination
Standard-sample bracketing with 207Pb/206Pb
and 206Pb/238U normalized to reference
material GJ-1

Common-Pb correction, composition
and uncertainty

204-method, Stacey & Kramers [78]
composition at the projected age of the mineral,
5% uncertainty assigned

Uncertainty level & propagation

Ages are quoted at 2σ absolute, propagation is
by quadratic addition. Reproducibility and age
uncertainty of reference material and
common-Pb composition uncertainty
are propagated.

Quality control/Validation

91500: Concordia age = 1072.9 ± 6.2 (2σ, n = 10,
MSWD = 0.28)
M127: Wtd Concordia age = 528.8 ± 2.1 (2σ,
n = 15, MSWD = 0.32)

Other information For detailed method description see
Frei & Gerdes [70]

Apatite U–Pb age data were also obtained at CAF, using the same equipment as in
the zircon U-Pb analysis. The age data were obtained by single spot analyses with a spot
diameter of 43 µm and a crater depth of approximately 15–20 µm. The methods employed
for analysis and data processing are similar to those described in detail by Gerdes and
Zeh [69] and Frei and Gerdes [70]. The Madagascar apatite [79,80] was used as primary
calibration material. For quality control, the Durango apatite [81] was analysed, and
the results were consistently in good agreement with the published ages. Common Pb
correction for apatite analyses followed the 207Pb method outlined by Chew et al. [81],
using iterative age estimates and the Stacey and Kramers [78] model. Full analytical
details and the results for all quality control materials analysed are reported in Table 2.
Probability-density plots (Figure 4) were generated using AgeDisplay [75].

Trace element contents of apatite crystals in polished mounts were determined by
laser ablation—inductively coupled plasma—mass spectrometry (LA-ICP-MS) at CAF.
The LA-ICP-MS system consists of an excimer laser ablation system (ASI Resolution SE-
S155 utilising a ATL Atlex laser source emitting at 193 nm) coupled to a Agilent 7700ce
quadrupole ICP-MS. All trace element data were obtained by single spot analysis using
40 µm beam diameters and a laser repetition rate of 8 Hz. A laser energy of 2.5 mJ at
25% attenuation was employed, resulting in a fluence of 2 J/cm2, as determined directly
above the ablation cup with a hand-held external energy meter. Ablation was performed
using a S155 dual-volume ablation cell (Laurin Technic, Canberra, Australia) in He that
was mixed in a conical ablation cup into the argon sample gas of the mass spectrometer
and N2 as make-up gas. Gas flows for He, Ar and N2 were 330 mL/min, 940 mL/min
and 5 mL/min, respectively. The isotope used for internal standardization was 43Ca (with
stoichiometric concentrations used for apatite) and the NIST610 standard reference glass
(values from Jochum and Nehring [82]) was used as primary calibration standard. In a
typical analytical sequence, one primary calibration standard was analysed, followed by
10 to 15 unknowns, secondary standards for quality control purposes, then one primary
calibration standard, and so on. Prior to each analysis the sample surface was cleaned
from contamination with 3 laser pulses, followed by 15 s wash-out time. Each subsequent
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analysis commenced with 15 s measurement of the gas blank prior to ablation, followed by
15 s of ablation and 40 s wash-out time. Data acquisition was performed in time-resolved
mode by peak hopping measuring 1 sample per peak. Twenty five isotopes (24Mg, 43Ca,
51V, 55Mn, 56Fe, 88Sr, 89Y, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 151Eu, 157Gd, 159Tb, 163Dy,
165Ho, 166Er, 169Tm, 174Yb, 175Lu, 208Pb, 232Th, 238U) were analysed. Reduction in the
time-resolved data and concentration calculations were subsequently performed off-line
using the GLITTER software package (www.glitter-gemoc.com). Time-resolved analytical
signals for each analysis were meticulously checked and acquisitions were discarded when
sudden signal changes indicated concomitant analysis of matrix minerals or the laser
beam had drilled in a different phase. One analysis of the NIST612, BHVO and the BCR
reference glasses were performed with every 10 to 15 unknowns for quality control (QC)
and the results are consistently within 2σ of the average concentrations reported by Jochum
and Nehring [83,84]. The detection limit for most of the elements is in the lower ppb to
mid-ppt range.
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Table 2. LA-SF-ICP-MS U-Pb dating methodology for apatites discussed in this paper.

Laboratory & Sample Preparation

Laboratory name Central Analytical Facility,
Stellenbosch University

Sample type/mineral Detrital apatites

Sample preparation Conventional mineral separation, 1 inch resin
mount, 1 µm polish to finish

Imaging CL, LEO 1430 VP, 10 nA, 15 mm
working distance

Laser ablation system

Make, Model & type ASI Resolution S155, ArF Excimer Coherent
CompexPro 110

Ablation cell & volume Laurin Technology S155 double helix large
volume cell

Laser wavelength 193 nm

Pulse width 20 ns

Fluence 2.8 J/cm−2 (measured with external energy
meter above sample funnel)

Repetition rate 5.5 Hz

Spot size 43 µm

Sampling mode/pattern 20 µm single spot analyses

Cell carrier gas
100% He, Ar and N2 make-up gases combined
using injectors into double Helix
sampling funnel

Pre-ablation laser warm-up
(background collection)

3 cleaning shots followed by 20 s
background collection

Ablation duration 20 s

Wash-out delay 15 s

Cell carrier gas flows 290 mL/min He

ICP-MS Instrument

Make, Model & type Thermo Finnigan Element2 single collector
HR-SF-ICP-MS

Sample introduction Via Nylon 10 tubing

RF power 1350 W

Make-up gas flow 910 mL/min Ar & 2 mL/min N2

Detection system Single collector secondary electron multiplier

Masses measured 202, 204, 206, 207, 208, 232, 233, 235, 238

Integration time per peak 4 ms

Total integration time per reading 1 s (represents the time resolution of the data)

Sensitivity 30,000 cps/ppm Pb

Dead time 6 ns

Data Processing

Gas blank 20 s on-peak

Calibration strategy
Madagascar apatite used as primary reference
material, Durango apatite used as secondary
reference material (Quality Control)
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Table 2. Cont.

Laboratory & Sample Preparation

Reference Material info Madagascar apatite (Thomson et al. [79],
Cochrane et al. [80]), R10 (Chew et al. [81])

Data processing package used/Correction
for LIEF

In-house spreadsheet data processing using
intercept method for LIEF correction

Mass discrimination
Standard-sample bracketing with 207Pb/206Pb
and 206Pb/238U normalized to reference
material SRQ36

Common-Pb correction, composition
and uncertainty

Iterative 207Pb correction method of
Chew et al. [81]. Data are filtered to exclude
imprecise analyses (>20% age uncertainty, 2σ)
and analyses with very high levels of
non-radiogenic lead (>80% f206, which is the
fraction of 206Pb that is non-radiogenic).

Uncertainty level & propagation

Ages are quoted at 2σ absolute, propagation is
by quadratic addition. Reproducibility and age
uncertainty of reference material and
common-Pb composition uncertainty
are propagated.

Quality control/Validation Durango apatite: Wt mean 206Pb/238U
age = 31.9 ± 2.8 Ma (2σ MSWD = 0.89)

Other information For detailed method description see
Frei & Gerdes [70]

Apatite compositions, and especially their rare-earth element (REE) contents, are
known to be sensitive to the nature of the host rock in which they formed (see summary by
O’Sullivan et al. [63]), and a variety of plots have been proposed as diagnostic indicators of
their origin. These include La/Nd versus (La + Ce + Pr)/ΣREE [85,86], Sr versus Y [87], and
ΣREE versus Ce/Yb [87]. These plots are all potentially useful in linking detrital apatites
to their igneous source lithologies. However, they fail in one important respect, since
apatite can also form in metamorphic environments. This omission has been addressed
by O’Sullivan et al. [63], who showed that comparisons of Sr/Y and total LREE (light rare
earth elements) enable discrimination of metamorphic apatites from igneous apatites while
retaining the ability to type igneous apatites to their original sources. Consequently, the
data acquired during this study have been plotted on Sr/Y versus total LREE diagrams
(Figure 5) to identify the main apatite sources.
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5. Results
5.1. Zircon Geochronology

Three zircon associations have been recognized. Zircon association 1 (Za1) char-
acterises sample MK-1 from the Bunter Sandstone Member in well 22/24b-5Z. Zircon
association 2 (Za2) is identified in samples MK-2 and CLZ-1 from the Judy Sandstone
Member of wells 22/24b-5Z and 22/25a-9Z. Zircon association 3 (Za3) is found in samples
MK-3 and CLZ-2 from the Joanne Sandstone Member of wells 22/24b-5Z and 22/25a-10,
respectively (Figure 4).

The primary defining feature of Za1 is the large Archaean component, which forms 26%
of the near-concordant population. This group displays a dominant peak at ca. 2700 Ma and
ranges from 2501 ± 19 to 3012 ± 18 Ma. A prominent cluster also occurs at 900–1150 Ma,
contributing 25% of the total population and displaying peaks at ca. 1060 and 1150 Ma.
In addition, there is a distinct peak at ca. 1500 Ma, together with a small number of
Palaeozoic grains (<9%). The Palaeozoic component is wide-ranging, mostly of Ordovician
age (453–488 Ma), but two zircons with younger ages (Late Carboniferous, 308 ± 4 Ma,
and Permian, 266 ± 3 Ma) were also detected. There is also a minor Ediacaran component
(543 ± 6 and 568 ± 6 Ma).

Association Za2 is dominated by Proterozoic zircons (74–77%), the strongest groupings
being ca. 900–1300 Ma (main peak at ca. 1050) and 1350–1700 Ma (main peak at ca.
1650 Ma). There is also an important but subsidiary Archaean component, mostly within
the 2700–2880 Ma interval but extending back to 3683 ± 16 Ma, which forms 14–16% of
the overall concordant population. Palaeozoic zircons, mostly between 424–492 Ma, form
7–14% of the concordant population. The youngest zircon is dated at 286 ± 3 Ma (Permian),
and there are two Carboniferous zircons (307 ± 4 Ma and 309 ± 4 Ma), similar in age to the
308 ± 4 Ma grain in sample MK-1.

Association Za3 is distinguished from Za1 and Za2 by the lower proportion of zircons
with ages > 1860 Ma (Palaeoproterozoic-Archaean), which form only 7–9% of the popu-
lations. The largest group has ages between 900–1150 Ma, peaking at ca. 1050 Ma, which
forms 39–40% of the concordant populations. There are also notable Proterozoic peaks at ca.
1500 Ma and 1650 Ma. The samples display a subordinate Palaeozoic component (10–14%
of the concordant population), which is largely Silurian in age but extends back to the late
Cambrian (421–502 Ma).

5.2. Apatite Geochronology

U-Pb apatite age data for the Bunter, Judy and Joanne sandstone units all display a
strong Caledonian cluster between ca. 400–500 Ma (Figure 4). However, the proportion
of Palaeozoic ages is considerably larger in samples MK-3 and CLZ-2 (Joanne Sandstone
Member), which have essentially unimodal apatite populations. In contrast, Palaeozoic
varieties only form 16–44% and 36% of the population in samples MK-1, MK-2 and CLZ-1
(Bunter Sandstone Member and Judy Sandstone Member). These samples have bimodal
apatite age patterns, the Palaeozoic group being subordinate to Proterozoic apatites in the
1500–2000 Ma age range.

5.3. Apatite Trace Elements

Trace element data for four of the five samples are shown using Sr/Y-LREE plots
in Figure 5, coded with their U-Pb dates to determine if there are systematic differences
in compositions depending on age. The results from one sample (CLZ-1) are not shown
since trace element analysis was unsuccessful. Four apatite groups are plotted per sample,
apatites with ages < 550 Ma (broadly corresponding to the Caledonian orogenic cycle),
those with ages > 1500 Ma, the small number with intervening ages, and those that did not
yield useful U-Pb isotopic data.

In all samples, many of the apatites with compositions that correspond to those found
in low- to medium-grade metamorphic and metasomatic rocks fail to yield useful U-Pb
isotopic data. This appears to be a typical feature of low- and medium-grade metamorphic
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apatites [63,88], because they tend to be poor in U and rich in Pbc (common Pb). None of
the samples have apatites with ultramafic or alkaline igneous compositions, and those with
felsic igneous compositions are also very scarce.

In the two Joanne Sandstone Member samples (MK-3 and CLZ-2), apatites that fall
in the dominant age group (<550 Ma) mostly correspond to mafic igneous lithologies
(including mafic I-type granitoids), with a substantial number having low- to medium-
grade metamorphic and metasomatic compositions. The relatively small numbers of older
apatites do not fall in any particular field.

In the samples with large numbers of Meso- and Palaeoproterozoic apatites (Judy
Sandstone Member, MK-2, and Bunter Sandstone Member, MK-1), the young apatite group
has compositions that correspond to low- and medium-grade metamorphic rocks as well
as mafic igneous lithologies. A large number of the Mesa- and Palaeoproterozoic apatites
also have low- and medium-grade metamorphic compositions. Mafic igneous Meso- and
Palaeoproterozoic apatites are also common in MK-1 but are less apparent in MK-2.

6. Interpretation
6.1. Zircon

The Archaean component is arguably the most significant part of the detrital zircon
population, because Archaean zircon ages are locally abundant within Scotland (e.g., Friend
and Kinny [89]; Cawood et al. [90]), but are sparse in southern and mid-Norway [91]. In
Scotland, Archaean-aged basement units are primarily represented by the heterogeneous
Lewisian Gneiss Complex that is well exposed across low-lying areas of the Hebridean Ter-
rane. This series of accreted crustal blocks predominantly comprises tonalite-trondhjemite-
granodiorite gneisses ranging from amphibolite to granulite facies with subordinate lenses
and sheets of mafic-ultramafic material [92,93]. The majority of protoliths were emplaced
between ca. 3100–2700 Ma [93] and were heavily deformed between ca. 2600 and ca.
2800 Ma. Inliers of ‘Lewisianoid’ orthogneisses tentatively correlated with the Lewisian
Gneiss Complex form basement to the Moine succession of the Northern Highland Terrane
(e.g., Ramsay [94]; Mendum and Noble [95]), although these outcrops are highly limited in
extent. Such inliers are also present across northern areas of the Shetland Islands, as are ca.
2750–2730 Ma granitic gneisses [96] that are the most easterly manifestation of the Archaean
Faroe-Shetland terrane that forms the basement to the basins west of Shetland and links
with the Rae Craton of central Greenland [97] (terrane locations shown in Figure 6). This
Greenland complex consists of amalgamated orthogneiss-dominated terranes derived from
protoliths formed during 2950–2630 Ma that are now characterised by granulite and amphi-
bolite facies [98,99]. However, whereas the oldest published protolith ages for the Lewisian
Gneiss in Scotland are ca. 3100 Ma [100], the Amîtsoq gneisses of the North Atlantic Craton,
West Greenland have yielded considerably older protolith ages of >3700 Ma [101].

Zircons of Archaean age are also locally abundant within Precambrian and Palaeozoic
sediments of Scotland, such as the Devonian Old Red Sandstone (ORS) west of Shet-
land [102,103], Upper ORS deposits of the Inner Moray Firth [103], the Appin, Argyll and
Southern Highland groups of the late-Neoproterozoic to Ordovician Dalradian Supergroup
and the contiguous Highland Border Complex [90,104,105], and the Precambrian Stoer and
Sleat Groups of the Torridonian sandstone in northwest Scotland [106].

Archaean basement complexes in Norway are limited to distal northern regions such as
West Troms and Lofoten, where the oldest published U-Pb zircon age is 2885 ± 20 Ma [108].
South of here, the only Archaean records are from zircons in the Caledonian Nappes and
supracrustal rocks [91]. Zircons yielding Archaean ages have been reported from peridotites
within the Western Gneiss Region [109], early Palaeozoic sediments of SW Norway [110],
the Upper Allochthon of Mid-Norway [111], supracrustal sequences of Telemarkia [112],
and the Dala Sandstone of SW Sweden [113]. In all cases the numbers of Archaean zircons
are very minor, indicating that significant Archaean populations in the central North Sea
Triassic are unlikely to have been sourced from Scandinavia. However, minor proportions
of Archaean zircon should not be automatically correlated with a westerly Scottish source.
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qidian Fold Belt; SU, Southern Uplands Terrane; WGR, Western Gneiss Region. Based on Dawes [107],
Holdsworth et al. [97], and Kinny et al. [96].

The relatively large proportion of Archaean zircons in the Bunter Sandstone Member
and Judy Sandstone Member, therefore, indicates ultimate derivation either from Scotland
or a more distal source such as Greenland, and the marked decrease in such zircons in
the Joanne Sandstone Member is consistent with a switch to sourcing dominantly from
Scandinavia, as previously suggested by Gray et al. [9]. The associated mid-Proterozoic
zircons are less diagnostic, since they can be found in the basement terranes of Scan-
dinavia, sediments of the overlying Caledonian Nappe Domain, and in the Moine and
Dalradian metasediments of Scotland. For example, the 1660 Ma peak, which can be
attributed to the Labradorian and contemporaneous Gothian orogenies of NE Canada
and Fennoscandia, respectively [114,115], is a common zircon age feature of numerous
geological units in Norway, Scotland and East Greenland. In Scandinavia, ca. 1660 Ma ages
are common within crystalline basement of the Eastern Segment terrane and the Western
Gneiss Region [109,116], and in Proterozoic-aged metasediments within allochthons of
the Norwegian Caledonide Belt such as the Kalak Nappe [117]. In Scotland, the 1660 Ma
peak is recognised from several stratigraphic units in the Moine Supergroup [118,119]
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and the Grampian Group and sub-Grampian basement of the Dalradian sequence [90].
In Greenland, 1660 Ma zircon signatures have been obtained from the Krummedal and
Eleonore Bay Supergroup metasediments of the East Greenland Caledonides [120,121].

Likewise, the zircon group at ca. 1500 Ma could be attributed to both Scandinavia
and Scotland. In southern Norway, juvenile crust formation took place during the ca.
1520–1480 Ma Telemarkian event [122], and zircons of this age are common in the Tele-
markia terrane and in metasediments of the Lower Allochthon [91], particularly from the
Suldal region, NE of Stavanger [123]. In Scotland, the 1500 Ma zircon group is present in
the Moine Supergroup (Loch Eil Group) of the Northern Highland Terrane [118], although
is less common in the Dalradian Supergroup [90,119], apart from the Glen Spean sub-group
of the central Highlands [124].

The other major zircon group in the Proterozoic part of the Triassic spectra in this
study occurs at ca. 900–1150 Ma, which corresponds to the Grenville Orogeny of Laurentia
and the coeval Sveconorwegian Orogeny of Fennoscandia [125]. Grenvillian granites are
exceptionally Zr-rich, and therefore show greater zircon fertility than other granites else-
where within the region [126], possibly explaining why 900–1150 Ma zircons are ubiquitous
in the central North Sea Triassic. Zircons corresponding to these orogenic events are also
found in Moine and Dalradian metasediments of the Scottish mainland and Shetland
Islands [90,118,127], and in the Old Red Sandstone deposits of northern Scotland and
Orkney [103]. They appear to be somewhat less common in East Greenland, although there
are records of peaks at ca. 1140 Ma [59,120,128], which is coeval with the earliest ‘Arendal
phase’ of the Sveconorwegian Orogeny [129].

The majority of the Palaeozoic zircon ages in the Triassic sandstones from the Culzean
area undoubtedly relate to the Caledonian orogenic cycle that affected the sutured Lau-
rentian and Baltican margins [130], and which resulted in the emplacement of numerous
and frequently voluminous acidic to ultrabasic igneous masses [131,132]. Caledonian ages
are widespread across the Caledonian orogenic belt within Scotland, Norway and east
Greenland e.g., [121,133–135], albeit with varying geographical prevalence. For example,
Caledonian intrusions form only a minor component within the East Greenland fold belt,
whilst granitoid masses of comparable age are common across the Grampian, Northern
Highland and Southern Upland terranes of Scotland, including Shetland (Figure 7). In
Scandinavia, Caledonian intrusions are recorded from the Norwegian Caledonides, al-
though these are largely distal from the central North Sea in the upper and uppermost
allochthons from Mid Norway and Finnmark. Published Caledonian-age dates from south-
western Norway are limited to the Hardangerfjord and Lindås nappes between Karmøy
and Fensfjorden, and the Jotun Nappe in the eastern reaches of Sognefjord [133,136,137].
The relatively small number of zircons that can be attributed to the Caledonian orogenic
cycle could therefore be reconciled with either a Scottish or Norwegian provenance, or
indeed East Greenland, although that is less likely when considering previously published
palaeogeographic reconstructions. Although Andrews et al. [138] considered that rivers
with a catchment in East Greenland may have extended into the southern Viking Graben,
they also acknowledged that the East Shetland Platform (ESP) may have been an alternative
source area. As the latter would be consistent with Preston et al. [139] who demonstrated
that Triassic sandstones of the Beryl Embayment (location shown in Figure 7) were predomi-
nantly sourced from the ORS of the ESP, direct sourcing of Skagerrak Formation sandstones
from a considerably more distal source in Greenland seems the less likely option.

The zircon age data, therefore, indicate that at the base of the Joanne Sandstone
Member, there was a marked reduction in the supply of sediment that originated in Scot-
land. This scenario is consistent with the palaeogeographic maps and facies distributions
proposed by McKie and Audretsch [11], McKie et al. [12] and Gray et al. [9], in which
Scottish-derived sediment transport systems were more extensive in the earlier parts of
the Triassic and were subsequently replaced by detritus shed from southern Scandinavia.
However, it is important to recognise that zircons are capable of extensive recycling owing
to their mechanical and chemical stability, and hence the Archaean component in the Smith
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Bank and Judy zircon populations may not necessarily indicate first-cycle supply from
Scottish basement terranes.
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Figure 7. Geological summary map of the geological units exposed on the landmasses of Scotland
and SW Scandinavia with the location of Triassic basins and structural features discussed in this
paper. Abbreviations: BE, Beryl Embayment; ESP, East Shetland Platform; GGF, Great Glen Fault;
HSZ, Hardangerfjord Shear Zone; HBF, Highland Boundary Fault; HT, Hebridean Terrane; IMF, Inner
Moray Firth; LD, Ling Depression; LGF, Lærdal–Gjende Fault Complex; MT, Moine Thrust; MVS,
Midland Valley of Scotland; NH, Northern Highland Terrane; OSR, Orkney-Shetland Ridge; RAC,
Rogaland Anorthosite Complex; SUF, Southern Uplands Fault; WGR, Western Gneiss Region. Based
on Corfu and Andersen [140], Goldsmith et al. [33], and Holdsworth et al. [97].

6.2. Apatite

Interpretation of the detrital apatite age data is necessarily less well-founded than with
the zircons, since there is a scarcity of data to compare with the observations in the current
study. Nevertheless, a number of conclusions can be drawn, the most fundamental being
that the contrast between the Joanne Sandstone Member and older sandstones confirms the
zircon evidence for a switch in sediment supply systems. The apatites obtained from the
Joanne Sandstone Member are predominantly of Caledonian age, with little representation
of the mid-Proterozoic that is so abundant in the zircon spectra. The most likely explana-
tion is that the source areas that provided the mid-Proterozoic zircons (either crystalline
basement or recycled from metasediments in the Caledonian Nappes) were subjected to
relatively low-temperature metamorphism that caused diffusion of Pb and dissolution-
reprecipitation during the Caledonian orogenic cycle. This scenario is compatible with the
known geological framework of southern and western Norway.

In the Bunter Sandstone Member and Judy Sandstone Member, there is also a mismatch
between the zircon and apatite spectra. The Caledonian peaks broadly correlate, but the
majority of the mid-Proterozoic zircons post-date the Palaeoproterozoic-Mesozoic apatites,
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and the Archaean group that is characteristic of the zircon population is either poorly
represented or entirely absent. The explanation for the absence of mid-Proterozoic apatites
corresponding to the zircons as proposed above for the Joanne Sandstone Member could
also apply to the Bunter and Judy samples and would be again compatible with the
geological framework of northern Scotland. The origin of the older apatite group, however,
requires another explanation, since it evidently points towards a source that was unaffected
by Caledonian thermal events.

One explanation for this group of apatites is that they were derived from the Lewisian
Complex that supplied the Archaean zircons, since this region was affected by at least
two Laxfordian tectonothermal events, one from 1910 Ma to 1850 Ma and another around
1750–1650 Ma [141]. The same explanation has been applied to the Stoer Group, which
shows a closely comparable group of apatites in the 1500–1900 Ma age range [63,142], in
association with zircons at ca. 2750 Ma. O’Sullivan et al. [63] note that the Laxfordian event
is poorly represented in the zircon U-Pb record even though most apatite in the Stoer Group
yields Laxfordian U-Pb ages. An alternative origin is that these apatites represent input
from Greenland, since a comparable U-Pb apatite-based study from SW Greenland [143]
records thermal overprinting within this area at 1826 ± 9 Ma, which is an excellent match
with the peak abundance at ca. 1825 Ma in sample MK-2.

6.3. Conclusions

The change in provenance at the base of the Joanne Sandstone Member identified
on the basis of conventional heavy mineral data [16] is verified by the zircon and apatite
data described in this paper (Figure 8). The key changes are (i) the abundance of Archaean
zircons in the Bunter Sandstone Member and Judy Sandstone Member, and their marked
decrease in the Joanne Sandstone Member, and (ii) the abundance of Meso- and Palaeopro-
terozoic apatites in the Bunter Sandstone Member and Judy Sandstone Member, and their
virtually complete absence in the Joanne Sandstone Member. These results provide strong
support for a reorganisation of sediment transport systems between the Judy and Joanne
sandstones in the Culzean area.

The combined apatite and zircon data suggest that the source region for the Bunter
Sandstone Member and the Judy Sandstone Member comprises Moinian-Dalradian metased-
iments affected by tectonothermal events associated with the Caledonian orogenic cycle, in
conjunction with a Palaeoproterozoic-Archaean source originating outside of this deforma-
tion zone. The only feasible Palaeoproterozoic-Archaean foreland areas are the Archaean
complexes of NW Scotland (Lewisian Gneiss) and central Greenland (Rae Craton). How-
ever, both of these regions were separated from the central North Sea by topographic highs
and proto-Atlantic rift basins, respectively [144,145], suggesting that the sediment cannot
have been input directly from either area, and that recycling is the most likely possibility.
This is supported by the textural evidence from detrital apatite morphologies [15,16], al-
though the observed high apatite roundness might alternatively be attributable to processes
operating during the early Triassic depositional cycle. Acquisition of further constraints
on the location and nature of the Scottish source is a focus of further studies into Triassic
sandstone provenance in the central North Sea region.

In the Joanne Sandstone Member, the association of predominantly Caledonian age
apatites with zircons dominated by mid-Proterozoic ages is compatible with the known
geological framework of southern and western Norway, where the lithologies that sourced
the mid-Proterozoic zircons (either crystalline basement or recycled from metasediments
in the Caledonian Nappes) were subjected to relatively low-temperature metamorphism
during the Caledonian orogenic cycle and therefore yielding early Palaeozoic apatites.
The low degree of textural maturity associated with the detrital apatite, together with the
unimodal Caledonian age grouping, indicates a strong first-cycle component. Combined
with the common presence of chrome spinel, the Hardangerfjord and surrounding areas
of SW Norway would seem a strong candidate source area considering that now-isolated
remnants of ophiolite- and granitoid mass-bearing Caledonian allochthons indicate that



Geosciences 2023, 13, 13 19 of 26

widespread erosion of these nappes and Proterozoic metasedimentary units has occurred
across this area that was subjected to Late Triassic exhumation [44]. Support for such
an interpretation is strengthened by the consideration that any river paths influenced by
the SW-NE-trending Hardangerfjord Shear Zone (Figure 7), which may have experienced
Triassic exhumation rates of >100 m Myr−1 in its footwall [43], would likely enter the central
North Sea via the Ling Depression area in a manner consistent with the Joanne depositional
model of Gray et al. [9]. However, a shift to a predominantly Fennoscandian-sourced
system was not necessarily the result of hinterland tectonics, and alternative causes such
as wettening of the hinterland climate during the Late Triassic (cf. McKie [5]), and/or
more easterly sub-basins such as the Stord and Norwegian-Danish basins potentially
impeding long-distance spill to a greater degree during the Early-Middle Triassic, should
also be considered.
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The application of detrital zircon and apatite geochronology and trace element analysis,
in combination with existing conventional and textural heavy mineral studies, has provided
detailed information on sediment source areas, lithologies and geochronological histories
for sandstones from which a considerable amount of provenance information has been
lost through burial diagenetic processes. It may be possible to obtain further constraints
using the other ultrastable mineral components (rutile, tourmaline, chrome spinel) in
future studies.
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