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Abstract

Our research provides a detailed overview of the progress in remotely sensed fire
monitoring techniques, which have been developed and employed for fire occur-
rence and detection. Our overview is provided from a literature search of English-
peer reviewed articles, conference proceedings and scientific book sections published
between the periods of 1980 and 2019. Literature reveals that historically, fire de-
tection through remotely sensed techniques has mainly occurred through ground-
based, airborne and satellite systems. Mathematical models, such as decision tree
models, Species Distribution Models, Dynamic Global Vegetation Models and Global
Climate Models, have also been employed alongside satellite systems to facilitate a
greater understanding of fire dynamics and its susceptibility to changes in ecologi-
cal and climatic variables. Fire frequency and severity are known to be influenced
by atmospheric conditions, fuel load and ignitions. However, the literature suggests
that targeting inappropriate wildfires with these techniques may still result in wild-
fires outside of the natural fire regime. Most studies regarding fire occurrence and/
or monitoring focus on satellite-based techniques as they provide the greatest cover-
age of wildfires at varying spatial and temporal resolutions depending on the sensor
used. Satellite systems are advantageous for fire monitoring as they provide extensive
coverage inexpensively. Finally, fire occurrence is explicitly influenced by moisture-
limited climatic conditions and/or fuel load in the form of leaf-litter or water-stressed

plants.

Résumé

Notre recherche fournit un apercu détaillé des progrés réalisés dans les techniques
de surveillance des incendies par télédétection, qui ont été développées et utilisées
pour la détection et I'apparition des incendies. Notre apercu est fourni a partir d'une
recherche documentaire d'articles, de comptes rendus de conférences et de sections
de livres scientifiques en anglais, publiés entre 1980 et 2019. La littérature révele
qgu'historiquement, la détection des incendies par des techniques de télédétection
s'est principalement faite par des systémes terrestres, aériens et satellitaires. Des
modeles mathématiques, tels que les modeles d'arbres de décision, les Modeéles
de Répartition des Espéces, les Modéles Dynamiques de Végétation Globale et les
Modeéles Climatiques Globaux, ont également été utilisés parallelement aux systémes

satellitaires pour faciliter une meilleure compréhension de la dynamique des incendies
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et de leur sensibilité aux changements des variables écologiques et climatiques.
On sait que la fréquence et la gravité des incendies sont influencées par les
conditions atmosphériques, la charge en combustible et les inflammations.
Cependant, la littérature suggére que le fait de cibler des incendies de forét
inappropriés avec ces techniques peut toujours entrainer des incendies de forét
en dehors du régime naturel des incendies. La plupart des études portant sur
I'occurrence et/oulasurveillance desincendies se concentrent sur les techniques
satellitaires, car elles offrent la plus grande couverture des incendies de forét a
des résolutions spatiales et temporelles variables en fonction du capteur utilisé.
Les systémes satellitaires sont avantageux pour la surveillance des incendies,
car ils offrent une couverture étendue a moindre coGt. Enfin, la survenue d'un
incendie est explicitement influencée par des conditions climatiques limitées

par I'hnumidité et/ou par la charge de combustible sous forme de litiere de

KEYWORDS

satellite data

1 | INTRODUCTION

Fire dynamics have often been misunderstood and viewed as either
a destructive force or an ecological necessity. However, it has been
recognised that fires are ecosystem engineers, which is contrary to
the belief that only climate and soils dictate the structure of an eco-
system (Bond & Keeley, 2005). The idea between the parallels of
fire and ecosystem engineering is that, in the absence of fire, large
populations of plant species will be lost while other species will
proliferate. Ultimately, the absence of fire results in a transformed
ecosystem similar to tropical forest environments with minimum
fire as compared to savannah environments that fires have modi-
fied. Although fires are a necessity for ecological diversification
and the suppression of bush encroachment especially in Savannah
environments, if fires are not timely monitored and managed it can
lead to the destruction of hectares of land which might be costly
(Dube, 2013; Strydom & Savage, 2018). To avert these likely set-
backs, there is a need to develop models that can help to predict the
occurrence of wildfires, based on environmental factors that influ-
ence the dynamics of fires.

The severity and frequency of fires are a result of three factors,
which include the atmospheric conditions, the fuel load and the ig-
nition (Moritz et al., 2012). However, the environmental covariates
ought to be used when predicting the probability of fires vary be-
cause of the different environmental conditions across various re-
gions. For example, from a global perspective, Moritz et al. (2012)
used net primary productivity, annual precipitation, the precipita-
tion in the driest month, temperature seasonality, the mean tem-
perature of the wettest month and the mean temperature of the

warmest month to measure distribution. On the other hand, Liu

feuilles ou de plantes stressées par l'eau.

fire monitoring framework, fire suitable conditions, fuel load, modelling and monitoring,

et al. (2010) used the Keetch-Byram drought index, which is based
on the soil moisture deficit and which relies on daily temperature
and daily and annual precipitation data to determine the distribution
of fires globally. The different parameters used by Liu et al. (2010)
and Moritz et al. (2012) to measure the global fire distribution have
resulted in contrary results that agree only on the fact that global
fire distribution will increase in some places and decrease in others,
due to climate.

From a regional perspective, Gonzalez et al. (2006) used eleva-
tion, tree size, stand structure and species composition in a statis-
tical model to predict fire distribution in forest stands in Catalonia,
Northeast Spain. Contrary, Mpakairi et al. (2018), used elevation,
Normalized Difference Vegetation Index (NDVI), human popula-
tion density and mean air temperature to predict the distribution
of fires and possible hotspots in the Kavango Zambezi Transfrontier
Conservation Area. The difference between the parameters used
to determine wildfire probability and distribution differ with regard
to the physical template of the environment and the model type. In
addition, the heterogeneity of landscapes makes it difficult to have
specific environmental covariates.

In South Africa, fires have been recognised for the role that they
play in the ecological structure and function (Bond & Keeley, 2005;
Van Wilgen & Richardson, 1985). Bond and Keeley (2005) suggested
that, in the absence of fire, indigenous grassland and Fynbos biomes
would be dominated by tree species, which would ultimately result
in the loss of diversity. In contrast, fires that occur outside of the
natural regime would promote the encroachment of invasive species
(Van Wilgen et al., 2010). Fire management in South Africa occurs
by using prescribed burning, which has proven to be inefficient and

does not reduce the fuel load (Van Wilgen et al., 2010). According
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FIGURE 1 Number of articles 25000 1 m Fire monitoring using remote sensing

published on fire monitoring using remote
sensing, the influence of climate on fire
occurrence and impact of fire occurrence
on ecosystems.

20000 A

15000 A

10000 A

Number of published articles

5000 A

u The influence of climate on fire occurrence
= Impact of fire occurrence on ecosystems

1980 - 1984 1985 - 1989 1990 - 1994 1995 - 1999 2000 - 2004 2005- 2009 2010 - 2014 2015-2019

to Van Wilgen et al. (2010), most fires in the Western Cape occur as
wildfires, with only a small percentage actually taking place as pre-
scribed burning. The Western Cape experiences a Mediterranean
climate and the most abundant plant species is Fynbos, which cre-
ates an interesting environment where a highly flammable plant
species occurs within highly flammable climatic conditions (Van
Wilgen et al., 1994). From a South African perspective, it is therefore
important to understand the environmental conditions that favour
the occurrence of fires, in order to effectively determine where fire
management efforts should be directed. Although the application of
remote sensing has been widely discussed from a fire-mapping per-
spective (San-Miguel-Ayanz et al., 2005), knowledge gaps still exist
globally and regionally, since most models disagree on the environ-
mental covariates that must be used when mapping the incidence of
fires. Furthermore, models often do not include a bi-temporal anal-
ysis to determine the predictive capability of the said model, even
though this has since been proven to be valuable (Escuin et al., 2008).
The main objective of this article was to develop a detailed overview
on the progress in remotely sensed fire monitoring techniques and
mathematical models that have long since been developed and em-
ployed for fire occurrence and its detection.

2 | MATERIALS AND METHODS
2.1 | Literature search

The literature search consisted of English-peer reviewed articles,
conference proceedings and scientific book sections published be-
tween the period of 1980 and 2019, in order to ensure that the
most relevant information was sourced for this study. All articles
were sourced from Google Scholar through the use of a targeted
search that followed certain criteria. The criteria of search were
as follows: (a) the use of remote sensing techniques and systems
for fire monitoring, (b) environmental conditions and climate char-
acteristics that influence fire occurrence and (c) publication in a
journal article or other sources of reputable academic literature.

Year

This review only considered articles in which remote sensing, fire
monitoring and fire description were key features of assessment
and/or directly influenced the determination of the results in said
articles. The articles were then grouped into three categories (a)
fire monitoring using remote sensing, (b) the influence of climate
on fire occurrence and (c) impact of fire occurrence on ecosystems
(Figure 1). For the first category, ‘fire monitoring using remote
sensing’, the publication of articles were very limited for much of
the 1980s and fire monitoring through the use of remote sensing
only became popular in the late 1990s (Figure 1). This can be seen
based on the number of articles published, where between 1980
and 1994 only 17,530 articles were published, whereas between
1995 and 2019, 82,100 articles were published. For the second
category, ‘the influence of climate on fire occurrence’ the number
of articles published every 4years since 1980 remained virtually
unchanged (Figure 1). This simply suggests that the influence of
climate on fire occurrence has remained a popular topic but simi-
larly could suggest that as climate is ever changing so too does the
climatic thresholds that influence fire occurrence. For the third and
final category, ‘impact of fire occurrence on ecosystems’, this topic
seemingly increased in popularity in the late 1990s, possibly due to
a shift in the previous theory that fire is an environmental hazard
as can be seen in Bond and Keeley (2005).

Interestingly, since 1980, the number of published articles re-
garding the use of remote sensing in fire monitoring remains fewer
than that of the amount of articles regarding the influence of cli-
mate on fire occurrence and the impact of fire occurrence on eco-
systems (Figure 1). This suggests that while many try to understand
the dynamics of fire occurrence and its impacts, less try to actively
predict and monitor its occurrence. This leaves a gap in knowledge
that needs to be filled through the advancement of remote sens-
ing techniques to actively monitor fire occurrence. As such, there
is a need for more remotely sensed frameworks that focus on the
characteristics needed to model and predict fire occurrence. The key
concept here being that an advancement in remotely sensed frame-
works for fire monitoring would allow for more viable remote sens-

ing technigues when monitoring and predicting fire occurrence. This
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improvement in remotely sensed frameworks and consequent im-
proved fire monitoring through remote sensing will ultimately help
fire management strategies make more informed decisions regarding

fire suppression and human intervention.

3 | THE PHYSICAL AND CLIMATIC
CONDITIONS THAT INFLUENCE THE
OCCURRENCE OF WILDFIRES

Moritz et al. (2012) argued that fires were influenced (a) atmos-
pheric conditions (b) biomass or vegetation structure and growth
rate, and lastly, (c) ignitions, which refers to any activity that starts
a fire. While these factors undoubtedly influence fires, they do not
consider smaller scale disturbances that are climate-specific, such as
precipitation pulses, where an increase in precipitation in an already
moist climate will diminish fires, but a similar increase in precipita-
tion in a drier climate will increase flammability.

In Southern Africa, most studies concur that fires are influenced
by elevation, soil moisture, precipitation, vegetation characteristics,
anthropogenic activities and temperature; however, very few ac-
tively apply all of these in their models (Chingono & Mbohwa, 2015;
Mpakairi et al., 2018). Vegetation characteristics, such as structure,
length and moisture content, all determine the flammability of a
plant and its contribution to the fuel load (Van Wilgen et al., 1990).
For example, the Fynbos species consists of dry shrubland plants
that are naturally fire-prone, due to their dry, woody-like structure
and high oil content, which makes them more flammable than other
plant species found in South Africa. Likewise, plants that hold more
moisture or produce less leaf litter, such as succulent plants, will nat-
urally be less flammable. Studies in Southern Africa have also showed
that wildfire probability increases with increasing NDVI, with the
highest fire probability being when NDVI ranges between 0.5 and
0.9 (Chingono & Mbohwa, 2015; Mpakairi et al., 2018). In addition,
warmer temperatures facilitate drier conditions through evapora-
tion. This is indicative of fire-prone areas that have less available
moisture, such as savannahs and Mediterranean climates. Various
studies concur that temperatures of between 20°C and 27°C have
the highest probability for wildfires (Mpakairi et al., 2018).

Similarly, precipitation determines the amount of available mois-
ture. This, in turn, influences the dryness of any given area, where
a balance between a variable precipitation and the dry season in-
creases the plant growth rate, which facilitates the available dry
biomass during the dry season (Archibald et al., 2008). Archibald
et al. (2008) showed that the burned areas decrease where the tree
cover is greater than 40%, and tree cover that exceeds 40% only
occurs in areas that receive rainfall of more than 800 mm. Therefore,
this suggests that the perfect precipitation threshold that is neces-
sary for fire to occur ranges between 500 mm and 700 mm. Elevation
influences the spread of fires in a linear fashion, where a higher
frequency of fire is related to a higher elevation, which often influ-

ences the moisture conditions and the resultant varying vegetation

(Kitzberger et al., 2005; Maingi & Henry, 2007). It is important to
note that the aforementioned environmental factors are all indepen-
dent variables that act in a flammable environment, while there are
also other factors that influence fires, most of which are dependent
and act to intensify a fire, rather than to initiate it.

4 | CURRENT FIRE CONTROL
MECHANISMS AND THEIR EFFECTIVENESS

To date, many studies have discussed the importance of fire for bio-
diversity (Bond & Keeley, 2005; Van Wilgen et al., 1994, 2010; Van
Wilgen & Richardson, 1985), and most of them concur that fire is
necessary to promote the richness of species and to eradicate alien
invasive species. Unmanaged fires can, however, have an adverse
effect on the environment, economy and human lives (Dube, 2013).
Thus, to prevent fires and to ensure that they promote species rich-
ness, various management techniques are used to control the fire
regime.

These methods mainly include prescribed burns, firebreaks and
slash-and-burn techniques. Prescribed burns are fires that are ini-
tiated in a controlled environment, usually by trained personnel,
with the intention of maintaining the natural fire regime of an area
and protecting the richness of the indigenous species (Mpakairi
et al., 2020). Firebreaks usually consist of a physical break that acts
as a boundary between the vegetation stands, with the intention of
suppressing the spread of fire from one sector to the next (Mpakairi
et al., 2020). The slash-and-burn technique involves the logging of
trees, leaving the material to dry and then burning the said material
as a means of increasing the fertility of the soil and eliminating inva-
sive species (Ngadze et al., 2020). While these techniques are sup-
posed to promote viable environments that are not prone to fires,
they can have adverse effects on the environment. These effects
include but are not limited to, soil erosion, soil contamination, air
pollution, sedimentation and turbidity (Crutzen & Andreae, 1990;
Rosenfeld, 1999; Swanson, 1981).

Van Wilgen et al. (2010) showed that the probability of fires
in Fynbos biomes remain largely unaffected by the post-fire age.
The study also showed that only a small area was burned under
prescribed burns and that most fires occurred as wildfires, which
suggests that prescribed burning in these environments will not re-
duce the risk of wildfires. Van Wilgen et al. (1994) suggested that,
instead of having prescribed burning, a better option would be to
allow wildfires to burn freely in delineated areas, based on an as-
sessment of the following four characteristics: (a) where fires should
not occur; (b) where fires are allowed to burn; (c) where vegetation
has reached complete maturity and/or are adding detritus; and lastly,
(d) where prescribed burns are essential for wildfire control. Thus,
there is a continuous need for remotely sensed data and specifi-
cally for models that allow for the prediction and characterisation of
fire-prone areas, based on the environmental conditions that facil-

itate them. Currently, a vast majority of models exist that cater for
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TABLE 1 Satellite sensors and their specifications.

Sensor name Spatial
(launch date) Bands (spectral reflectance) resolution
MODIS (MOD14A1) 16 visible near-infrared bands 250m

Three shortwave-infrared bands ~ 500m
17 thermal bands 1000m

ASTER Four visible near-infrared bands 30m
Six shortwave-infrared bands

Five thermal bands

LANDSAT-8 OLI Five visible bands 30m
One near-infrared bands
One band for Cirrus cloud
detection
Two shortwave infrared bands

2 thermal bands

VIIRS Six visible bands 375m
Three near-infrared bands
Five shortwave-infrared bands
Three mid-infrared bands
Four longwave-infrared bands
One day-night band

DMSP-OLS Visible near-infrared (0.58-0.91)  0.56km fine
Thermal (10.5-12.5) resolution
2.7 km-smooth
resolution

African Journal of Ecology caaVaVA| LEYJ—S

Temporal resolution Examples

1 day Giglio et al. (2008)
Justice et al. (2002)
Chand et al. (2007)

Yamaguchi et al. (1998)
Giglio et al. (2008)

Does not collect continuous data due
to hardware and data issues

16days Schroeder et al. (2016)
12h Schroeder et al. (2014)
12h Chand et al. (2007)

Huang et al. (2014)

Abbreviations: ASTER, Advanced Spaceborne Thermal Emission and Reflection Radiometer; DMSP-OLS, Defense Meteorological Program
Operational Linescan System; MODIS, Moderate Resolution Imaging Spectroradiometer; OLI, Operational Line Imager; VIIRS, Visible Infrared

Imaging Radiometer Suite.

the spatial distribution of fires on a global scale, and there are also
some that cater for hotspot analyses on a regional scale (Chingono
& Mbohwa, 2015; Gonzalez et al., 2006; Liu et al., 2010; Moritz
et al., 2012; Mpakairi et al., 2018).

5 | TRADITIONAL AND CONVENTIONAL
FIRE MONITORING SYSTEMS

Most fire-monitoring systems have been developed to detect fires,
with variable success. The most successful of these developed sys-
tems can be subdivided further into three main categories, namely,
satellite-borne systems, airborne systems and fixed-ground plat-
forms (San-Miguel-Ayanz et al., 2005). These three remote sensing
systems detect fires in the following way: (a) by using the difference
in temperature with respect to the normal temperature conditions;
(b) by using the difference in temperature with respect to the back-
ground temperature conditions; and (c) by detecting the smoke
plume. These methods commonly use the mid-infrared and thermal
spectral bands to allow for the detection of fires. The mid-infrared
and thermal bands are optimal for the detection of fires as they
occur far from the peak of the earth's solar radiation, which is meas-
ured at 0.5 pm-9.7 pm and 8 pm-12pum, respectively, for the afore-
mentioned bands. Fixed-ground platforms are operated either under

human surveillance, or autonomously, and they are advantageous in

that they allow for the continuous surveillance of large areas with
mid-infrared and thermal cameras. The validity of fixed-ground plat-
forms can be influenced by different factors, for example, the solar
effects, heated objects, artificial lights and combustion points from
human activities, and these may cause the false detection of fires. A
recent study by Mpakairi et al. (2020) showed that, utilising the blue
spectral band which is usually available on most satellite-borne sen-
sors (e.g. Landsat and Sentinel) can be useful in detecting fires when
the atmospheric conditions do not permit.

Airborne systems, which are similar to fixed-ground systems,
are also operated mainly under human surveillance. The humans
base the operation of these systems on smoke plume detection and
they may inherently be influenced because of this, as detection can
only occur once a fire has occurred. Although airborne systems are
reactive, as opposed to proactive, in their response, they are still
advantageous as they can assist with the ongoing firefighting upon
fire detection. Airborne systems also make use of the mid-infrared,
thermal and visual portions of the electromagnetic spectrum to
detect fires, by using algorithms; however, similar to fixed-ground
platforms, there are different background factors that can produce
a false alarm.

Satellite systems are by far the most advantageous systems,
due to their low operational costs and their high spatio-temporal
resolution, and they are widely used for fire monitoring (Table 1).

They also provide greater information about the fires, as opposed
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to other systems, by including fire severity through indices such as
Normalized Burned Ratio (NBR) (Escuin et al., 2008). While they can
still suffer from detection errors for various reasons, such as the fire
size and/or fire temperature, these can be corrected more effec-
tively not only through algorithms, but also through the exploitation
of other bands, to remove cloud masking. Thus, image processing
is also cost-effective and can be time-efficient when done through
geospatial data analytical platforms.

Satellite systems that are used for fire monitoring, extract in-
formation from the visual, mid-infrared, shortwave-infrared and
thermal portions of the electromagnetic spectrum. Most active
fire detection algorithms use brightness temperatures as a means
of detecting active fires via temperature thresholds. These thresh-
olds are divided into fire temperature and/or background tempera-
ture, and examples of these can be seen in the Moderate Resolution
Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging
Radiometer Suite (VIIRS) systems. MODIS, for instance, determines
absolute fires if the temperatures are above a given threshold, and
it determines weaker fires (that are not above the absolute thresh-
old) based on the thermal emissions of the surrounding pixels, that
is, background temperatures (Justice et al., 2002). Furthermore, the
red and near-infrared channels are used to remove ‘false detection’
if the fire pixels have a reflectance above 30% in these channels.
Landsat 8 Operational Land Imager (OLI) uses an active fire detec-
tion algorithm that is split into day and night modules and that are
driven by the shortwave infrared channel. Thus, during the day,
the near-infrared (NIR) channel is used alongside the SWIR chan-
nel to remove the reflective solar component that may cause ‘false
alarms’, as it is unresponsive to fire-affected pixels, but it correlates
well with the shortwave infrared (SWIR) channels over fire-free sur-
faces (Schroeder et al., 2016). Fire detection algorithms function
like algorithms that make use of thermal infrared channels, in that
they use SWIR radiance to detect the fire-affected pixels, based on
their background values. This section does not focus on the algo-
rithms of the other sensors mentioned above, namely The Defense
Meteorological Program Operational Linescan System (DMSP-OLS)
and The Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), due to the limitations that are associated with
them. DMSP-OLS, for example, can only provide valuable night time
data due to its available spectral channels in the visual and thermal
portion (Chand et al., 2007). ASTER, on the other hand, is no longer
fully operational and cannot provide the continuous data that is re-
quired for active fire detection (Yamaguchi et al., 1998). Therefore,
DMSP-OLS and ASTER are frequently used alongside other sensors,
or as validation tools.

Thus, when reflecting upon which sensors are the most efficient,
it is important to consider the factors listed in Table 1. Temporal
resolution refers to the frequency at which any satellite passes and
collects data from a geographical location on earth during its orbit.
Therefore, for successful active fire monitoring, one will require a
high temporal resolution that will preferably allow for the diurnal
cycles of data acquisition, which allows a more rapid response to
fire detection. Spatial resolution refers to the number of pixels in

a given sample and directly affects the amount of detail perceived
and thus the quality of the data that can be retrieved. For example,
the lower the spatial resolution, the greater the size and tempera-
ture of the fire that is needed, for detection to occur, thus excluding
the occurrence of smaller fires. Spatial resolution also influences
the environmental factors that can be included in a model, based on
the physical size of the phenomenon, for example, the vegetation
type. Spectral reflectance influences the intensity of the fire that
can be captured by the sensor, or more specifically, the saturation
of the band, thus error propagation is dependent on the number of
channels available and the range of spectral reflectance for the said
channels. For example, a false alarm may occur if the temperature
of a given area is high enough to saturate the bands. However, if
the temperature of the fire is too low for the active fire algorithm to
detect, smaller fires may be excluded, based on the spectral thresh-
old. In the MODIS active fire algorithm, for example, fires have to
meet the following conditions for absolute fire detection: T4> 360K
(330K at night), T4>330K (315K at night) and T4-T11>25K (10 K
at night). Therefore, most studies on fire detection and fire sever-
ity exploit these bands in order to extract information from them
about the said fires (Chingono & Mbohwa, 2015; Escuin et al., 2008;
Gonzalez et al., 2006; Liu et al., 2010; Moritz et al., 2012; Mpakairi
etal., 2018).

6 | CURRENT REMOTE SENSING
APPROACHES AND FRAMEWORKS FOR
FIRE MONITORING AND FIRE PREDICTION

Most studies incorporate different variables into their respective
models, based on the spatial scale of their study area, the type
of model used or the physical template of their study area. For
example, the difference between the variables described in Liu
et al. (2010) and Moritz et al. (2012) (Table 2) is rooted in the differ-
ent models that they used to determine the fire trends; for example,
Liu et al. (2010) used KBDI and Moritz et al. (2012) used MaxEnt
modelling. Furthermore, a close look at the differences between
the variables selected for the global models and the regional scale
models mentioned above highlights the fact that the spatial scale
influences the variables selected for each of the models. More spe-
cifically, the variables selected for the global model have a coarser
spatial scale, compared to the regional model, which prefers more
locally factored variables at a much finer spatial scale (Archibald
et al., 2008; Gonzalez et al., 2006; Mpakairi et al., 2018). The role of
the physical template in the decision of which variables to select can
also be seen in the study by Gonzalez et al. (2006), which catered
specifically for forest stands, as opposed to a more climate-specific
model (Table 2).

There is, however, clear concurrence between the majority of
the reviewed studies in Table 2, which determined that the eleva-
tion, NDVI, temperature and precipitation were among the most
important, although not the only, contributors to the fire potential,
whether it was on a regional or global scale. In Mpakairi et al. (2018)
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TABLE 3 Examples of frequently used models for fire management.

Model type Advantages

Species e Certain SDM requires presence-only data
Distribution along with associated features to model reality
Models e |t can utilise both continuous and categorical
(SDM) data and model interactions between different

variables

e Algorithms exist that allow for the optimal
determination of maximum entropy

e MaxEnt modelling is generative, rather than
discriminative, which can prove advantageous
when the amount of training data is limited

Decision Tree e Allows for the use of qualitative and
Models quantitative data

e Extensive methods by which to do model
evaluation

e Able to explain variation within original data
set

e Semi-qualitative data can be used when full
qualitative data set is unavailable

e They include non-additive behaviour and
complex interaction between variables

e Can model large data sets with quick feedback

Dynamic Global e Allows for the projection of potential future

Vegetation distributions of natural phenomena, such as
Model fire, based on scenarios (i.e. climate changes,
(DGVM) emissions)

and Global e Allows for the projection of continuous or very
Climate large-scale data sets

Model

(GCM)

and Archibald et al. (2008), population density had very little ef-
fect on the occurrence of wildfires. Archibald et al. (2008) showed
that the population density had a negative effect on burnt area oc-
currence, and more specifically, where the population density de-
creased, so the size of the wildfires would also increase. Mpakairi
et al. (2018) found no change in the occurrence of wildfires, based
on the effect of population density.

Theresults in Moritz et al. (2012) and Liu et al. (2010) differed sig-
nificantly, even though both studies aimed to understand the pres-
ent and future distribution of fires, based on the effects of climate
change. While some of the aforementioned factors could potentially
drive the differences between these models, this was not actively
determined and thus it remains speculation. It does, however, be-
come clear that models that cater for ‘climate-specific’ functions or
variables, with the exception of elevation, tend to show a significant
influence on the occurrence and distribution of wildfires. Thus, the
influence of climatic differences is impossible to ignore when one
considers, for example, that the drying rates differ across climates,
which is ultimately a function of precipitation (Liu et al., 2010).
Hence, the error propagation would be greater if a model designed
for a different climate is used, as the conditions are not climate-
specific. Ultimately, there is a need for climate-specific models when
trying to develop a remote sensing framework for fire monitoring

Limitations

e Not much is known about its general use and

References

Phillips
there are limited methods for error propagation et al. (2006)
It uses exponential modelling for probabilities

which means that it can return values for

environmental conditions that are larger than

what actually occurs in the study area.

MaxEnt is not available in standard statistical

packages and thus special software is required

for its use.

Some SDM requires presence and absence data

to operate

Does not predict well with smaller sample sizes

McKenzie
et al. (2000)

The implication of qualitative data requires a
great understanding

Greater error propagation when trying to
extrapolate model

Mainly used to determine burnt areas, as
opposed to being used for predictive modelling
Mainly used in forest areas and not suitable for
other areas (i.e. shorter vegetation types)

Coarse-scale resolution can limit available data Bond and

sets Keeley (2005)
Model valuation tends to be difficult at a global Moritz et al. (2012)
scale due to lack of data at certain times, long Liu et al. (2010)
time scales required and the effects of human

activities

Dependence of vegetation on bioclimatic

constraints

that relies on specific climatic variable thresholds, in order to achieve

greater model success.

7 | FREQUENTLY USED MATHEMATICAL
MODELS FOR FIRE DESCRIPTION

Table 3 provides examples of models frequently used for fire distri-
bution and potential modelling. Global Climate Models (GCMs) and
Dynamic Global Climate Models (DGVMs) are similarin that they have
advantages and disadvantages, but not similar functions. DGVMs
are ecological models that simulate vegetation dynamics and predict
projected changes in vegetation/potential biomass based on global
climate change mathematically (Bond & Keeley, 2005). DGVMs are
also used for fire monitoring due to the shared dynamics between
fire and vegetation (Quillet et al., 2010). In addition, DGVMs facili-
tate the vegetation component of GCMs, which focus on climate
behaviour based on physical laws, specifically fluid dynamics and
thermodynamics (Bonan et al., 2003; Kucharik et al., 2000; Sitch
et al., 2003). GCMs are used to understand climate change and for
weather forecasting, as well as to determine the present and future
distribution of fires based on changing climate. Both GCMs and
DGVMs exist in multiple versions that serve similar functions.
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In contrast, decision tree-based models were developed as an
alternative to linear regression models that cannot handle complex
relationships. Tree-based models are non-parametric statistical
models that fit data into increasingly homogenous subsets and are
used primarily as exploratory techniques to reveal differences and
correlations in data (Pham et al., 2020). Regression models consist of
stochastically trained data subsets that allow for more independent
estimates using binary recursive partitioning (Felicisimo et al., 2013;
Pashynska et al., 2016). While decision trees can be used for predic-
tive modelling, they only work when the predictors in the new da-
tabase fall within the range of the modelling framework. Therefore,
decision trees do not allow for an efficient predictive fire monitoring
system. Examples of tree-based models include support vector ma-
chines, multiple regression trees, random forest trees, classification
and regression trees, and partial least squares regression.

Species Distribution Models (SDMs) are used to model the geo-
graphical distribution of species by combining observed species
numbers with environmental estimates (Phillips et al., 2006). Most
SDMs require two training samples: presence and absence data.
MaxEnt is an exception that allows for predictive modelling of en-
vironment requirements and geographical distributions when only
presence data are available (Liu et al., 2009). MaxEnt determines an
estimate for the probability distribution of a given target by deter-
mining the probability distribution of maximum entropy based on
incomplete information of absence data (Phillips et al., 2006; Phillips
& Dudik, 2008). In this case, the information given by MaxEnt mod-
elling is represented as features, where each feature should closely
relate to the average of all the sample points taken for the said fea-
ture. Features refer to various factors, such as climatic variables, ele-
vation, soil moisture, species type and other environmental variables
and functions. When MaxEnt is used to model presence-only data,
the pixels of the study area determine the area where the MaxEnt
probability distribution is possible and the pixels with occurrence

data represent the sample points.

8 | FUTURE RESEARCH DIRECTIONS
AND RECOMMENDATIONS FOR FIRE
MANAGEMENT

Literature reveals that many studies, both global and regional, agree
on the factors that influence fire-suitable conditions, regardless
of climate. These conditions include: (a) atmospheric conditions,
such as precipitation, evaporation and temperature; (b) physical
resources, including vegetation characteristics and available fuel
load; and (c) ignitions, often in the form of lightning or anthropo-
genic activities. However, fewer studies delve into the small-scale
disturbances that are specific to particular climates. As such, future
research should focus on understanding the local fire climate by ex-
amining local climate thresholds and climate-influenced characteris-
tics that shape the natural fire climate. Doing so will allow for more
accurate determinations of fire occurrence in targeted areas where a

generalised framework would lead to inaccuracies. Examples of such

African Journal of Ecology @uaVaVA| LEYH

small-scale disturbances include precipitation pulses and vegetation
characteristics such as oil content, moisture content, growth rates
and plant structure.

Regarding fire management strategies, prescribed burns and fire
suppression efforts should only be undertaken in areas appropriate
for such interventions. Fire management agencies should first un-
derstand whether a targeted area is at risk of fire occurrence and
whether such fires exist within the natural fire regime. Therefore,
it is recommended that fire management agencies incorporate fire
monitoring and mathematical models to gain an understanding of
fire dynamics.

Current studies regarding fire monitoring, future fire distribu-
tions and fire risk analysis all use satellite systems to acquire the
necessary data. The most effective satellite systems for fire moni-
toring are currently MODIS and VIIRS and should be recommended
for future research. Lastly, it is imperative that future studies con-
sider localised variables that influence fire occurrence. Many studies
neglect the influence of local climate on fire occurrence in targeted
areas. Therefore, it is recommended that future studies first aim to
understand the local fire climate before including environmental

variables in a framework for fire monitoring.

9 | CONCLUSION

In conclusion, ecological diversification requires fire, which occurs
naturally under specific climatic conditions and available fuel load.
Without proper understanding, fire management strategies will be
ineffective, and wildfires will continue to be the most common form
of fire occurrence. To address this issue, fire management strate-
gies should rely on prescribed burns, firebreaks and slash-and-burn
techniques, all based on localised conditions. Remote sensing is the
most common form of fire monitoring, providing early detection
and prediction capabilities. However, ground-based and airborne
remote sensing techniques are often too expensive or inefficient,
needing more spatial and temporal resolution for effective monitor-
ing. Therefore, current studies focus on satellite-based techniques,
which increase spatial and temporal resolution while reducing data
acquisition costs. Models alongside satellite-based monitoring can
help predict the areas needing fire management. Thus, a remote
sensing framework for fire monitoring will assist with fire manage-
ment strategies and improve their efficiency.
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