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ABSTRACT
A number of published tests suitable for the comparison of multivariate distributions are

described. The results of a small power study, based on realistic Cepheid log period – Fourier

coefficient data, are presented. It is found that a statistic due to Henze has good general

performance. The tests are applied to Cepheid observations in the Milky Way galaxy, Large

Magellanic Cloud, Small Magellanic Cloud, IC 1613 and NGC 6822. The null hypothesis of

equal populations is rejected for all pairs compared, except IC 1613 – NGC 6822.
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1 I N T RO D U C T I O N

Following the pioneering work by Simon & Clement (1993), a num-

ber of authors (e.g. Buchler & Moskalik 1994; Antonello 2006) have

compared the joint (i.e. multivariate) distributions of pulsation peri-

ods P and light-curve shapes (as measured by Fourier coefficients)

of Cepheids in different galaxies. Commonly used dimensionless

Fourier coefficients are

R j+1, j = A j+1/A j and φ j+1, j = φ j+1 − 2φ j , (1)

where Aj is the amplitude, and φ j the phase, of the jth term in the fit

of a Fourier series to the light-curve shape. The intergalaxy compar-

isons have relied primarily on visual inspection of two-dimensional

plots of various combinations of log P, R21 and φ21. In this paper

more rigorous statistical procedures for the problem are introduced.

Formally the comparison of multidimensional scatterplots can

be viewed as the comparison of samples drawn from multivariate

distributions, with the aim of testing whether the two underlying

populations are statistically the same. If no distributional assump-

tions are made, then in the case of univariate data, the χ 2 and

Kolmogorov–Smirnov (KS) tests for equality of populations are

very well known. For higher dimensional data there are a number

of commonly used tests subject to assumptions about the family

membership (usually Gaussian) of the populations. Otherwise, if no

distributional assumptions are made, extensions of the KS statistic

to higher dimensions have been discussed by a number of authors,

both in the astronomy (e.g. Peacock 1983), and statistics (Justel,

Peña & Zamar 1997) literature. However, this is by no means the

only non-parametric statistic for the comparison of two multivariate

samples. A number of other statistics will be described in the next

section of the paper, and a limited simulation study of some of their

properties will be presented in Section 3.

�E-mail: ckoen@uwc.ac.za

Fairly extensive observations of the Cepheids in the Milky Way

galaxy and the two Magellanic Clouds are available. The recent

compilation of periods and V- and I-band Fourier coefficients by

Ngeow & Kanbur (2006) are used here. Details of the data selection

criteria can be found in Kanbur & Ngeow (2004, 2006); relevant

to this paper is the fact that 0.4 < log P < 1.7. Data for one star

(AV Cir) are excluded: this object, which has the shortest period

of the 154 MW Cepheids, appears to have anomalous Fourier pa-

rameters. The numbers of Cepheids are then 153, 390 and 641, for

the MW, Small Magellanic Cloud (SMC) and Large Magellanic

Cloud (LMC), respectively. To these data we add the (log P, R21,

φ21) compilations given by Antonello (2006) for two local group

dwarf irregulars IC 1613 (N = 18, 16 for the V and I bands, respec-

tively) and NGC 6822 (N = 53, 50 for V and I bands, respectively).

The results of two-sample tests performed on pairs of these data are

given in Section 4.

Conclusions are presented in Section 5.

2 T H E T E S T S TAT I S T I C S

The two samples are denoted by {x1, x2, . . . , xm} and {y1, y2, . . . ,

yn}, where each of the xi and yj is in general D dimensional. The

notation xik(yjk) will be used for the kth component (k = 1, 2, . . . ,

D) of xi(yj). Pooling the two samples gives

{z1, z2, . . . , zm+n} = {x1, x2, . . . , xm} ∪ {y1, y2, . . . , yn}. (2)

The first statistic is a multivariate extension of the one-

dimensional KS statistic; the second is an extension of the Wald–

Wolfowitz runs test (e.g. Conover 1971); while the remainder are

all based on distributions of interpoint distances.

2.1 The multivariate KS statistic

This is a generalization of the standard KS statistic used to com-

pare two univariate samples. The key ingredient is the maximum
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difference between the estimated cumulative distribution functions

(EDFs) of the two samples. The standard definition of the EDF for

D-dimensional data xj is

Fx(u) = Fx(u1, u2, . . . , uD) = 1

N

N∑
j=1

I (x j ; u) (3)

where the indicator function is defined by

I (x j ; u) =
{

1 x jk � uk (k = 1, 2, . . . , D)

0 otherwise
(4)

The full multivariate KS statistic is computationally expensive,

hence the simplified form

SKS = mn

m + n
max

k
|Fx(zk) − Fy(zk)| k = 1, 2, . . . , m + n (5)

(with z defined in equation 2) is used below – see remark (6) in

Section 2.7.

2.2 The multivariate runs test of Friedman & Rafsky (1979)

The Wald–Wolfowitz runs test can be used to compare two univariate

samples. The test consists of ordering the two combined data sets

and then counting the number of runs (uninterrupted sequences of

x or y values). Friedman & Rafsky (1979) devised a multivariate

analogue to the univariate runs test. The minimal spanning tree of

the combined data serves to order the data. All connecting lines

(‘edges’) between points from unlike samples are then removed,

leaving the multivariate ‘runs’. The number R of disjoint runs is the

test statistic: if the null hypothesis is true the two data sets will be

well mixed in multidimensional space, and R will be large. The null

hypothesis is therefore rejected for sufficiently small values of R.

2.3 The Baringhaus & Franz (2001) statistic

The test proceeds from the general observation that

E|xi − y j | − 1

2
[E|xi − x j | + E|yi − y j |] � 0 (6)

where E is the expectation operator, and |u − v| is the Euclidean

distance between u and v. The equality in equation (6) applies if and

only if the two samples are from the same population. Replacing

population means by sample means, the test statistic

BF = 1

mn

m∑
i=1

n∑
j=1

|xi − y j | − 1

2m2

m∑
i=1

m∑
j=1

|xi − x j |

− 1

2n2

n∑
i=1

n∑
j=1

|yi − y j | (7)

is expected to be small if the null hypothesis is true.

2.4 The Henze (1988) statistic

For each xi its K (with K typically 1 or 2) nearest neighbours in

multidimensional space are determined. The number of neighbours

Nx(i) which come from the same sample (i.e. the collection of xj

rather than yj) are then counted. The process is repeated with the

members of the other sample, giving also Ny(j). The statistic is

H (K ) =
m∑

i=1

Nx (i) +
n∑

j=1

Ny( j). (8)

Larger H(K) are expected if the null hypothesis is false, since points

from like samples are then expected to cluster.

2.5 The Hall & Tajvidi (2002) statistics

The calculation of this interpoint-distance-based statistic is as fol-

lows.

(i) For xi from the first sample, calculate the m − 1 distances

|xi − xk | k = 1, 2, . . . , i − 1, i + 1, . . . , m

and the n distances

|xi − yk | k = 1, 2, . . . , n.

(ii) Order the n + m − 1 interpoint distances calculated in

(i). Let Mi(j) be the number of yk amongst the j nearest neigh-

bours of xi. Under the null hypothesis the expected value of

Mi(j) is n j/(m + n − 1), that is,

DMi ( j) = |Mi ( j)-n j/(m + n-1)| (9)

is expected to be large if the samples are from different populations.

(iii) Interchanging the roles of the two samples in (i) and (ii) leads

also to the measure

DN�( j) = |N�( j) − mj/(m + n − 1)| (10)

based on N�(j), the number of xk amongst the j nearest neighbours

of y�.

(iv) The values of DMi (j) (i = 1, 2, . . . , m) and DN�(j) (� =
1, 2, . . . , n) can then be combined to give a single test statistic. Hall

& Tajvidi (2002) presented the two forms

HT-T = 1

m

m∑
i=1

n∑
j=1

DMi ( j) + 1

n

n∑
�=1

m∑
j=1

DN�( j)

HT-S =
n∑

j=1

max
i

DMi ( j) +
m∑

j=1

max
�

DN�( j). (11)

[The formulae given by Hall & Tajvidi (2002) allow for weight-

ing of the terms DMi(j) and DN�(j), but this will not be pursued

here.]

Clearly, the statistic is related to that of Henze (1988).

2.6 A statistic based on all interpoint distances

Maa, Pearl & Bartoszynski (1996) showed that the distributions of

the three sets of interpoint distances

|xi − x j | (i = 1, 2, . . . , m − 1; j = i + 1, . . . , m)

|yi − y j | (i = 1, 2, . . . , n − 1; j = i + 1, . . . , n)

|xi − y j | (i = 1, 2, . . . , m; j = 1, . . . , n) (12)

are all identical if, and only if, the xi and yj are drawn from the same

two populations. Equivalence of the three distributions of distances

can be tested by using three-sample univariate tests: see point (5) in

Section 2.7. The acronym IPDD (‘interpoint distance distribution’)

will be used for this statistic.

2.7 A few remarks

(1) The exact distributions of all of these statistics are unknown.

In most cases this does not matter as significance levels can be

determined by permutation. The recipe used is:

(i) Calculate the statistic of interest.

(ii) Combine the two samples; then randomly divide the pooled

data into two samples of sizes m and n.
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(iii) Calculate the statistic of interest for the two new samples.

(iv) Repeat steps (ii)–(iv) many (at least a few hundred) times,

noting the value of the statistic for each repetition.

(v) The significance level (p-value) of the statistic in step (i) is

determined by its ranking with respect to the values obtained in

steps (ii)–(iv).

The rationale is the following: if the two original samples are

indeed from the same distribution, then the value of the statistic

will be unremarkable. This will be revealed if it is compared to

values obtained from artificial samples generated by randomly

re-assigning observations to the two samples – which is perfectly

legitimate under the null hypothesis of equal populations. How-

ever, if the two samples are from different populations, then the

randomized samples will differ fundamentally from the original

two samples: the latter will reflect purely the distinct popula-

tions, while the former will consist of a mixture of values from

the two populations. Therefore, the statistic calculated in step (i)

is expected to have a value which is radically different from that

calculated for the mixed samples in steps (ii)–(iv).

(2) Large-sample results are available for some of the statistics.

In the case of the Friedman & Rafsky (1979) statistic R, the stan-

dardized form

F R = [(R − 1)(m + n) − 2mn]

√
m + n − 1

2mn(m + n)Q

Q = 2mn

m + n
+ [C − (m + n) + 2]

(m + n − 2)(m + n − 3)

× [(m + n)(m + n − 1) − 4mn + 2] − 1

C = 1

2

{
m∑

i=1

c(xi )[c(xi ) − 1] +
n∑

j=1

c(y j )[c(y j ) − 1]

}
(13)

has an asymptotic standard normal distribution. The notation c(z)

indicates the number of points in the minimal spanning tree which

are connected to z. The asymptotic distribution of FR is used

below because determination of the minimum spanning tree is

currently computationally too expensive for randomization to be

viable.

(3) The KS statistic depends only on the ordering of the data,

whereas all five the other statistics rely in some way on interpoint

distances. The KS statistic is therefore impervious to the units in

which the components of the vectors xi and yj are measured, whereas

the same will not be true for the other statistics. Standardization such

as

x ′
i j = xi j

S j
y′

k j = ykj

S j

i = 1, 2, . . . , m k = 1, 2, . . . , n j = 1, 2, . . . , D (14)

where Sj is some measure of the scale of the jth component of x and

y, for example, the s.d. of x1j , x2j , . . . , xmj , y1j , . . . , ynj , or

Sj = max
k,�

(xkj , y� j ) − min
k,�

(xkj , y� j ). (15)

is therefore used.

(4) A variation on the theme of the IPDD statistic is to replace the

full IPDDs by the distributions of distances to nearest neighbours

only, for example, the m(m−1)/2 distances |xi −x j | in equation (12)

are replaced by the m distances

min
j �=i

|xi − x j | i = 1, 2, . . . , m. (16)

The n(n − 1)/2 distances in the second equation in equation (12) are

reduced to n, and the mn distances in the third equation are reduced to

m + n. Although less information is used the number of calculations

and computer memory requirements are substantially reduced. The

result statistic will be denoted ‘NNDD’ (‘nearest neighbour distance

distribution’) in what follows.

(5) A number of statistics for testing for the statistical equiva-

lence of three cumulative distribution functions (i.e. extensions of

the classical univariate KS statistic to the three-sample case) are

available. Two of these, described in Fisz (1963, p. 408f), were

evaluated as part of the power studies reported below, and found to

have closely similar performance. Results are therefore only quoted

for the simpler of the two (see also Kiefer 1959):

D2 = max
u

3∑
j=1

N j [Sj (u) − S(u)]2, (17)

where Sj is the EDF, and Nj the size, of sample j (j = 1, 2, 3). The

statistic S is the EDF of the three pooled samples.

(6) Two points of considerable relevance to the KS statistic, both

of which have been dealt with in the literature, are (i) the compu-

tational expense of a complete evaluation of the multivariate EDF

and (ii) the effect of the non-uniqueness of the multivariate cumu-

lative distribution function. In order to keep the discussion which

follows as transparent as possible D = 2 is assumed; the essence is

unchanged for larger D.

(i) The EDF defined in equation (3) is a step function, with

changes not only in the observed data points (xj1, xj2), but also

in some (xj1, x�2) with j �= �. The implication is that F needs to

be evaluated in all (xj1, x�2) (j, � = 1, 2, . . . , N) – see Gosset

(1987), fig. A1. A consequence is that evaluation of F is compu-

tationally very expensive. It has been suggested in both the as-

tronomy and statistics literature that the calculations be restricted

to the observed data points only (i.e. the case j = �) – see Fasano

& Franceschini (1987) and Justel et al. (1997). Further justifi-

cation for the simplified statistic in equation (5) can be found in

Greenberg (2006), where it is shown that the power of two-sample

tests based on the full and simplified forms of F are very similar.

(ii) For univariate x the usual definition of the CDF is

F(u) = Pr (x � u). (18)

In principle, an alternative is to define

F(u) = Pr (x � u), (19)

but since

Pr (x � u) + Pr (x > u) = 1 (20)

the second definition (19) is perfectly equivalent to (18). In the

bivariate case x = (x1, x2), equation (20) is replaced by

Pr (x1 � u1, x2 � u2) + Pr (x1 � u1, x2 > u2)

+Pr (x1 > u1, x2 � u2) + Pr (x1 > u1, x2 > u2) = 1

so that the four definitions

F(u1, u2) = Pr (x1 � u1, x2 � u2)

F(u1, u2) = Pr (x1 � u1, x2 � u2)

F(u1, u2) = Pr (x1 � u1, x2 � u2)

F(u1, u2) = Pr (x1 � u1, x2 � u2)

are interrelated, but not equivalent. Put differently, each of the

four CDFs captures information not fully contained in the other

three. For this reason Peacock (1983) suggested the incorporation

of all four definitions into the multidimensional KS statistic.
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The expense of calculating the KS statistic in this fashion in-

creases approximately as D2 with increasing dimensionality of

the problem; only the form based on the definition in equation (4)

is therefore used here.

(7) In the study reported below, and in other related work, it was

found that the power (i.e. ability to reject the null hypothesis when

it is false) of the Henze (1988) statistic improved steadily as the

number of nearest neighbours K was increased from one to four.

Little improvement for K > 4 was seen. Results will therefore be

given only for K = 1 and 4; the statistics are denoted H1 and H4,

respectively.

3 A P OW E R S T U DY

The data derived from the V-band observations of SMC Cepheids

(table 5 in Ngeow & Kanbur 2006) were used as a ‘population’.

One outlying data point was excluded, leaving 389 trivariate (log P,

φ21, R21) points – see Figs 1–3. The power experiments proceeded

as follows.

(i) Two samples of size 70 were drawn without replacement (i.e.

each datum in the samples was unique) from the population.

(ii) The multivariate mean of one of the samples was changed by

adding a fixed number to one of the components of the trivariate

observations.

(iii) The statistics discussed in Section 2 were calculated.

(iv) Significance levels of the statistics were evaluated by ran-

domization, as described in Section 2.7, point (1). Five hundred

randomizations were used throughout.

(v) Steps (i)–(iv) were repeated 300 times, and the fraction of

rejections (at the 5 per cent level) of the null hypothesis were noted.

This completes one power study.

(vi) Since the statistics depend on the specifics of the univariate

distributions of each of the three components (log P, R21 and φ21),

the scheme (i)–(v) was repeated three times, each time for a different

component in step (ii).

(vii) Steps (i)–(vi) shed light on the relative performance of each

statistic in detecting changes in mean values. All the steps were

repeated, substituting a scale change in one of the coordinates for

the mean change in step (ii).

(viii) Power against a covariance change was also studied: the

dependence structure of one sample was changed by adding the

points shown as squares in Figs 1–3 to it.

The specific mean shift used in step (ii) of the outline above was

5 per cent of the range of the population of 389 values (of the specific

component). The scale change was

xik = μk + 1.5(uik − μk),

where μk(k = 1, 2 or 3) is the population mean value of the coor-

dinate, and the uik(i = 1, 2, . . . , 70) are the members of one of the

two samples drawn in step (i).

The results are reported in Table 1. As explained above, the mean

shifts or scale changes were applied separately to each of the three

components (log P, R21 and φ21); the outcomes are given in the first

six lines of the table. The results of comparing two samples with

different covariances are in line 7.

Inspection of Figs 2 and 3 shows two isolated data elements (plot-

ted as stars). In order to evaluate their influence, the mean shift and

scale change experiments were repeated with these two points ex-

cluded. The results are in the last six lines of Table 1.

0.5 1 1.5

4

6

8

Log P

φ 2
1

Figure 1. Periods and Fourier phase parameters for the SMC data (all sym-

bols except squares). The outlying point shown by the open circle was ex-

cluded in the power studies. The two points shown by stars were also ex-

cluded in some of the studies, in order to evaluate the sensitivity of the results

to their presence. Artificial points shown by squares were added in one power

study in order to evaluate sensitivity to a small covariance change.

0.5 1 1.5

0

0.2

0.4

0.6

Log P

R
2

1

Figure 2. As for Fig. 1, but showing the distributions of periods and Fourier

amplitude components.

Study of Table 1 leads to the following conclusions:

(i) The H statistic is the most powerful against shifts in the mean

of the first (log P) and third (φ21) coordinates; the FR statistic is

almost as good at detecting shifts in the φ21 distribution. Changes

in the mean of the second coordinate (R21) are best detected by the

SKS and HT-S statistics; H4 is next best.

(ii) The H statistic is the most powerful detector of scale changes

in all three coordinates.

(iii) None of the statistics has high rejection rates when the de-

pendence structures of the two samples are subtly different; the H

and FR statistics fared slightly better than the rest.

(iv) From (i)–(iii) it follows that, for general alternatives to the

null hypothesis, H4 is the statistic of choice.

(v) It is interesting that the SKS statistic traditionally used by

astronomers generally falls far short of the H statistics, and also
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Figure 3. As for Fig. 1, but showing the distributions of Fourier amplitude

and phase components.

Table 1. Results of limited power studies: fraction of rejections of the null

hypothesis for various true alternatives, for each of nine statistics. One pa-

rameter, given in the first column of each line, differs for the two samples.

The last six lines report on samples drawn from a slightly different popula-

tion (obtained by excluding the two starred data points in Figs 1–3). See the

text for further details.

Difference BF SKS H1 H4 NNDD IPDD HT-T HT-S FR

E(log P) 0.18 0.22 0.36 0.49 0.15 0.04 0.14 0.20 0.41

E(R21) 0.25 0.47 0.26 0.38 0.11 0.06 0.21 0.46 0.30

E(φ21) 0.72 0.56 0.88 0.97 0.58 0.07 0.49 0.84 0.92

var(log P) 0.14 0.47 0.69 0.84 0.41 0.11 0.24 0.37 0.71

var(R21) 0.11 0.46 0.46 0.68 0.20 0.13 0.26 0.50 0.52

var(φ21) 0.14 0.15 0.44 0.54 0.24 0.13 0.15 0.26 0.44

covariance 0.05 0.08 0.09 0.13 0.05 0.07 0.05 0.06 0.11

E(log P) 0.15 0.22 0.42 0.52 0.14 0.04 0.12 0.19 0.44

E(R21) 0.23 0.46 0.26 0.44 0.12 0.05 0.19 0.42 0.32

E(φ21) 0.31 0.31 0.40 0.57 0.16 0.07 0.21 0.44 0.42

var(log P) 0.11 0.45 0.69 0.74 0.34 0.12 0.15 0.30 0.68

var(R21) 0.16 0.48 0.47 0.68 0.21 0.15 0.28 0.52 0.52

var(φ21) 0.10 0.19 0.40 0.53 0.18 0.14 0.19 0.33 0.40

fares worse than the FR statistic (excepting the case of a change in

the mean of R21).

(vi) Generally

power(IPDD) < power(HT-T) < power(HT-S) < power(FR)

and

power(BF) < power(SKS)

hold. The simpler NNDD consistently performs better than the

IPDD.

Table 2. The significance levels of the various two-sample statistics, calculated for comparisons

of data for IC 1613 with the MW and SMC data, respectively.

Data set BF SKS H1 H4 NNDD IPDD HT-T HT-S FR

MW (V) 0.03 0.04 0 0 0 0.03 0.10 0.007 0

MW (I) 0.03 0.03 0.04 0.002 0.005 0.18 0.18 0.04 0.001

SMC (V) 0 0 0.86 0.02 0 0.002 0 0 0.84

SMC (I) 0 0.003 0.004 0 0 0.002 0.001 0 0.009

(vii) Excluding the two data points marked by stars in the figures

did not lead to changes in the performance rankings of the different

statistics, except in the case of mean changes in φ21. The power

against scale changes is generally not affected much, although the

power of the best statistic (H4) for discerning changes in the variance

of log P is somewhat reduced. The power against mean shifts in

φ21 is substantially reduced: this means that isolated data points

could have a substantial influence on the outcome of hypothesis

tests.

(viii) Study of the figures shows that the two starred points have

extreme values of φ21, are amongst the five smallest R21, but have

pedestrian values of log P. The results listed in (viii) can be ascribed

to these properties.

4 A P P L I C AT I O N TO T H E F O U R I E R
C O E F F I C I E N T DATA

An intercomparison of the Cepheid data for the MW, LMC and SMC

Cepheids found the difference between any pair to be significant

with p < 0.001, according to all tests. This pronouncement is based

on the result of 1000 permutations – in no case was the statistic

calculated from the permutation samples more extreme than the

value calculated from the observed data. The result applies to both

V- and I-band data.

By contrast no significant differences were found between the

IC 1613 and NGC 6822 data sets: the smallest level attained

over all tests was 0.10 for the V data, and 0.58 for the I data

(based on 5000 permutations, as are the rest of the results reported

below).

The significance levels of statistics comparing the NGC 6822 data

with, respectively, the MW, LMC and SMC measurements were

almost all below 1 per cent. Only two exceptions were encountered,

both for comparison of NGC 6822 data with MW data (V band):

significance levels of 2 and 14 per cent were obtained for the HT-T

and IPDD statistics, respectively.

Highly significant (p < 1 per cent) differences were found be-

tween the IC 1613 and LMC data (both I and V). Comparisons of

the IC 1613 data with those for the MW and SMC gave more varied

results – see Table 2 – but overall it appears that the null hypothesis

of equal populations can safely be rejected. The reader’s attention

is drawn to some apparently discrepant results in the table, such as

the 18 per cent levels for the IPDD and HT-T statistics (MW I-band

comparison) and the 84 per cent level for the FR statistic (SMC

V-band comparison).

Finally, as a check, the MW V-band data were compared to an ear-

lier compilation by Antonello & Morelli (1996) of data for Galac-

tic Cepheids with periods longer than 8 d. In order that the two

data sets be compatible, the same restriction was imposed on the

Ngeow & Kanbur (2006) data. Significance levels for all statistics

except SKS (p = 0.83) and NNDD (p = 0.67) were larger than

0.90.
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5 C O N C L U S I O N S

The results of the power study in Section 3 suggest that the H4 statis-

tic is generally particularly useful. It is also simple to program, and

computationally fast. The FR statistic also has good power; since

there is downloadable software for calculating minimal spanning

trees available on the internet, it is also easy to program. Calcula-

tion of the FR statistic is computationally expensive, but preliminary

studies suggest that the asymptotic results (point 2) in Section 2.7)

may be used for fairly small (N < 100) samples. The SKS statistic

outperforms all other statistics for some data sets. It is not difficult

to program, and is fast. The IPDD statistic is demanding of com-

puter resources, and has poor power. All the other statistics have

intermediate performance.

Intercomparison of the trivariate (log P, φ21, R21) data for the

various galaxies leads to the rejection of the null hypothesis of equal

populations in all cases except IC 1613 compared with NGC 6822.

These results are based on formal statistical procedures, in contrast

with previous studies in which qualitative assessments were made.

Finally, we note that although the analysis in the paper has been

restricted to three-dimensional variables, the extension to higher

dimensions (by the addition of higher order Fourier coefficients) is

trivial.
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