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Use of remotely sensed data to estimate tree species
diversity as an indicator of biodiversity in Blouberg
Nature Reserve, South Africa

Mangana Rampheria, Timothy Dubeb and Inos Dhaua

aDepartment of Geography and Environmental Studies, University of Limpopo, Sovenga, South
Africa; bDepartment of Earth Sciences, University of the Western Cape, Bellville, Bellville, South Africa

ABSTRACT
We use remotely sensed data to estimate species diversity in
Blouberg Nature Reserve (BNR) in the Limpopo province, South
Africa to understand the state of biodiversity since communities’
involvement in conservation initiatives. To achieve this objective,
Landsat series data collected before and after community involve-
ment in biodiversity conservation were used in conjunction with
selected diversity indices i.e., Shannon-Wiener Index (H’) and
Simpson Index (D). Thirty 15m� 15m field plots were selected
and all trees within each plot were identified, with the help of
Botanists. Further, we applied regression analysis to determine
the relationship between satellite derived tree species diversity
and field observations. The results of the study demonstrated a
significant (p< 0.5) variation in tree species diversity between
1990 and 2019. The highest relationship was obtained between
H’ and the combined remotely sensed spectral data and as well
as Indices (VIs) when compared to other derived satellite data.
Further, the results showed positive significant relationship
(p< 0.05) between the combined remotely sensed data and
observed H’ index with r2 ¼ 0.36 and r2 ¼ 0.34 for the period
before and after involving local communities in biodiversity con-
servation, respectively. Thus, the findings of the study indicate
that the ecological condition of the reserve was slightly affected
by the involvement of local communities in biodiversity conserva-
tion, for instance, volunteering in bush-encroachment eradication
and decision-making. Overall, findings of the study underscore
the relevance of remotely sensed data in assessing the ecological
condition of protected areas and this information can help in
decision-making.
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1. Introduction

Tree diversity plays an important role in the functioning of an ecosystem and productivity
(Cleland 2011; Arekhi et al. 2017). Tree species form the basis of the food chain, provid-
ing the food base and habitat, which boost ecological diversity (Xie et al. 2008; Cleland
2011). However, tree species diversity loss and disturbance are accelerating worldwide due
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to human disturbance (Cleland 2011; Marcon 2013; Thant 2017) and global climate
change (Khare and Ghosh 2016; Li et al. 2018). Tree species loss could threaten the stabil-
ity of the ecosystem services on which humans depend (Cleland 2011). Among the main
human threats to biodiversity loss, deforestation (Li et al. 2018), bush encroachment, pol-
lution (Thant 2017) and management practices are the key drivers (Oli and Subedi 2015;
Paudel and Sah 2015). Landscape patterns related to disturbance, fragmentation and land
cover change affect the abundance of rare and endangered species as well as biodiversity.
Functional diversity loss, habitat loss, population declines and species invasions are among
other indicators for tree species loss (Wang and Gamon 2019).

This ongoing biodiversity and ecosystem loss instantly requires assessment techniques
that could quickly identify and monitor degradation hotspots (Krishnaswamy et al. 2009;
Khare and Ghosh 2016; Rocchini et al. 2019) especially in Protected Areas (PAs). PAs are
the cornerstone of global conservation efforts, therefore, requires long-term monitoring in
order to maintain species integrity value (Vodouhê et al. 2010; Seiber et al. 2013). A halt
of biodiversity loss is one of the Sustainable Development Goals of the United Nations’
(Rocchini et al. 2019). Thus, to plan, manage and reduce biodiversity loss in an effective
and sustainable way, it is essential to understand tree species diversity and composition of
the ecosystems (Arekhi et al. 2017).

Traditionally, biodiversity has been monitored using field surveys, literature reviews, map
interpretation and collateral as well as ancillary data analysis (Xie et al. 2008). Traditional
monitoring of biodiversity is usually costly and time consuming (Krishnaswamy et al. 2009;
Arekhi et al. 2017; Rocchini et al. 2019; Wang and Gamon 2019). Additionally, in most cases
it is temporally limited (Rocchini et al. 2019). Moreover, species sampling in the field have
several challenges, amongst them, observer bias, spatial errors, and historical bias on species
distribution records (Rocchini et al. 2013).

Some studies that applied remote sensing in biodiversity estimation mostly focussed on
mapping habitat through land cover classification without providing detailed verification
of the habitat or tree diversity. For instance, the study by Arraut et al. (2018) produced
vegetation structure map of Hwange National Park in Zimbabwe, using Landsat 8 data.
Similarly, Bailey et al. (2016) measured land-cover change surrounding protected areas in
the Maputaland-Pondoland-Albany Biodiversity hotspot from the 1980s whereas, Brink
et al. (2016) assessed the land-use and land-cover for the Udzungwa Mountains National
Park and its surroundings (20 km buffer) in Tanzania over a 20 year period (1990–2010)
Thus, the recent development of satellite sensors provide opportunities to determine spe-
cies diversity at large spatial extents (Nagendra et al. 2010; Rocchini et al. 2016; Arekhi
et al. 2017; Thamaga 2018; Shoko et al. 2019). Remote sensing techniques provide an
advanced, effective and practical method of obtaining accurate information on tree species
diversity in a range of ecosystems (Wang and Gamon 2019) and their changes over time
(Rocchini et al. 2019).

Comparatively, remote sensing can cover a large area over a short period whereas field
based methods are restricted to small areas (Rocchini et al. 2019). In addition, the emerg-
ing remote sensed data allows spatial representation of species diversity, which could not
be achieved using other methods. It permits the assessment of species diversity through
tree characters or spectral information content (Wang and Gamon 2019). Remotely
sensed data has also been used to understand the distribution of biodiversity to better
identify high priority areas for conservation (Marcon 2013; Ara�ujo et al. 2019; Rocchini
et al. 2019), help maintain essential ecosystem goods and services (Wang and Gamon
2019) and ecological restoration efforts (Champagne et al. 2004). Furthermore, derived
tree diversity maps from remote sensing data play an outstanding role in effective
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management and decision-making for vegetation patterns (Zhang et al. 2013; Arekhi et al.
2017), especially in data scarce regions of Southern Africa.

The current advancements in satellite technologies and their free availability provide new
avenues for spatial explicit biodiversity monitoring and assessment in data-limited areas of
Southern Africa. For instance, in South Africa, numerous PAs have been established to
enhance biodiversity conservation; however, knowledge on biodiversity status in these areas
remains rudimentary (South Africa’s fifth national report to the Convention on Biological
Diversity 2014; Hamer and Slotow 2017). In this study, we therefore, estimate tree species in
the Blouberg Nature Reserve (BNR) in South Africa. The BNR was established in 1983 and
involves local communities in biodiversity conservation. The BNR is endowed with variety
of fauna (LEDET 2013) of which depend on the tree species for habitat. On the other hand,
literature has shown that people likely to practice illegal activities in PAs that do not take
their needs and aspiration into consideration (Vodouhê et al. 2010; Andrade and Rhodes
2012). The BNR, therefore, provides an appropriate case study and the experimental site for
tree diversity estimation as a proxy for biodiversity assessment and monitoring in PAs. So
far, there is a limited work that focussed on the tree species diversity in PAs especially that
involve local communities in biodiversity conservation. The findings of the study will help to
inform biodiversity conservation and management in BNR as well as practitioners in these
data limited environments. Premised on this background, this study seeks to estimate species
diversity in the Blouberg Nature Reserve in the Limpopo province, South Africa to under-
stand the state of tree species diversity since local communities’ involvement in biodiversity
conservation initiatives. Further, we compared the derived species diversity results with bio-
climatic data to establish whether the observed trends were a function of change in these fac-
tors or indirectly due to community involvement.

2. Materials and methods

2.1. Study area

The study was carried out in Blouberg Nature Reserve situated within latitudes of S 23�

010 0400 and longitudes of E 29� 040 0900. The BNR is located within the Blouberg Local
Municipality, administered by Capricorn District Municipality of Limpopo Province,
South Africa. It covers a total area of approximately 9 348 hectares. It is located approxi-
mately 34 km from R521, south-west of the Langjan Nature Reserve (LEDET 2013). The
reserve was established in 1983 (Constant 2014) and started involving local communities
in biodiversity conservation in 1992. The climate of the area is characterized by warm
summer months, with temperatures ranging from 16 �C to 40 �C and mild winter months,
with temperatures between 12 �C and 22 �C (Mostert 2006). The area receives an average
annual rainfall of 410mm per year, with the highest rainfall received during the summer
months of December (LEDET 2013). The area experiences an orographic rainfall due to
the east west positioning of the Soutpansberg Mountain (Mostert 2006).

Tree species within the reserve include Soutpansberg Summit Sourveld, dominated by
Combretum molle and Englerophytum magalismontanum; Limpopo Sweet Bushveld, domi-
nated by Acacia robusta and Dichrostachys cinerea; Roodeberg Bushveld, dominated by
Sclerocarya birrea subsp and Kirkia accuminatum; and Soutpansberg Mountain Bushveld,
with Acacia karroo and Ziziphus mucronata being the most dominant species. The reserve
is endowed with variety of animal species; about 50 reptiles amongst them include
Bibron’s Stiletto Snake and Southern African Python. The reserve also have about 25 spe-
cies of amphibians and amongst others include Northern Pigmy Toad. 21 Bat were also
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identified within the reserve (LEDET 2013; Constant 2014). The reserve is rich with
Avifauna species (128), of which some of them (16) occur on IUCN Red List of
Threatened Species like Cape Vulture, Lanner Falcon, and Saddle-billed Stork which are
either vulnerable or endangered. Moreover, the BNR hosts one of the largest Cape
Vulture breeding colonies in the world (LEDET 2013). The reserve also supports a variety
of mammals including grazers such as bushbuck, mixed feeders such as Impala and
browsers such as Giraffe (Constant 2014). Geologically, the area is dominated by variety
of geological formations, which in conjunction with soil type underlie the spatial distribu-
tion of vegetation in the BNR. The area is associated with rocks such as gneisses, meta
sediments and meta volcanics and soils including calcrete and limestone layers in the part
of Limpopo Sweet Bushveld. In the Southpansberg Mountain Bushveld, the area is associ-
ated with rocks such as sandstone, quartzite, conglomerate, basalt and siltstone, and soils
including acidic dystrophic to mesotrophic sandy to loamy. In the Rooderberg Bushveld,
the area is associated with rocks such as sandstone, conglomerate, siltstone and shale, and
mesotrophic soils, whereas rocks such as sandstone, quartzite and shale and extremely
shallow, leached, acidic, coarse sand of the Glenrosa and Mispah soil forms in the
Soutpansberg Summit Sourveld (LEDET 2013). Furthermore, villages including,
Edwinsdale, Indermark, Ga-Moyaga, and Glenfernes surround the reserve (Figure 1).

2.2. Remote sensed data acquisition and pre-processing

Four Landsat satellite image scenes accessed from the United States Geological Survey
(USGS) via the https://earthexplorer.usgs.gov web link were used (Table 1). These images
were acquired in different years in order to examine the change in diversity within the
reserve since local communities were involved in biodiversity conservation. Out of four

Figure 1. Blouberg Nature Reserve and surrounding villages in Limpopo, South Africa.
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collected Landsat satellite images, three were Landsat-5 Thematic Mapper (Landsat-5 TM)
captured in 1990, 1996 and 2009 whereas one was Landsat-8 OLI captured in 2019. The
choice of these years was determined by the availability of cloud free imagery from Earth
Explorer. The collected Landsat-5 TM and Landsat-8 OLI images have a spatial resolution
of 30m and a revisit aptitude of 16 days. Overall, Landsat data is freely available, and it
has the ability to provide large volumes of observations than other satellite data products.
These datasets have been used for mapping land and vegetation cover changes and it con-
tinues to be commonly used in ecology (Cohen and Goward 2004). The images were
atmospherically corrected, using the Dark Object Subtraction (DOS1) model under Semi-
Automated Classification (SCP) in Quantum GIS (QGIS) version 3.0 software, which
masks out clouds and shadows, among other non-target effects.

Furthermore, spectral reflectances from Landsat images for different years were then
extracted corresponding to each plot coordinates points. The extracted spectral reflectan-
ces were then used to calculate selected Vegetation Indices (VIs) (Table 2). The VIs were
used in this study were selected based on their well performance of compensating soil
background influences and atmospheric effects in biodiversity conservation. Remote
sensed variables in conjunction with field based diversity indices were then used to
develop a model to estimate tree species diversity, using simple and multi-linear regres-
sion analysis. The developed model was then used to estimate tree species diversity across
different years in a GIS environment.

2.3. Tree species data

2.3.1. Field sampling protocol and tree species data collection
The tree species sampling for data collection purposes was performed in 30 plots of
15m� 15m each. Work by Mutowo and Murwira (2012) and Mapfumo et al. (2016),
have shown that sampling plot sizes widely used ranges between 25 and 200m2 in tall

Table 1. Landsat-8 (OLI) spectral bands description.

Landsat-8 Sensor Band number Band name Wavelength (mm) Resolution

1� Coastal/ Aerosol 0.43–.45

30

2� Blue 0.45–0.52
3� Green 0.53–0.60
4� Red 0.63–0.68
5� Near Infra-red (NIR) 085.–0.89
6� Short-wave Infra-red (SWIR)1 1.56–1.66
7 Short-wave Infra-red (SWIR)2 2.10–2.30
8 Panchromatic 0.50–0.68 15
9 Cirrus 1.36–1.39 30

Thermal Infra-red Sensor (TIRS) 10 Long-wave Infra-red (LWIR) 1 10.30–11.30

100

11 Long-wave Infra-red (LWIR) 2 11.50–12.50

Landsat-5 Sensor Band number Band name Wavelength (mm) Resolution
1a Visible Blue 0.45–0.52

30

2a Visible green 0.52–0.60
3a Visible Red 0.63–0.69
4a Near Infra-red (NIR) 0.76–0.90
5a Short-wave Infra-red (SWIR)1 1.55–1.75
6 Thermal 10.40–12.50 120
7a Short-wave Infra-red (SWIR)2 2.08–2.35

30
aUsed spectral bands.
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shrub communities and 200-25000m2 for trees in woods and forests. The statement
guided the selected plot size for this study and it falls within the range. Simple random
sampling was used to define the placement of sampling plots (Oli and Subedi 2015), with
a minimum separation of 200m to avoid overlapping sampling plots (Paudel and Sah
2015). All tree species type with 1.5m per plot were identified and recorded. The centre
coordinates of each plot were recorded, using Global Positioning System (GPS). 488 tree
species belonging to 19 families were recorded. The collection of tree species data was
conducted in April 2019.

2.3.2. Measuring diversity of tree species
In this study, we used the most frequently used diversity indices to quantify diversity in
each plot i.e., Shannon-Wiener Diversity Index (H’) and Simpson Diversity Index (D)
(Table 3). Madonsela et al. (2018) and Peng et al. (2018) confirmed that H’ and D, are
the frequently used diversity indices in ecological literature. H’ is a qualitative measure
that reflects different types of species within a community or sample, and how common
or rarely are they from each other (Mutowo and Murwira 2012; Ifo et al. 2016; Mapfumo
et al. 2016; Madonsela et al. 2018). H’ ranges between 0 and 5, usually between 1.5 and
3.5 but reaches 4 in rare cases (T€urkmen and Kazanci 2010). D is generally influenced by
the abundance in the distribution of tree species (Mutowo and Murwira 2012). It ranges
between 0 and 1 where high scores, i.e., close to 1 indicate high diversity whereas low
scores, i.e., close to 0 indicate low diversity (T€urkmen and Kazanci 2010; Mapfumo et al.
2016). These indices were used in this study because they consider both species richness
and abundance when measuring species diversity (Madonsela et al. 2018). Furthermore,
H’ is less affected by the presence of rare species (Dogan and Dogan 2006; Mapfumo
et al. 2016; Rocchini et al. 2016). H’ and D were calculated as indicated in Table 3.

2.4. Relationship between tree species diversity indices and remote sensed data

The relationship between species diversity indices as a response variable and spectral data
as predictor variable was investigated using simple and multi-linear regression analysis
techniques to determine species diversity. The relationship was determined between most
commonly used diversity indices (Table 3) and remote sensed data. The Root Mean
Square Error (RMSE), Coefficient of determination (r2) and corrected Akaike’s
Information Criterion (cAIC) of the linear regression guided the selection of the most
appropriate model to map tree species diversity.

Developed model for 2019 was having: 1. the smallest RMSE and cAIC, and 2. the
highest r2. The RMSE measures how close the model could predict field measurements; r2

measures the proportion of the variance in the dependent variable that is predicted from
the independent variable, whereas cAIC estimates the quality of each model, relative to

Table 2. Vegetation indices used in the study and their equations.

Vegetation Index Equation Reference

Normalized Difference Vegetation Index (NDVI) NDVI ¼ NIR�RED
NIRþRED Rouse et al. (1974)

Soil-adjusted vegetation index (SAVI) SAVI ¼ NIR�RED
ðNIRþREDþLÞ �ð1þ LÞ Huete (1988)

Enhanced Vegetation Index (EVI) EVI ¼ G�ððNIR� REDÞ=ðNIRþ
C1�RED �C2�BLUEþ LÞÞ

Huete et al. (1999)

Simple Ratio Index (SRI) SRI ¼ NIR
RED Tucker (1979)

L is a soil fudge factor that varies from 0 to 1 depending on the soil the coefficients adopted in the MODIS-EVI algo-
rithm are; L¼ 1, C1¼ 6, C2¼ 7.5, and G (gain factor) ¼ 2.5.
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each of the other models. Peng et al., (2018) added that the objective of cAIC is to select
the best approximating model.

Further, to investigate normality of the data in order to fulfil the requirements of linear
regression analysis the Shapiro Wilk test was used. According to Mutowo and Murwira
(2012), linear regression requires that data are normal distributed. In addition to normal-
ity, Pearson’s correlation coefficients were used to evaluate the correlation between the
variables. Moreover, we checked for the significance of the correlated variables using
P-values.

2.5. Environmental variables

In addition to diversity indices and remote sensed data, environmental variables such as
rainfall, temperature, Digital Elevation Model (DEM) and evapotranspiration were used in
this study (Table 4) since they are known to affect species diversity pattern (Zhang et al.
2013; Imani et al. 2016; Sainge et al. 2019; Shoko et al. 2019). Rainfall, evapotranspiration
and temperature were averaged annually. A DEM at a spatial resolution of 30m was also
used to derive the relief of a surface. To understand tree water use patterns, evapotrans-
piration data was considered to determine how it also influenced species diversity (Silva
et al. 2017; Li et al. 2019). Further, according to Liu and El-Kassaby, (2018), Species rich-
ness is best predicted by climatic variables such as evapotranspiration and asserted that
evapotranspiration may greatly impact tree growth patterns since it is uniquely linked to
water, energy, and carbon cycle. Data were used to show the general pattern of the used
environmental variables variations and how they might likely have affected the diversity
within the study area. Thus, the relationship between species diversity and environmental
variables was also explored based on tree species data collected from the field. The
selected environmental variables were used in this study because they are amongst the
most significant factors affecting species diversity and the woody vegetation (Nguyen
et al. 2015).

3. Results

3.1. Tree species in BNR

Four hundred and eighty-eight tree species belonging to 19 families were recorded within
6750m2 of the BNR. Predominant tree species are from Fabacea, followed by Malvaceae
and Boraginaceae with tree species of 200, 126 and 50 respectively. Malvaceae, Fabacea,
Combretaceae and Rubiaceae are the only families with more than one type of tree species
(Table 5). The most predominant species identified in the BNR include Combretum molle,
Englerophytum magalismontanum; Acacia robusta, Dichrostachys cinerea, Sclerocarya bir-
rea subsp, Kirkia accuminatum; Acacia karroo and Ziziphus mucronata.

Table 3. Summary of diversity index and their expression.

Species diversity index Equation Reference

Shannon-Wiener Diversity Index (H’) H0 ¼ �PS
i¼1 PilnPi Shannon and Wiener (1949)

Simpson Diversity Index
D ¼ 1�

Pn

i�1
niðni�1Þ

NðN�1Þ
Simpson (1949)

Where, H’ is index of species diversity, Pi is the proportional abundance of ith species is the number of individuals
of all the species, ln is natural logarithm, ni ¼ number of individuals of each species, N ¼ total number of individu-
als of all species.
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The tree species varied in few plots across the study area. The lowest value obtained
from the used diversity indices was from plot 25 with (H’ ¼ 0.15; D¼ 0.29) whereas the
highest value was obtained in plot 3 (H’ ¼ 3.14) and plot 11 (D¼ 0.88). Plot number 25
was noted with lowest tree species diversity, with the lowest richness of two amongst
other plots. The number of tree species found in each plot mostly influenced the results.
The information on tree species, therefore, can provide baseline information for conserva-
tion of the biodiversity particularly in PAs.

Table 4. Environmental variables that were used in this study.

Variable Definition Source

Rainfall Mean annually total, in millimetres (mm) https://wapor.apps.fao.org/catalog/1
Evapotranspiration Mean annually total, in millimetres (mm)
Temperature Mean annually total, in degrees Celsius (�C).
DEM Relief in metres (m) http://srtm.csi.cgiar.org/

Table 5. Tree species lists and their frequencies of the study area.

Family Names Number of trees Total

1. Malvaceae Grewia flava
Grewia flavascenes Juss

80
46

126

2. Phyllanthaceae Pseudolachnostylis maprouneifolia 43 43
3. Burseraceae Commiphora Jacq. tree 3 3
4. Asteraceae Tarchonanthus camphoratus L. 3 3
5. Fabaceae Philenoptera violacea (Klotzsch) Schrire

Dichrostachys cinerea (L.) Wight & Arn
Acacia nigrescens
Acacia Nalatica

9

119
38
34

200

6. Rubiaceae Vangueria infausta Burch. subsp. Infausta
Plectroniella armata (K. Schum.) Robyns

4

9

13

7. Loganiaceae Strychnos spinosa Lam. 6 6
8. Anacardiaceae Sclerocarya birrea 7 7
9. Combretaceae Combretum imberbe Wawra

Terminalia prunioides M.A.Lawson
5

4

9

10. Brassicaceae Boscia albitrunca (Burch.) Gilg & Gilg-Ben. 5 5

11. Kirkiaceae Kirkia acuminata Oliv. 2 2

12. Euphorbiaceae Spirostachys africana Sond. 6 6

13. Ebenaceae Euclea undulata Thunb. 12 12

14. Phyllanthaceae Flueggea virosa (Roxb.ex Willd.) Voigt 1 1

15. Solanaceae Lycium ferocissimum Miers 3 3

16. Boraginaceae Ehretia rigida (Thunb.) Druce
Cordia grandicalyx

25

25

50

17. Rhamnaceae Ziziphus mucronata Willd. subsp. mucronata
Berchemia zeyheri (Sond.) Grubov

7

3

10

18. Combretaceae Terminalia sericea Burch. ex DC. 4 4

19. Burseraceae Commiphora mollis (Oliv.) Engl. 5 5

Total 488
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3.2. Correlation between H’ and VIs, and spectral data

In this study, correlation between the variables was evaluated using Pearson where H’ for 2019
demonstrated negative correlation with spectral bands except with band 9 and all VIs. Overall,
VIs had a positive correlation with H’ over period when compared to the use of the raw
Landsat derived spectral data (Table 6). To fulfil the linear regression, normality for the data
was tested using Shapiro Wilk test. The findings of the study indicated that data does not fol-
low normal distribution curve for all used years with p ¼ < 0.0001. The findings of the study
demonstrated negative correlation between H’ and Landsat spectral data over period. The cor-
relation was significant over the study period except for the year 1996 (Table 6).

3.3. Simple and multi-linear results in predicting species diversity

A series of simple linear regressions were performed, regressing diversity indices (H’ and
D) against each of the Landsat spectral bands and VIs, over period. Simple linear models
based on Landsat spectral bands and VIs with H’ did not perform well when compared to
multiple linear regression. H’ and band 7 (SWIR-2) for 2019 had slightly better relation-
ship of (r2 ¼ 0.14) and (RMSE ¼ 0.73) amongst other remote sensed data over period,
but this was slightly better than band 6 (SWIR-1) with r2 ¼ 0.12 and RMSE ¼ 0.74.
Then, model based on the 2019 data was then used to estimate the tree species diversity
for all years. Furthermore, both H’ and D showed the lowest relationship with VIs (Table
7b). In this regard, the model for estimating tree species diversity was derived from the
H’ and combined Landsat spectral bands and VIs for all years (Figure 2).

In general, H’ demonstrated better relationship with combined Landsat spectral bands
and VIs than with individual remote sensed data. Consequently, the model (regression
equation) with lowest RMSE and cAIC, and highest r2 was derived from combined spec-
tral bands and VIs and used to estimate diversity in the study area across different years.
Obtained model equation was used to calculated diversity map in GIS environment.
Consequently, H’ species diversity maps of the study area were derived (Figure 2).

Figure 2 shows the great decrease in species diversity from 1990 to 1996. The species
diversity then slightly increased from 1996 to 2009. Furthermore, species diversity
decreased from 2009 to 2019. The highest diversity value was obtained in 2019 as com-
pared to other period, however, only small portion of the study area was highly diverse,
whereas 1996 obtained lower highest value than other period, but the diversity was dis-
tributed all over the area. High diversity was observed along the river as well as at the
base of Soutpansberg Mountain, nonetheless, the diversity varies per period. The

Table 6. Correlation between H’ and remote sensed data.

2019

Correlation to H’ P-value

Band 1 �0.10 0.02*

Band 2 �0.12 0.01*

Band 3 �0.22 <0.0001*
Band 4 �0.30 <0.0001*
Band 5 �0.08 0.07
Band 6 �0.36 <0.0001*
Band 7 �0.38 <0.0001*
Band 9 0.14 0.002*

NDVI 0.17 0.0001*

SAVI 0.07 0.13
EVI 0.09 0.04*

SRI 0.20 <0.0001*
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Soutpansberg Mountain ranges from the east to the southwest whereas the river flows
from the east to the south of an area.

In addition, to explain the variation in species diversity, remote sensed data and diver-
sity indices as well as environmental variables were also integrated in this study (Figure
3). Mean annual temperature, rainfall and evapotranspiration over the BNR varied
between a minimum of 1�C in 2015, 198mm/year in 2015, 500mm/year in 2012 and
maximum of 17 �C/year in 2017, 380mm/year in 2016, 666mm/year in 2015, respectively.
The increase in mean annual temperature was observed in 2013, 2016 and 2017, whereas
the decrease in temperature was observed from 2010 to 2012; 2013 to 2015 and 2017 to
2019. In terms of rainfall, the decrease was observed from 2010 to 2012, 2013 to 2015 and
2016 to 2018; nevertheless great increase was observed in 2013 and 2016. Additionally, an
increase in evapotranspiration rate was observed from 2009 to 2010 and 2012 to 2015,
whereas the decrease was observed in 2012 and 2018. Further, the highest elevation was
observed on the top of Soutpansberg mountain ranges, then medium at the most north,
east, south of the study area and low at the bottom of Soutpansberg mountain ranges.
The results showed strong positive significant correlation (p< 0.05) between H’ and
annual evapotranspiration in all years. Furthermore, it was evapotranspiration in 2018
which had the highest relationship with H’ (r2 ¼ 0.17) than other years. In addition, H’
had negative insignificant relationship with annual rainfall across all years (p> 0.05).

4. Discussion

The BNR is one of the most important PAs in Limpopo province that incorporates local
communities in biodiversity conservation. The reserve is endowed with a wide range of vege-
tation and wild animals that have the potential to contribute greatly to economic growth
through tourism (Blouberg Municipality 2017). It is, therefore, important to ensure that tree
species diversity in the area is frequently monitored and assessed to ensure sustainable con-
servation. Thus, the understanding of the tree species diversity status before and after involv-
ing local communities in biodiversity conservation is crucial as it provides reserve
management with the necessary baseline information about tree species distribution within
the reserve, which is essential in planning and management of the reserve.

4.1. Variation in tree species diversity

The results of this study demonstrated a significant (p< 0.5) variation in tree species diver-
sity from 1990 to 2019. The high species diversity observed at the base of the Soutpansberg
mountain might be attributed to favourable conditions such as humid and warm tempera-
tures, whereas along the river might be attributed to the high wetness from the water in the

Table 7. Relationship observed between two common measures of tree species diversity (H’ and D) and a.
combined VIs and Landsat spectral bands, b. VIs and c. Landsat spectral bands.

Year Index R2 RMSE AIC

a.
2019 H’ 0.34 0.65 �407.33

D 0.24 0.10 2236.89
b.
2019 H’ 0.14 0.73 �296.21

D 0.08 0.11 �2161.93
c.
2019 H’ 0.21 0.71 �327.78

D 0.17 0.10 �2206.98
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river. For instance, Li et al. (2019) observed high diversity of Salicaceae plants in warm and
wet areas than other regions in China. The increased in rainfall might also be defined by
the high species diversity along the river in 2019. For instance, Shoko et al. (2019) found
that the high production of C3 AGB favours environments with high soil moisture. In add-
ition, the high rate of evapotranspiration at the area might be attributed to the solar radi-
ation of an area. According to Li et al. (2019) and Shoko et al. (2019), solar radiation is
one of the primary sources of energy that regulates physical, chemical and biological proc-
esses of terrestrial ecosystems. Thus, the rate of evapotranspiration defines the species diver-
sity (Silva et al. 2017; Li et al. 2019). In terms of elevation, the results of the study illustrate
the decrease in species diversity in increasing elevation.

The results of the study are similar with of Gwali et al. (2010) and Imani et al. (2016)
where they found that species diversity decreases with increasing altitude in semiarid
savannah woodland in central Uganda and Kahuzi-Biega National Park and its

Figure 2. Tree species diversity thematic maps derived from H’, and combined VIs and Landsat spectral data over the
period a. 1990, b. 1996, c. 2009 and d. 2019.
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Figure 3. Environmental variables: a. temperature, b. rainfall, c. DEM, and d. evapotranspiration.
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surroundings forest parks, and the Democratic Republic of Congo respectively. Similarly,
Toledo-Garibaldi and Williams-Linera (2014) and Pandey et al. (2018) reported that spe-
cies richness decreased unimodally with elevation gradient in Mountains of Eastern
Mexico, and Khangchendzonga National Park, Sikkim respectively. Low diversity at the
top of the mountain might be attributed by the rough and rocky terrain-giving rise to
only competitive species. Additionally, their moderately drained surfaces offered by plat-
eau (Phil-Eze 2012). The results of the study contrast with of Zhang et al. (2013) and
Kanagaraj et al. (2017) who found highest species diversity appeared in the middle eleva-
tion in the Baihua Mountain Reserve, Beijing, China and Pachamalai Reserve Forest,
Tamil Nadu respectively. Overall, the variation in tree species diversity in some areas
such as at the base of the Soutpansberg Mountain and along the river remain almost sta-
ble throughout the period. This therefore ascertain assumption that vegetation structure
and composition are also influenced strongly by elevation (Imani et al. 2016; Sainge et al.
2019), evapotranspiration, temperature and rainfall (Li et al., 2019).

Our results demonstrated that tree species diversity in BNR can be successfully predicted
by H’ in conjunction with Landsat variables. These findings imply the potential of using
freely available emerging sensors for monitoring species diversity. On the other hand, from
the findings of the study, we deduce that the multi-linear regression result in better model
that can improve the prediction of tree species diversity. The findings of the study revealed
that environmental variables had an influence on tree species diversity over time.

4.2. The performance of simple and multi-linear regression

It was found that H’ in conjunction with remotely sensed variables could better determine
tree species diversity when compared to D. H’ was the better diversity index to define spe-
cies diversity. This is because it considers both abundance and richness of the community
(Dogan and Dogan 2006; Arekhi et al. 2017; Madosela et al. 2018). Moreover, Madonsela
et al., (2018) added that species diversity indices that is both species richness and abun-
dance like H’ and D usually have better relationship with Landsat-8 spectral variables.
However, in this case H’ might be useful since the study does not focus only to determine
the dominant species. Nevertheless, in some plots, the diversity was very low and this
could be explained by the fact that they were dominated by few types and total number
of species besides other abiotic and biotic factors as ascribed by the H’. This finding is
approximately consistent with those of Shah, (2013) who observed lowest value of H’ of
0.79 at site I to the highest of 3.95 at site III of Wular Lake, Kashmir Himalaya.

The relationship between H’ and combined remote sensed data were explained better
when compared to individual remote sensed data over the period. Furthermore, the rela-
tionship between H’ and individual remote sensed data for 2019 is better than other years
used. This could be explained by the fact that Landsat-8 OLI is recently launched with
advanced properties than the previous Landsat data. Landsat-8 OLI has shown to be com-
plex and vibrant compared to previous Landsat images like Landsat-5 TM (Poursanidis
et al. 2015). For instance, Poursanidis et al. (2015) found that classification results from
Landsat-8 OLI provide more accurate results of over 80% compared to the Landsat-5 TM.

In addition, in simple linear regression, H’ showed a better significant positive relation-
ship with VIs when compared to Landsat spectral bands. Our study further shows that H’
has a better positive significant relationship with NDVI and SAVI with (r2 ¼ 0.05) and
(RMSE ¼ 0,772; 0,770), respectively when compared to other VIs over period. This might
be because the used VIs were calculated using NIR which has been suggested for discrimi-
nating species diversity (Arekhi et al. 2017; Peng et al. 2018). Additionally, according to
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Fajji et al. (2017) different VIs are computed from the combinations of two or more spec-
tral bands, assuming that multi band analysis would provide further information than a
single one. Furthermore, the results of the study could be attributed to the sensitivity of
the VIs to variability in vegetation characteristics i.e., shape and size of the tree, water
content, and associated background. Hence, this might be influence the results of this
study. The same, the results might be attributed to the environmental factors such as
amount of rainfall and temperature received in the study area.

This finding is consistent with those of Arekhi et al. (2017) where they found NDVI
having the highest significant positive correlation with H’ calculated from basal area
(3� 3 Shannon Index Basal Area (SIBA)) with r¼ 0.685 in June in the G€onen dam water-
shed area in Turkey. Furthermore, Peng et al. (2018) confirmed that the combination of
NDVI and H’ used to estimate species richness. In addition, Gait�an et al. (2013) study
also showed a strong correlation between NDVI and species richness in steppes and eco-
systems respectively. According to Madonsela et al. (2018) the differences in sensitivity to
vegetation characteristics could be explained by the different measurement scales of VIs.
For, instance in this study, the VIs which had better relationship with H’ (NDVI and
SAVI) have a measurement scale which ranges from -1 to 1.

Regarding the influence of environmental factors, Shoko et al. (2019) found that
increase with Themeda triandra (C4) aboveground biomass (AGB) in March was marked
with an increase in temperature with the highest significant positive relationship (r2 ¼
0.82, p< 0.005) within the Drakensberg area in KwaZulu Natal. Similarly, Mapfumo et al.
(2016) observed the linear relationship between H’ and NDVI in wet part of Zambia (r2

¼ 0.68; p¼ 0.017) and assumed that it could be explained by the fact that wet ecosystems
receive high rainfall above 1000mm leading to high diversity which facilitates high
Coefficient of Variation in the NDVI. Overall, our study demonstrated lower relationships
when compared to other studies, this might have attributed to the fact that other studies
are using derivatives (Madonsela et al. 2018), commercial satellite images (Mutowo and
Murwira, 2012), they were considering seasons (Mapfumo et al. 2016; Arekhi et al. 2017)
that might have improved their predictions of species diversity.

Better relationship between H’ and SWIR region of Landsat-8 could be attributed to
the improved soil moisture content and vegetation of an area. In line with Jakubauskas
and Price (1997) observation, biophysical properties of forest canopy are best explained
by a combination of spectral information in the SWIR regions of Landsat-7 Enhanced
Thematic Mapper (ETM). Additionally, Madonsela et al. (2018) also confirmed that the
Landsat programme gathers crucial spectral information in the SWIR region, which is
related to tree properties. The negative significant relationship between H’ and spectral
bands could be attributed to the amount of vegetation cover. Madonsela et al. (2018)
made an assumption that positive correlation in the visible region indicates high spectral
signal reflectance across all bands and this is typical of dry vegetation due to the back-
ground effect as it had dropped its foliage cover and vice versa. This ascertains our results
since the area has a diverse tree species.

4.3. Implications to biodiversity conservation

Deducing from the results of this study, the use of remote sensing on estimating tree spe-
cies diversity to understand state of tree species diversity since the local communities’
involvement in biodiversity conservation plays an important role in conservation manage-
ment. The results also imply that remote sensing explained the variation in species diversity
better when integrated with environmental variables as they are also known to influence
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natural resources (Silva et al. 2017; Shoko et al. 2019) such as species diversity. Moreover,
this demonstrates how ecological knowledge and satellite-based information can be effect-
ively combined to address a wide range of current natural resource management.

5. Conclusion

We conclude that tree species diversity can be estimated using H’ and combined Landsat
spectral bands and VIs. Moreover, NDVI and SAVI results confirmed their reported abil-
ity in estimating vegetation diversity. Further, we conclude that the species diversity in
the area varies over the period. However, changes in species diversity over time were not
the same across the study area since some areas showed rapid changes, whereas those sit-
uated along the rivers and at the base of Soutpansberg Mountain appeared to be nearly
stable with time. Overall, we conclude that the results of this study indicate that remote
sensing can be successfully used to predict tree species diversity and to track the changes
in species diversity in PAs. Additionally, the findings of the study indicate that the eco-
logical condition of the nature reserve was slightly affected since the involvement of local
communities in biodiversity conservation.

Acknowledgments

The authors thank the National Research Foundation (NRF) for their financial support. We express our
appreciation to the Environmental Affairs manager Mr Van Wyk for permitting us to conduct our study
in their area; Ms Makgabo Mashala, Ms Tshegofatso Makwela, Mr KJP Ramaboea and Blouberg Nature
Reserve Field Rangers, Mr Tshirovha, Ms Matsobane Radebe and Mr Madoro for data collection; and Mr
Mpho Gegana, Ms Clodean Mothapo for your technical support.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Timothy Dube http://orcid.org/0000-0003-3456-8991

References

Andrade GSM, Rhodes JR. 2012. Protected areas and local communities: an inevitable partnership toward
successful conservation strategies?. E&S. 17(4):14.

Ara�ujo EJGD, Morais VA, David HC, Scolforo JRS, Mello JMD, Ebling AA. 2019. Spatialization of tree
species diversity in the State of Minas Gerais. Floresta Ambient. 26(1):1–13.

Arekhi M, Yılmaz OY, Yılmaz H, Aky€uz YF. 2017. Can tree species diversity be assessed with Landsat
data in a temperate forest? Environ Monit Assess. 189(11):586.

Arraut EM, Loveridge AJ, Chamaill�e-Jammes S, Valls-Fox H, Macdonald DW. 2018. The 2013-2014 vege-
tation structure map of Hwange National Park, Zimbabwe, produced using free satellite images and
software. Koedoe. 60(1):1–10.

Bailey KM, McCleery RA, Binford MW, Zweig C. 2016. Land-cover change within and around protected
areas in a biodiversity hotspot. J Land Use Sci. 11(2):154–176.

Blouberg Municipality 2017. Integrated Development Plan, 2017/18-2020/21.
Brink A, Mart�ınez-L�opez J, Szantoi Z, Moreno-Atencia P, Lupi A, Bastin L, Dubois G. 2016. Indicators

for assessing habitat values and pressures for protected areas—an integrated habitat and land cover
change approach for the Udzungwa Mountains National Park in Tanzania. Remote Sensing. 8(10):862.

540 M. RAMPHERI ET AL.



Champagne CM, Abuelgasim A, Staenz K, Monet S, White HP. 2004. Ecological restoration from space:
the use of remote sensing for monitoring land reclamation in Sudbury. In Proceedings of the 16th
International Conference of the Society for Ecological Restoration, Victoria, BC, Canada: p. 24–26.

Cleland EE. 2011. Biodiversity and ecosystem stability. Nat Educ Knowl. 3(10):14.
Cohen WB, Goward S.N. 2004. Landsat’s role in ecological applications of remote sensing. BioScience.

54(6):535–545.2.0.CO;2]
Constant N. 2014. A socio-ecological approach towards understanding conflict between leopards

(Panthera pardus) and humans in South Africa: implications for leopard conservation and farming
livelihoods [doctoral dissertation]. Durham University.

Dogan HM, Dogan M. 2006. A new approach to diversity indices–modeling and mapping plant biodiver-
sity of Nallihan (A3-Ankara/Turkey) forest ecosystem in frame of geographic information systems.
Biodivers Conserv. 15(3):855–878.

Fajji NG, Palamuleni LG, Mlambo V. 2017. Evaluating derived vegetation indices and cover fraction to
estimate rangeland aboveground biomass in semi-arid environments. SA J Geomat. 6(3):333–348.

Gait�an JJ, Bran D, Oliva G, Ciari G, Nakamatsu V, Salomone J, Ferrante D, Buono G, Massara V, Humano
G, et al. 2013. Evaluating the performance of multiple remote sensing indices to predict the spatial vari-
ability of ecosystem structure and functioning in Patagonian steppes. Ecol Indic. 34:181–191.

Gwali S, Okullo P, Hafashimana D, Byabashaija DM. 2010. Diversity and composition of trees and shrubs
in Kasagala forest: a semiarid savannah woodland in central Uganda. Afr J Ecol. 48(1):111–118.

Hamer ML, Slotow R. 2017. A conservation assessment of the terrestrial invertebrate fauna of Mkambati
Nature Reserve in the Pondoland Centre of Endemism. koedoe. 59(1):1–12.

Huete AR. 1988. A soil-adjusted vegetation index (SAVI). Rem Sens Environ. 25(3):295–309.
Huete A, Justice C, Van Leeuwen W. 1999. MODIS vegetation index (MOD13). Algorithm Theoret Basis

Document. 3, 213.
Ifo SA, Moutsambote J-M, Koubouana F, Yoka J, Ndzai SF, Bouetou-Kadilamio LNO, Mampouya H,

Jourdain C, Bocko Y, Mantota AB, et al. 2016. Tree species diversity, richness, and similarity in intact
and degraded forest in the tropical rainforest of the Congo Basin: case of the forest of Likouala in the
Republic of Congo. Int J Forest Res. 2016:1–12.

Imani G, Zapfack L, Kalume J, Riera B, Cirimwami L, Boyemba F. 2016. Woody vegetation groups and
diversity along the altitudinal gradient in mountain forest: case study of Kahuzi-Biega National Park
and its surroundings. J Biodiv Environ Sci. 8:134–150.

Jakubauskas ME, Price KP. 1997. Emperical relationships between structural and spectral factors of
yellowstone lodgepole pine forests. Photogramm Eng Rem Sens. 63(12):1375–1380.

Kanagaraj S, Selvaraj M, Das Kangabam R, Munisamy G. 2017. Assessment of tree species diversity and
its distribution pattern in Pachamalai Reserve Forest, Tamil Nadu. J Sustain Forest. 36(1):32–46.

Khare S, Ghosh S. 2016. Satellite remote sensing technologies for biodiversity monitoring and its conser-
vation. IJAESE. 5(1):375–389.

Krishnaswamy J, Bawa K.S, Ganeshaiah K.N, Kiran M.C. 2009. Quantifying and mapping biodiversity and
ecosystem services: utility of a multi-season NDVI based Mahalanobis distance surrogate. Rem Sens
Environ. 113(4):857–867.

LEDET 2013. Five-year strategic plan for the Blouberg Nature Reserve. Limpopo, South Africa: LEDET.
Li S, Lang X, Liu W, Ou G, Xu H, Su J. 2018. The relationship between species richness and aboveground

biomass in a primary Pinus kesiya forest of Yunnan, southwestern China. PloS One. 13(1):e0191140.
Li W, Shi M, Huang Y, Chen K, Sun H, Chen J. 2019. Climatic Change Can Influence Species Diversity

Patterns and Potential Habitats of Salicaceae Plants in China. Forests. 10(3):220.
Liu Y, El-Kassaby Y.A. 2018. Evapotranspiration and favorable growing degree-days are key to tree height

growth and ecosystem functioning: meta-analyses of Pacific Northwest historical data. Sci Rep. 8(1):8228.
Madonsela S, Cho M.A, Ramoelo A, Mutanga O, Naidoo L. 2018. Estimating tree species diversity in the

savannah using NDVI and woody canopy cover. Int J Appl Earth Observ Geoinform. 66:106–115.
Mapfumo RB, Murwira A, Masocha M, Andriani R. 2016. The relationship between satellite-derived indices

and species diversity across African savanna ecosystems. Int J Appl Earth Observ Geoinform. 52:306–317.
Marcon M. 2013. Analysis of biodiversity spatial patterns across multiple taxa, in Sweden. Student thesis

series INES.
Mostert THC. 2006. Vegetation ecology of the Soutpansberg and Blouberg area in the Limpopo Province

[Doctoral dissertation]. University of Pretoria.
Mutowo G, Murwira A. 2012. Relationship between remotely sensed variables and tree species diversity in

savanna woodlands of Southern Africa. Int J Remote Sens. 33(20):6378–6402.
Nagendra H, Rocchini D, Ghate R, Sharma B, Pareeth S. 2010. Assessing plant diversity in a dry tropical

forest: comparing the utility of Landsat and IKONOS satellite images. Remote Sens. 2(2):478–496.

GEOCARTO INTERNATIONAL 541



Nguyen T.V, Mitlohner R, Bich N.V, Do T.V. 2015. Environmental factors affecting the abundance and
presence of tree species in a tropical lowland limestone and non-limestone forest in Ben En National
Park, Vietnam. J Forest Environ Sci. 31(3):177–191.

Oli B.N, Subedi M.R. 2015. Effects of management activities on vegetation diversity, dispersion pattern
and stand structure of community-managed forest (Shorea robusta) in Nepal. Int J Biodiv Sci, Ecosyst
Serv Manage. 11(2):96–105.

Pandey A, Rai S, Kumar D. 2018. Changes in vegetation attributes along an elevation gradient towards
timberline in Khangchendzonga National Park, Sikkim. Trop Ecol. 59(2):259–271.

Paudel S, Sah JP. 2015. Effects of different management practices on stand composition and species diver-
sity in subtropical forests in Nepal: Implications of community participation in biodiversity conserva-
tion. J Sustain Forest. 34(8):738–760.

Peng Y, Fan M, Song J, Cui T, Li R. 2018. Assessment of plant species diversity based on hyperspectral
indices at a fine scale. Sci Rep. 8(1):1–11.

Phil-Eze PO. 2012. The influence of elevation and aspect on plant species diversity in a tropical landscape
of Nsukka plateau in Nigeria. Trop Built Environ J. 1(3):255–266.

Poursanidis D, Chrysoulakis N, Mitraka Z. 2015. Landsat 8 vs. Landsat 5: A comparison based on urban
and peri-urban land cover mapping. Int J Appl Earth Observ Geoinform. 35:259–269.

Rocchini D, Boyd DS, F�eret JB, Foody GM, He KS, Lausch A, Nagendra H, Wegmann M, Pettorelli N.
2016. Satellite remote sensing to monitor species diversity: potential and pitfalls. Remote Sens Ecol
Conserv. 2(1):25–36.

Rocchini D, Delucchi L, Bacaro G, Cavallini P, Feilhauer H, Foody GM, He KS, Nagendra H, Porta C,
Ricotta C, et al. 2013. Calculating landscape diversity with information-theory based indices: a GRASS
GIS solution. Ecol Informat. 17:82–93.

Rocchini D, Marcantonio M, Da Re D, Chirici G, Galluzzi M, Lenoir J, Ricotta C, Torresani M, Ziv G.
2019. Time-lapsing biodiversity: an open source method for measuring diversity changes by remote
sensing. Remote Sens Environ. 231:111192.

Rouse JW, Haas RH, Schell JA, Deering DW. 1974. Monitoring vegetation systems in the Great Plains
with ERTS. NASA Special Publication, 351, 309.

Sainge MN, Lyonga NM, Mbatchou G, Kenfack D, Nchu F, Peterson AT. 2019. Vegetation, floristic compos-
ition and structure of a tropical montane forest in Cameroon. Bothalia-African Biodiv Conserv. 49(1):1–12.

Shah J.A. 2013. Application of diversity indices to crustacean community of Wular Lake, Kashmir
Himalaya. Int J Biodiv Conserv. 5(6):311–316.

Shoko C, Mutanga O, Dube T. 2019. Remotely sensed C3 and C4 grass species aboveground biomass vari-
ability in response to seasonal climate and topography. Afr J Ecol. 57(4):477–489.

Silva B, �Alava-N�u~nez P, Strobl S, Beck E, Bendix J. 2017. Area-wide evapotranspiration monitoring at the
crown level of a tropical mountain rain forest. Remote Sens Environ. 194:219–229.

South Africa’s fifth national report to the Convention on Biological Diversity 2014. Republic of South Africa.
Thamaga KH. 2018. Remote sensing of the spatio-temporal distribution of invasive water hyacinth

(Eichhornia crassipes) in the Greater Letaba River System in Tzaneen, South Africa [Doctoral disserta-
tion]. University of Limpopo, Polokwane, South Africa.

Thant ZM. 2017. Costs and benefits associated with natural resource exploitation in Chatthin Wildlife
Sanctuary in Myanmar, and its impact on thamin (Rucervus eldii thamin) conservation [Master’s the-
sis]. NTNU.

Toledo-Garibaldi M, Williams-Linera G. 2014. Tree diversity patterns in successive vegetation types along
an elevation gradient in the Mountains of Eastern Mexico. Ecol Res. 29(6):1097–1104.

Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote
Sens. Environ. 8(2):127–150.

T€urkmen G, Kazanci N. 2010. Applications of various biodiversity indices to benthic macroinvertebrate
assemblages in streams of a national park in Turkey. Rev Hydrobiol. 3(2):111–125.
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