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A B S T R A C T 

The measurement of the large-scale distribution of neutral hydrogen in the late Universe, obtained with radio telescopes through 

the hydrogen 21 cm line emission, has the potential to become a key cosmological probe in the upcoming years. We explore the 
constraining power of 21 cm intensity mapping observations on the full set of cosmological parameters that describe the � CDM 

model. We assume a single-dish surv e y for the SKA Observatory and simulate the 21 cm linear power spectrum monopole and 

quadrupole within six redshift bins in the range z = 0.25–3. Forecasted constraints are computed numerically through Markov 

Chain Monte Carlo techniques. We extend the sampler COSMOMC by implementing the likelihood function for the 21 cm power 
spectrum multipoles. We assess the constraining power of the mock data set alone and combined with Planck 2018 CMB 

observations. We find that 21 cm multipoles observations alone are enough to obtain constraints on the cosmological parameters 
comparable with other probes. Combining the 21 cm data set with CMB observations results in significantly reduced errors on 

all the cosmological parameters. The strongest effect is on �c h 

2 and H 0 , for which the error is reduced by almost a factor four. 
The percentage errors we estimate are σ�c h 2 = 0 . 25 per cent and σH 0 = 0 . 16 per cent , to be compared with the Planck only 

results σ�c h 2 = 0 . 99 per cent and σH 0 = 0 . 79 per cent . We conclude that 21 cm SKAO observations will provide a competitive 
cosmological probe, complementary to CMB and, thus, pivotal for gaining statistical significance on the cosmological parameters 
constraints, allowing a stress test for the current cosmological model. 

Key words: cosmology: cosmological parameters – cosmology: large-scale structure of Universe – radio lines: general. 
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 I N T RO D U C T I O N  

eutral hydrogen (H I ) is a fundamental element in the Universe and
ts late-time distribution traces the underlying matter field, making it 
n innov ati ve key probe of the large-scale structure (LSS) (e.g. Ansari 
t al. 2012 ; Pritchard & Loeb 2012 ; Santos et al. 2015 ). Despite
he success of Cosmic Microwave Background (CMB) experiments 
Hinshaw et al. 2013 ; Planck Collaboration VI 2020 ; Mallaby-Kay 
t al. 2021 ) and the LSS measurement via galaxy surv e ys (e.g.
lam et al. 2017 ) in constraining the cosmological parameters of

he � CDM model, we still lack an understanding of the nature of
ark energy and dark matter and an explanation for some of the
ensions among different observables (e.g. Riess et al. 2019 ; Verde, 
reu & Riess 2019 ; Wong et al. 2020 ). The measurement of the large-
cale distribution of H I and its evolution with time can thus play an
mportant role in the upcoming years, providing a complementary 
robe to traditional galaxy surv e ys (e.g. Bull et al. 2016 ). 
The 21 cm signal, originating from the spin-flip transition in the 

yperfine structure of the hydrogen ground state (e.g. Furlanetto, 
h & Briggs 2006 ), is redshifted by the expansion of the Universe,
 E-mail: mberti@sissa.it 1

2023 The Author(s) 
ublished by Oxford University Press on behalf of Royal Astronomical Society 
nd, thus, it is detectable on Earth at radio frequencies. Several
lanned and ongoing experiments, either purpose-built compact 
nterferometers such as CHIME (Bandura et al. 2014 ; CHIME 

ollaboration 2022 ), CHORD or HIRAX (Newburgh et al. 2016 ), or
ingle-dish telescopes such as GBT (Masui et al. 2013 ; Wolz et al.
022 ) or FAST (Hu et al. 2020 ) aim to measure it with intensity
apping (IM) techniques (Bharadwaj et al. 2001 ; Battye, Davies &
eller 2004 ; McQuinn et al. 2006 ; Chang et al. 2008 ; Seo et al.

010 ; Battye et al. 2013 ; Ko v etz et al. 2017 ) and some of them have
chieved the detection of the H I signal in cross-correlation with
alaxy surv e ys (Chang et al. 2010 ; Masui et al. 2013 ; Anderson et al.
018 ; Cunnington 2022 ; Wolz et al. 2022 ; Paul et al. 2023 ). 
Radio cosmology is also one of the main science goals of the

KA Observatory (SKAO) 1 that will be composed by the SKA- 
ow and SKA-Mid telescopes located in Australia and South Africa, 

espectively. Using the SKA-Mid telescope array as a collection 
f single-dishes (e.g. Santos et al. 2015 ; SKA Cosmology SWG
020 ) it will be possible to perform 21 cm IM observations at the
arge scales rele v ant for cosmology up to redshift 3. The SKAO is
urrently under construction, and MeerKAT, the SKA-Mid precursor, 
 ht tps://www.skao.int /
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as been conducting IM surv e y for cosmology (Santos et al. 2017 ;
eerKLASS). Preliminary data analysis hav e pro vided promising

esults (Wang et al. 2021 ; Irfan et al. 2022 ) and a first detection of the
 I signal in cross-correlation with the WiggleZ galaxies (Cunnington

t al. 2022 ). Ho we ver, the le v el of fore ground residuals is prev enting
 direct detection and this issue has triggered an e xtensiv e simulation
ork on foreground cleaning performances (Alonso et al. 2015 ; Wolz

t al. 2016 ; Carucci, Irfan & Bobin 2020 ; Cunnington et al. 2021 ;
rfan & Bull 2021 ; Matshawule et al. 2021 ; Soares et al. 2021 ; Soares
t al. 2022 ; Spinelli et al. 2022 ; Pourtsidou 2023 ). In parallel with the
ffort in improving the data analysis and the foreground separation,
t is of key importance to refine the forecast for the constraining
ower of the 21 cm IM alone and in combination with other probes
n order to make a better case for radio cosmology with the SKAO
r optimize the surv e y design. 
In this work, we focus on the parameters of the � CDM model

aking into account the redshift-space nature of the 21 cm power
pectrum. In this way we can exploit the tomographic potential
f the observations. Note that the term tomography/tomographic
s used here to refer to observations at various redshifts. We build
n the formalism of Blake ( 2019 ); Cunnington et al. ( 2020 ); Soares
t al. ( 2021 ) and study redshift-space power spectrum monopole and
uadrupole. Following SKA Cosmology SWG ( 2020 ), we construct
ock 21 cm power spectrum measurements in six redshift bins, in the

edshift range z = 0.25–3. We expand the code COSMOMC (Lewis &
ridle 2002 ; Lewis 2013 ) to include a new likelihood module to
ompute constraints through Markov-Chain Monte-Carlo (MCMC)
echniques and we assess the constraining power of our mock 21 cm
ata set alone and combined with CMB data. 
We note that forecasts for future IM observations based on the

isher Matrix formalism, thereby using a complementary approach to
he one described here, have been presented in Obuljen et al. ( 2018 );
iljoen, Fonseca & Maartens ( 2020 ); Karagiannis, Maartens &
andrianjanahary ( 2022 ). 
The no v elty aspects of this study, with respect to Soares et al.

 2021 ), are: (i) we produce constraints on the full set of cosmological
arameters; (ii) we combine the forecasted 21 cm power spectrum
ultipoles with Planck 2018 CMB data (Planck Collaboration VI

020 ); (iii) we employ the multipole formalism to construct and study
he constraining power of a tomographic data set, i.e. that includes
bserv ations within dif ferent redshift bins. We neglect the effect
f foregrounds but we include uncertainties on the astrophysical
uantities that connect the measured 21 cm power spectrum to
he underlying matter field, as the atomic hydrogen bias and the
rightness temperature (see also Berti et al. 2022 ). 
The structure of the paper is the following. The modelling of the

1 cm power spectrum and multipoles is discussed in Section 2 ,
hile Section 3 is devoted to the construction of the mock data

et and the likelihood implementation. Results are presented in
ection 4 . The constraining power of the mock 21 cm power spectrum
ultipoles is e v aluated in Section 4.1 . We investigate ho w 21 cm

bserv ations af fect the constraining po wer of other probes, i.e. CMB
easurements, in Section 4.2 . A discussion on the impact of opening

he parameter space to the brightness temperature, the H I bias and the
rowth rate is given in Section 4.3 . We also investigate the extension
o non-linear scale of our mock data in Section 4.4 . A summary of
he results and our conclusions are outlined in Section 5 . 

 M O D E L L I N G  T H E  2 1  C M  S I G NA L  

n this section we outline the formalism used throughout this work.
aving defined the cosmological model we consider in Section 2.1 ,
NRAS 521, 3221–3236 (2023) 
e describe the theoretical 21 cm linear power spectrum in Sec-
ion 2.2 , how the telescope effects impact the theoretical model in
ection 2.3 , and define the final observables in Section 2.4 . 

.1 Fiducial cosmological model 

e work within the standard cosmological model framework, i.e.
he � CDM model. We perform our analysis using the following
ix parameters to define the fiducial cosmology: �b h 2 and �c h 2 ,
hat describe the density of the baryonic and cold dark matter,
espectively, the scalar spectral index n s , the normalization of the
rimordial power spectrum A s , the Thomson scattering optical depth
ue to reionization τ , and θMC , that is connected to the angular scale
f the sound horizon at decoupling. Moreo v er, we study also the
erived parameters H 0 , i.e. the current expansion rate in km s −1 

pc −1 and σ 8 , the root mean square matter fluctuations today in
inear theory. 

Through all this work we assume a universe described
y a Planck 2018 (Planck Collaboration VI 2020 )
ducial cosmology, i.e. { �b h 

2 = 0 . 022383 , �c h 

2 =
 . 12011 , n s = 0 . 96605 , ln (10 10 A s ) = 3 . 0448 , τ = 0 . 0543 , H 0 = 

7 . 32 km s −1 Mpc −1 , � m ν = 0 . 06 eV } , where � m ν is the sum of
eutrino masses in eV. 

.2 The theoretical 21 cm signal linear power spectrum 

he 21 cm power spectrum conv e ys rich cosmological information:
t is a biased, redshift-dependent tracer of the matter distribution and
hus an interesting probe of the tri-dimensional LSS of the Universe.

We model the 21 cm linear power spectrum as (Kaiser 1987 ;
illaescusa-Navarro et al. 2018 ; SKA Cosmology SWG 2020 ) 

 21 ( z, k, μ) = T̄ 2 b ( z) 
[
b HI ( z) + f ( z) μ2 

]2 
P m 

( z, k) , (1) 

here T̄ b is the H I mean brightness temperature, b H I is the H I

ias, f is the growth rate, μ = 

ˆ k · ˆ z is the cosine of the angle
etween the wavenumber and the line-of-sight, and P m 

( z, k ) is
he linear matter power spectrum. We neglect in equation ( 1 ) the
hot noise term, which is believed to be negligible at linear scales
Villaescusa-Navarro et al. 2014 ; Pourtsidou, Bacon & Crittenden
017 ; Villaescusa-Navarro et al. 2018 ; Spinelli et al. 2020 ). We refer
o Section 4.4 for a discussion on non-linear scales and the shot noise
erm. 

We use the parametrization of the brightness temperature from
attye et al. ( 2013 ) 

¯
 b ( z) = 180 �HI ( z) 

h H 0 

H ( z) 
(1 + z) 2 mK , (2) 

here we consider the H I density parameter to evolve mildly in
edshift as �H I ( z) = 4.0 × 10 −4 (1 + z) 0.6 (see Crighton et al. 2015 ).
iven that we lack an analytical model, b H I ( z) at given redshift is

omputed by interpolating numerical results from hydrodynamical
imulations (Villaescusa-Navarro, Bull & Viel 2015 ; Villaescusa-
avarro et al. 2018 ). 
The growth rate f ( z) and the linear matter power spectrum P m 

( z,
 ) are, instead, computed numerically by means of the Einstein–
oltzmann solver CAMB 

2 (Lewis, Challinor & Lasenby 2000 ). 

https://camb.info/
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Table 1. Assumed specifications for SKA-Mid surv e y (SKA Cosmol- 
ogy SWG 2020 ). 

Parameter Value 

D dish [m] SKAO dish diameter 15 
N dish SKAO dishes 133 
t obs [h] Observing time 10 000 
T sys [K] System temperature 25 
δν [MHz] Frequency resolution 1 

z Width of the redshift bins 0.5 

Medium-Deep Band 2 

Band frequency range 0.95–1.75 GHz 
Corresponding redshift range 0–0.5 

A 2 [deg 2 ] Surv e y area 5000 
�sur, 2 [sr] Surv e y area 1.5 
f sky, 2 Co v ered sk y area 0.12 

Wide Band 1 

Band frequency range 0.35–1.05 GHz 
Corresponding redshift range 0.35–3 

A 1 [deg 2 ] Surv e y area 20 000 
�sur, 1 [sr] Surv e y area 6.1 
f sky, 1 Co v ered sk y area 0.48 
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.3 The effect of the telescope on the theoretical 21 cm signal 
ower spectrum 

ne of the main instrumental effect on the theoretical 21 cm power
pectrum is the telescope response that we model as a Gaussian 
eam which suppresses the power spectrum on scales smaller than 
he beam full-width at half-maximum (FWHM; Battye et al. 2013 ; 
illaescusa-Navarro, Alonso & Viel 2017 ; Cunnington et al. 2020 ; 
oares et al. 2021 ; Cunnington 2022 ). 
This effect can be written in terms of R beam 

, the beam physical
imension 

 beam 

( z) = σθ r( z) 

= 

θFWHM 

2 
√ 

2 ln 2 
r( z) , (3) 

here r ( z) is the comoving distance, θFWHM 

= 

1 . 22 λ21 
D dish 

(1 + z) is the
WHM, and D dish is the diameter of the dish. 
The beam damping factor in Fourier space ˜ B ( z, k, μ) can thus be

ritten as 

˜ 
 ( z, k, μ) = exp 

[−k 2 R 

2 
beam 

( z)(1 − μ2 ) 

2 

]
. (4) 

Note that the factor (1 − μ) model the smoothing only along the
ransverse direction since the damping along the radial direction is 
egligible due to the high frequency resolution of 21 cm observation 
Villaescusa-Navarro et al. 2017 ). 

The observed, i.e. beam convolved, 21 cm power spectrum is then 

ˆ 
 21 ( z, k, μ) = 

˜ B 

2 ( z, k, μ) P 21 ( z, k, μ) , (5) 

here P 21 ( z, k , μ) is defined in equation ( 1 ). 

.4 Multipole expansion 

he non-isotropic redshift space 21 cm power spectrum can be 
ecomposed using Legendre polynomials L � ( μ) as 

ˆ 
 21 ( z, k, μ) = 

∑ 

� 

ˆ P � ( z, k) L � ( μ) . (6) 

he first Legendre polynomials are the following functions of μ

 0 ( μ) = 1 , L 2 ( μ) = 

3 μ2 

2 
− 1 

2 
. (7) 

he coefficients of the expansion, i.e. the multipoles of the 21 cm
ower spectrum, are then given by 

ˆ 
 � ( z, k) = 

(2 � + 1) 

2 

∫ 1 

−1 
d μL � ( μ) ˆ P 21 ( z, k, μ) , (8) 

here the expression for ˆ P 21 ( z, k, μ) can be found in equation ( 5 ). 
In our analysis, we construct mock observations for the monopole 

ˆ 
 0 ( z, k) and the quadrupole ˆ P 2 ( z, k), i.e. � = 0 and � = 2, respectively.
e refer to Appendix A for the explicit analytical expression of these

uantities. 

 FO R ECASTIN G  T H E  SKAO  C O N S T R A I N I N G  

OWER  

n this section we focus on the SKA-Mid telescope and its pro-
osed cosmological surv e ys describing our methodology to obtain 
ealistic forecasts on their constraining power on the cosmological 
arameters. In Section 3.1 and Section 3.2 we construct the mock 
omographic data set of SKA-Mid observations. The description of 
he likelihood function and the parameter estimation method are 
eported in Section 3.3 . 
.1 SKA-Mid telescope specifications 

e construct mock single-dish 21 cm power spectrum observations 
f the SKA-Mid telescope, modelling the 21 cm IM surv e y as in SKA
osmology SWG ( 2020 ). The telescope specifications rele v ant for
ur work are reported in Table 1 . 
We assume a combination of two surv e ys: a Medium-Deep Band

 surv e y that co v ers a sk y area of 5000 de g 2 in the frequenc y
ange 0.95–1.75 GHz (i.e. the redshift range 0–0.5); a Wide Band
 surv e y that co v ers a sk y area of 20 000 deg 2 in the frequency
ange 0.35–1.05 GHz (i.e. the redshift range 0.35–3). We forecast 
bservations for six equi-spaced, non-o v erlapping redshift bins, in 
he range z = 0–3 with 
z = 0.5. The six bins are centred at redshifts
 c = { 0 . 25 , 0 . 75 , 1 . 25 , 1 . 75 , 2 . 25 , 2 . 75 } . We assume the Band 2
urv e y specification for the mock 21 cm power spectrum at redshift
.25 and Band 1 surv e y specification for all the others. Note that in
ur analysis each bin is regarded as independent. 
The surv e y sk y co v erage and the redshift range define the volume

or the mock observations thus fixing the range of accessible scales
or our analysis. In Fourier space, the largest scale available at each
entral redshift is k min ( z c ) = 2 π/ 3 

√ 

V bin ( z c ) , where V bin ( z c ) is the
olume of each redshift bin, defined in equation ( 10 ) in Section 3.2.1 .

The smallest scale is, instead, imposed by the size of the telescope
eam and it can be estimated as k max ( z c ) = 2 π / R beam 

( z c ). At scales
maller than k max , the signal is dominated by the beam providing
o rele v ant information on cosmology. Although we do not show
esults here, we tested pushing the k max limit beyond the beam scale.

e found no significant impact on the cosmological parameters 
onstraints. If not already provided by the cut-off given by the size the
elescope beam, we impose a k max = 0 . 2 h Mpc −1 to a v oid entering
he non-linear regime for the power spectrum. 

Finally, we choose a fixed k-bin width as a function of redshift
 k ( z c ) in order to be large enough for modes to be independent,

ssuming 
 k ( z c ) ∼ 2 k min ( z c ). 
MNRAS 521, 3221–3236 (2023) 
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.2 Mock data set 

n the following, we discuss the sources of errors considered in
his work and present the final mock data set used to forecast the
onstraining power of the 21 cm observations. 

.2.1 Instrumental noise 

or a single-dish intensity mapping SKAO-like experiment, the noise
ower spectrum can be modelled as (Santos et al. 2015 ; Bernal et al.
019 ) 

 N ( z ) = 

T 2 sys 4 πf sky 

N dish t obs δν

V bin ( z ) 

�sur 
. (9) 

ere, given a redshift bin centred at z and of width 
z, the volume
f the redshift bin V bin ( z) can be computed as 

 bin ( z) = �sur 

∫ z + 
z / 2 

z −
z / 2 
d z ′ 

d V 

d z ′ d �

= �sur 

∫ z + 
z / 2 

z −
z / 2 
d z ′ 

cr( z ′ ) 2 

H ( z ′ ) 
, (10) 

ith r ( z) being the comoving distance. A description of all the other
arameters that appear in equation ( 9 ) and their assumed values can
e found in Table 1 . 

.2.2 Variance 

o construct mock observations we need an estimate of the errors on
he po wer spectrum. Follo wing e.g. Bernal et al. ( 2019 ) we write the
ariance per k and μ bin σ ( z, k , μ) as 

2 ( z, k, μ) = 

(
ˆ P 21 ( z, k, μ) + P N ( z) 

)2 

N modes ( z, k, μ) 
, (11) 

here ˆ P 21 ( z, k, μ) is the 21 cm signal power spectrum, defined in
quation ( 5 ), and P N ( z) is the noise power spectrum of equation ( 9 ).
 modes ( z, k , μ) is the number of modes per k and μ bins in the
bserv ed sk y volume. We can compute it as 

 modes ( z, k, μ) = 

k 2 
k( z ) 
μ( z ) 

8 π2 
V bin ( z) . (12) 

ere, V bin ( z) is the volume of the redshift bin centred at z, while
 k ( z ) and 
μ( z ) are the k and μ bin width, respectively. In our

nalysis, ho we v er, we inte grate o v er all the possible values of μ in
he interval μ ∈ ( − 1, 1), as we will discuss in more detail in the
ext section. Thus, computing the number of μ modes, equation ( 12 )
educes to 

 modes ( z, k ) = 

k 2 
k ( z) 

4 π2 
V bin ( z) . (13) 

.2.3 Multiple covariance 

nother source of error is the covariance between different multi-
oles. We define the covariance between the multipoles � and � ′ as a
unction of k and z (see Seo et al. 2010 ; Taruya, Nishimichi & Saito
010 ; Battye et al. 2013 ; Grieb et al. 2016 ; Blake 2019 ) 

 �� ′ ( z, k) = 

(2 � + 1)(2 � ′ + 1) 

2 

∫ 1 

−1 
d μL � ( μ) L � ′ ( μ) σ 2 ( z, k, μ) , 

(14) 
NRAS 521, 3221–3236 (2023) 
here we neglect mode coupling. Here, σ 2 ( z, k , μ) is the variance
er k and μ bin at redshift z, as defined in equation ( 11 ). In our
nalysis we focus on the monopole ˆ P 0 and the quadrupole ˆ P 2 and
ssume a set of N measurements of the 21 cm multipoles at scales
 k 1 , . . . , k N } 
The multipole covariance defined in equation ( 14 ) allows us to

stimate both the covariance for a given multipole and between
ifferent multipoles. Thus, the most general covariance matrix for
ˆ 
 0 and ˆ P 2 combined is a 2 N × 2 N symmetric block matrix. At fixed

edshift, it is constructed as 

 ( z) = 

(
C 00 ( z) C 02 ( z) 
C 02 ( z) C 22 ( z) 

)
. (15) 

ach block C �� ′ is a diagonal matrix of dimensions N × N , defined
s C �� ′ ( z) = diag ( C �� ′ ( z, k 1 ) , . . . , C �� ′ ( z, k N )), where the elements
 �� ′ ( z, k i ) are computed as in equation ( 14 ) at each { k 1 , . . . , k N } . 
The blocks along the diagonal, i.e. C 00 ( z) and C 22 ( z), are the

ovariance matrices for the monopole and the quadrupole alone. The
ff-diagonal block C 02 ( z), instead, describes the covariance between
ˆ 
 0 and ˆ P 2 . 
In the simplified case where the monopole ˆ P 0 and the quadrupole

ˆ 
 2 are uncorrelated, we can neglect the off-diagonal terms in C ( z)
nd assume the block-diagonal covariance matrix 

 diag ( z) = 

(
C 00 ( z) 0 

0 C 22 ( z) 

)
. (16) 

n our work, we compute the covariance matrices C 00 ( z ), C 02 ( z ),
 22 ( z ), C diag ( z ), and C ( z ) numerically, from the analytical expression

or the monopole and the quadrupole (see Appendix A ). 

.2.4 Mock data set errors 

aking into account the sources of errors described abo v e, we can
ompute the errors on our mock data points assuming the SKA-Mid
bservations. 
Assuming a set of N measurements of the 21 cm multipole ˆ P � at

cales { k 1 , . . . , k N } , the computed error on each point of the data set
s 

ˆ P � 
( z, k i ) = 

√ 

C �� ( z, k i ) 

= 

√ 

(2 � + 1) 2 

2 

∫ 1 

−1 
d μL 

2 
� ( μ) σ 2 ( z, k i , μ) , (17) 

or each k i in { k 1 , . . . , k N } . 
At each central redshift z c and data point k we compute the
onopole ˆ P 0 ( z c , k), the quadrupole ˆ P 2 ( z c , k), and the errors, as

iscussed abo v e. In Table 2 , we gather some of the used redshift
ependent quantities for the interested reader. The resulting fore-
asted data sets for the monopole and the quadrupole are shown in
ig. 1 . 

.3 Constraining the cosmological parameters 

n order to exploit the constraining power of the mock data set pre-
ented in Section 3.2 , we define a likelihood function (Section 3.3.1 )
nd then set up the framework to constrain the cosmological
arameters adopting a Bayesian approach (Section 3.3.2 ). Given a
et of observations and a theory that depends on set of parameters,
he Bayes theorem links the posterior distribution to the likelihood
unction. The high-dimensional posterior can then be sampled using

CMC methods (e.g. Gilks, Richardson & Spiegelhalter 1995 ;
amerman & Lopes 2006 ). 
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Table 2. Computed values of redshift dependent quantities at each central redshift z c . For the first redshift bin ( z = 0.25) we assume SKA-Mid Band 2 
specifications, while we use SKA-Mid Band 1 parameters for the other five bins. We refer to Table 1 for a list of used SKA-Mid specifications. 

z c Central redshift 0.25 0.75 1.25 1.75 2.25 2.75 

T̄ b Mean brightness temperature 0.78 × 10 −1 1.3 × 10 −1 1.9 × 10 −1 2.5 × 10 −1 3.0 × 10 −1 3.6 × 10 −1 [mK] 

b HI H I bias 1.03 1.33 1.62 1.89 2.17 2.45 –

V bin Volume of the bin 0.11 × 10 10 1.98 × 10 10 3.14 × 10 10 3.71 × 10 10 3.90 × 10 10 3.88 × 10 10 [ h −3 Mpc 3 ] 

R beam Beam size 6.38 23.36 43.74 66.13 89.83 114.5 [ h −1 Mpc ] 

P N Noise power spectrum 0.6 10 16 19 20 20 [ mK 

2 h −3 Mpc 3 ] 

k max Minimum scale 0.2 0.2 0.14 0.09 0.07 0.05 [ h Mpc −1 ] 

k min Maximum scale 6.00 × 10 −3 2.32 × 10 −3 1.99 × 10 −3 1.88 × 10 −3 1.85 × 10 −3 1.85 × 10 −3 [ h Mpc −1 ] 


 k k -bin width 12 × 10 −3 5 × 10 −3 4 × 10 −3 4 × 10 −3 4 × 10 −3 4 × 10 −3 [ h Mpc −1 ] 

N Number of data points 16 43 36 25 18 14 –

Figure 1. Tomographic mock data set for 21 cm linear power spec- 
trum monopole (upper panel) and quadrupole (lower panel) obser- 
vations. The considered six redshift bins are centred at redshifts 
{ 0 . 25 , 0 . 75 , 1 . 25 , 1 . 75 , 2 . 25 , 2 . 75 } . For the first redshift bin (black dashed 
line) we assume a SKA-Mid Band 2 surv e y. The data sets for the other five 
bins, instead, assume a SKA-Mid Band 1 surv e y (see Table 1 ). We refer to 
Section 3.2 for further details on how the signal and the errors are computed. 
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.3.1 Likelihood function and signal-to-noise 

iven a set of measurements at scales { k 1 , . . . , k N } and redshift z c ,
o compute the likelihood function we define the vector 

 ( z c ) = 

(
ˆ P 0 ( z c ) , ˆ P 2 ( z c ) 

)
, (18) 

ith ˆ P � ( z c ) = ( ˆ P � ( z c , k 1 ) , . . . , ˆ P � ( z c , k N )). When we use both the
onopole and the quadrupole, the logarithmic likelihood is computed 
s 

− ln 
[
L 

] = 

∑ 

z c 

1 

2 

 � ( z c ) 

T C 

−1 ( z c ) 
 � ( z c ) , (19) 

here we define 
 � ( z c ) = � 

th ( z c ) − � 

obs ( z c ), the difference be-
ween the values of � ( z c ) predicted from theory and observed.
ere, C ( z c ) is the covariance matrix defined in equation ( 15 ), which
ecomes C diag ( z c ), i.e. equation ( 16 ), when we neglect multipole
ovariance. We consider independent redshift bins, i.e. we simply 
um o v er the contribution from each central redshift. When studying
ˆ 
 0 and ˆ P 2 separately we use only the rele v ant blocks of the covariance 
atrix C ( z c ), thus using a simplified version of equation ( 19 ). 
Using a similar formalism, we can compute the signal-to-noise at 

 specific k for each central redshift as 

 S / N ] 2 ( z c , k) = � k ( z c ) 
T C 

−1 
k ( z c ) � k ( z c ) , (20) 

here � k ( z c ) = ( ˆ P 0 ( z c , k) , ˆ P 2 ( z c , k)) and C k ( z c ) is a matrix defined
s 

 k ( z c ) = 

(
C 00 ( z c , k) C 02 ( z c , k) 
C 02 ( z c , k) C 22 ( z c , k) 

)
. (21) 

he expression of the signal-to-noise when we neglect the multipole 
ovariance or when we use only ˆ P 0 or ˆ P 2 is modified accordingly, as
escribed for the likelihood function abo v e. 
The resulting signal-to-noise as a function of k is shown in Fig. 2 .
e recall that the maximum scales explored is the minimum scale

etween the maximum scale imposed by the beam width and the
inear regime cut-off of k max = 0 . 2 h Mpc −1 (see Section 3.2.4 ). 

At fixed redshift (upper panel of Fig. 2 ), we observe that, when
he monopole and the quadrupole are used together ( � = 0, 2), we
et a higher signal-to-noise with respect to the monopole ( � = 0)
nd the quadrupole ( � = 2) alone. For the � = 0, 2 case, we observe
hat when we consider multipole covariance (yellow solid line) we 
et an enhancement of the signal-to-noise at higher scales and a
uppression at lower ones. As discussed in Soares et al. ( 2021 ),
his effect is caused by the beam smoothing factor in the model
or ˆ P 21 (see Section 2.3 ). We examine the implications of using
ifferent combinations of multipoles on the parameters constraints 
n Section 4.1 . 

We sho w ho w the signal-to-noise decreases as a function of redshift
n the lower panel of Fig. 2 . Its shape is consistent at all redshifts
the full signal-to-noise for the mock measurements in the Band 2
 z = 0.25), can be found in Fig. 8 ). In our analysis we will al w ays
onsider the cumulative contribution from all the redshift bins. 
MNRAS 521, 3221–3236 (2023) 
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Figure 2. Signal-to-noise ratio as a function of k (see equation 20 ). In the 
upper panel, we show the signal-to-noise at given redshift z = 0.75, for 
different combinations of multipoles: the monopole alone (blue dashed- 
dotted line), the quadrupole alone (pink dotted line), the two combined 
(green dashed line) and the two combined considering the full non-diagonal 
cov ariance matrix (yello w solid line). In the lo wer panel, we sho w the signal- 
to-noise redshift dependence for the monopole and the quadrupole combined, 
considering a diagonal covariance matrix (dashed lines) and the full non- 
diagonal one (solid lines). 

3

T  

M  

W  

e  

a
 

c  

2
 

p  

{  

p  

W

3

4

Table 3. Assumed fiducial cosmology (Planck Collaboration VI 2020 ) and 
used flat priors. 

Parameter Fiducial value Prior 

�b h 2 0.022383 [0.005, 0.1] 
�c h 2 0.12011 [0.001, 0.99] 
n s 0.96605 [0.8, 1.2] 
ln (10 10 A s ) 3.0448 [1.61, 3.91] 
τ 0.0543 [0.01, 0.8] 
100 θMC 1.040909 [0.5, 10] 
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.3.2 Numerical analysis 

o perform the MCMC analysis we use an e xpanded v ersion of the
CMC sampler COSMOMC 

3 (Lewis & Bridle 2002 ; Lewis 2013 ).
e modify it in order to include the computation of the theoretical

xpectations for the monopole and the quadrupole (see Appendix A )
nd of the likelihood function defined abo v e (see equation 19 ). 

The analysis of the MCMC samples to compute the marginalized
onstraints is performed with the Python package GETDIST 4 (Lewis
019 ). 
We conduct an MCMC analysis varying the six

arameters describing the � CDM model, i.e. we vary
 �b h 

2 , �c h 

2 , n s , ln (10 10 A s ) , τ, 100 θMC } . Results on other
arameters, such as H 0 and σ 8 , are derived from results on this set.
e list the fiducial values and the flat prior we use in Table 3 . 
NRAS 521, 3221–3236 (2023) 

 See https://cosmologist.info/cosmomc . 
 See https://getdist.readthedocs.io . 
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.3.3 CMB data sets 

n this study, we combine our mock 21 cm IM data set with Planck
018 CMB observations (Planck Collaboration VI 2020 ). The CMB
ikelihood includes the high- � TT, TE, EE lite likelihood in the
nterval of multipoles 30 ≤ � ≤ 2508 for TT and 30 ≤ � ≤ 19696 for
E, EE. Lite likelihoods are calculated with the PLIK LITE likelihood

Planck Collaboration V 2020 ). Instead for the low- � TT power
pectrum we use data from the COMMANDER component-separation
lgorithm in the range 2 ≤ � ≤ 29. We adopt also the Planck CMB
ensing likelihood and the low EE polarization power spectrum,
eferred to as lowE, in the range 2 ≤ � ≤ 29, calculated from
he likelihood code SIMALL (Planck Collaboration III 2020 ). In the
ollowing, with the label ‘Planck 2018’ we refer to the combination
T, TE, EE + low- � + lowE + lensing. 

 RESULTS  

e present in this section the results of our analysis. We first explore
he constraining power of the mock 21 cm data set, using different
ombinations of multipoles (Section 4.1 ); we then combine the mock
ata set with Planck CMB data (Section 4.2 ); we study the effect of
uisance parameters describing the neutral h ydrogen astroph ysics in
ection 4.3 ; finally, we discuss the impact of non-linear scales in
ection 4.4 . 
We show the marginalized 1D and 2D posteriors for the studied set

f parameters. Note that 68 per cent confidence level constraints are
resented as percentages with respect to the marginalized mean value.

.1 Probing the constraining power of 21 cm signal 
bser v ations 

n Fig. 3 and Table 4 , we show the marginalized contours and
onstraints 5 that we obtain using our SKA-Mid tomographic data set,
.e. with observations at different redshifts, for different combinations
f multipoles. Note that we show only some of the model parameters
or brevity. 

As one could expect from the signal-to-noise predictions of Fig. 2 ,
sing only the quadrupole leads to the broadest constraints, while
he most constraining results are obtained for the monopole and
he quadrupole combined. The off-diagonal terms of the multiple
ovariance do not affect much the constraints. The marginalized
ercentage constraints for the baseline case ( ˆ P 0 + 

ˆ P 2 considering
he full covariance) for the complete set of cosmological parameters
an be found in Fig. 7 and Table 6 . 
 We specify that, when dealing with asymmetrical posterior distributions, 
e estimate the percentage constraint using the mean value between the 

eft and right marginalized error. Given that this is a forecasts analysis, this 
pproximation is enough for the purpose of this work. 
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Figure 3. Joint constraints (68% and 95% confidence regions) and marginal- 
ized posterior distributions on a subset of the cosmological parameters. We 
show the constraints obtained using the mock tomographic data set for 
the monopole only (‘ ̂  P 0 ’), the quadrupole only (‘ ̂  P 2 ’), the two combined 
with (‘ ̂  P 0 + 

ˆ P 2 non diagonal’) and without (‘ ̂  P 0 + 

ˆ P 2 diagonal’) considering 
multipole covariance. The relative constraints are listed in Table 4 . 

Table 4. Marginalized percentage constraints on cosmological parameters 
at the 68% confidence level. We show the results obtained using the mock 
tomographic data set for the monopole only (‘ ̂  P 0 ’), the quadrupole only (‘ ̂  P 2 ’), 
the two combined with (‘ ̂  P 0 + 

ˆ P 2 full covariance’) and without (‘ ̂  P 0 + 

ˆ P 2 

diagonal’) considering multipole co variance. Confidence re gions for the same 
set of results are shown in Fig. 3 . 

Parameter ˆ P 0 ˆ P 0 ˆ P 2 + 

ˆ P 2 ˆ P 0 + 

ˆ P 2 

diagonal full covariance 

�c h 2 16.71% 21.57% 12.71% 13.36% 

n s 4.59% 5.59% 3.55% 3.44% 

ln(10 10 A s ) 10.94% 15.26% 8.26% 8.83% 

H 0 9.09% 12.01% 6.91% 7.39% 

σ 8 9.56% 11.92% 7.11% 7.64% 
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Our results show, as expected, that the constraining power on the 
osmological parameters of the SKA-Mid mock data set is greater 
han what one could obtain with MeerKAT alone (Berti et al. 2022 ).
he data set we constructed is enough to constrain five out of six of

he cosmological parameters. This is because 21 cm observations are 
ot sensitive to variations on τ , that remains unconstrained. The 
arginalized confidence levels are broad with respect to Planck 

onstraints (Planck Collaboration VI 2020 ), but comparable with 
ther probes e.g. with tomographic observations of the monopole 
nd the quadrupole combined we constrain H 0 with a relative error
f σH 0 = 7 . 4 per cent , 

 0 = 71 . 6 + 3 . 8 
−6 . 8 km s −1 Mpc −1 

(68 % , ˆ P 0 + ̂

 P 2 - full covariance ) . (22) 

e stress that when we state a constraint on a single parameter
btained using our mock 21 cm data set, the central value does not
av e an y physical meaning and it is driv en by the input fiducial
osmology value. 
Although not competitive with Planck, our tomographic measure- 
ents with six redshift bins and at linear scales provide an estimate

f H 0 with an uncertainty comparable with others late Universe 
easurements (Verde et al. 2019 ), and, as we further discuss in
ection 4.4 , constraints on H 0 are impro v ed if we extend our data
et to non-linear scales. SKA-Mid 21 cm observations will have thus
he potential to provide new information for the discussion on the H 0 

alue (Sch ̈oneberg et al. 2021 ). 
Looking at the 2D contours, we observe that there is a marked

e generac y between the cosmological parameters. As already found 
or mock MeerKAT observations, 21 cm measurements show a strong 
e generac y in the H 0 – �c h 2 plane (Berti et al. 2022 ). This feature
s ascribable to the dependence on the matter power spectrum. At
he considered scales the shape of P m 

( k ) is found to be dependent
n the combination of parameters �m h (Bardeen et al. 1986 ). A
easure of the 21 cm multipoles would fix up to some degree of

onfidence the shape of the matter power spectrum and, in turn, the
alue of �m h . This implies that �m h 2 , and consequently �c h 2 , is
orrelated with h and H 0 . This correlation is pivotal when combining
ntensity mapping data with CMB measurements, as we discuss in 
he following section. 

.2 21 cm signal obser v ations combined with CMB data 

n the abo v e section we studied the constraining power of the 21 cm
ultipoles. Here, we combine our baseline data set (the monopole ˆ P 0 

lus the quadrupole ˆ P 2 considering the full covariance) with Planck 
MB measurements. The rationale behind this is to investigate if and
ow 21 cm observations can complement the detailed information on 
he cosmological parameters carried by the CMB. 

We refer to Section 3.3.3 for a description of the used Planck
018 (Planck Collaboration VI 2020 ) data sets and likelihoods. For
onsistency, we first run the Planck likelihood in our framework and
eproduce constraints in agreement with the Planck 2018 results 

�c h 

2 = 0 . 1201 ± 0 . 0012 
H 0 = 67 . 32 ± 0 . 53 km s −1 Mpc −1 

ln (10 10 A s ) = 3 . 045 ± 0 . 014 
σ8 = 0 . 8115 ± 0 . 0060 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(68 % , Planck 2018 ) . (23) 

Our results for the combination of the CMB data and our mock
1 cm observation are presented in Table 5 and in Fig. 4 . Adding
he 21 cm power spectrum multipoles to the CMB, significantly 
mpro v es the constraining power on the majority of the cosmological
arameters. The effect is particularly pronounced on �c h 2 and H 0 ,
or which the error is reduced by approximately a fourth. This gain in
onstraining power is due to the combination of opposite de generac y
irections between the CMB and the 21 cm power spectrum on these
osmological parameters. This effect is particularly strong in the H 0 

�c h 2 plane, where the de generac y is completely remo v ed. In A s –
8 plane, the effect is milder, but still significant. 
In more detail, we find 

�c h 

2 = 0 . 12014 ± 0 . 00030 
H 0 = 67 . 28 ± 0 . 11 km s −1 Mpc −1 

ln (10 10 A s ) = 3 . 0463 ± 0 . 0052 
σ8 = 0 . 8125 ± 0 . 0021 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(68 % , Planck 2018 + ̂

 P 0 + ̂

 P 2 ) . 

(24) 

e recall that the central value of the obtained constraints does
ot have a physical meaning and it is driven by the input fiducial
osmology we use for our mock 21 cm observ ations. Ho we ver, these
alues are useful to properly visualize the constraining power of our
ock observations. 
MNRAS 521, 3221–3236 (2023) 
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Figure 4. Joint constraints (68% and 95% confidence regions) and marginalized posterior distributions on cosmological parameters. The label ‘Planck 2018’ 
stands for TT, TE, EE + lowE + lensing, while the label ‘ ̂  P 0 + 

ˆ P 2 ’ stands for the baseline tomographic data set for the monopole and the quadrupole combined 
and with multipole covariance taken into account. The label ‘nuisances’ (dashed line) indicates that we vary the nuisances parameters along with the cosmological 
ones. The relative constraints are listed in Table 5 . 
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More important from a quantitative point of view is, instead,
he relative error. We find σ�c h 2 = 0 . 25 per cent and σH 0 =
 . 16 per cent , to be compared with the Planck only estimates of

�c h 2 = 0 . 99 per cent and σH 0 = 0 . 79 per cent . The estimate of the
rror on H 0 we obtain combining 21 cm power spectrum multipoles
ith CMB is competitive with other LSS probes, e.g. with Euclid 6 

orecasts (Blanchard et al. 2020 ). The errors on A s and σ 8 are
ignificantly reduced too, by more than a factor two: the relative
rrors are σln (10 10 A s ) = 0 . 17 per cent and σσ8 = 0 . 26 per cent to be
ompared with σln (10 10 A s ) = 0 . 46 per cent and σσ8 = 0 . 73 per cent
NRAS 521, 3221–3236 (2023) 

 https:// sci.esa.int/ web/ euclid 

i  

b  
f the Planck only result. Moreo v er, it is interesting to see how
he impro v ement on the other cosmological parameters induces a
etter estimate of τ , although the 21 cm observable alone has not a
ignificant constraining power on it. 

From our analysis it is clear that combining the CMB, an early
niverse probe, to late-time LSS measures strengthen our knowledge
f the � CDM model. The strong impro v ement obtained on �c h 2 

nd H 0 is due to the dependence on the matter power spectrum
f the 21 cm multipoles, that fixes the product �m h as discussed
bo v e. CMB observations fix a different combination of parameters,
.e. �m h 3 (Perci v al et al. 2002 ), resulting in �c h 2 and H 0 to
e anticorrelated (Planck Collaboration XVI 2014 ). Providing an
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Figure 5. Joint constraints (68% and 95% confidence regions) and marginal- 
ized posterior distributions on cosmological parameters. The label ‘Planck 
2018’ stands for TT, TE, EE + lowE + lensing, while the label ‘ ̂  P 0 + 

ˆ P 2 ’ 
stands for the baseline tomographic data set for the monopole and the 
quadrupole combined and with multipole covariance taken into account. 
The label ‘single bin’ indicates that use the mock observation of the 21 cm 

multipoles in a single redshift bin centred at z = 0.82. The relative constraints 
are listed in Table 5 . 

Figure 6. Redshift evolution for the nuisance parameters T̄ b b HI σ8 ( z) and 
T̄ b f σ8 ( z) . We show the theory predicted values for the six redshift bins we 
consider (circles and squares) and the best-fit redshift evolution (solid lines) 
modelled as a 3 rd -degree polynomial (see equation (26) ) . 
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ndependent measurement of �m h , e.g. with 21 cm observations, 
emo v es the de generac y and impro v es the constraints on �m h 2 and
 , which impacts directly on �c h 2 and H 0 . This is a well-known
ffect, found also in Bull et al. ( 2016 ). Our analysis impro v es on
revious works by using the latest available CMB data, the SKAO 

urv e y specifications and full MCMC computations. 
The advantage of 21 cm observations o v er galaxy clustering 

urv e ys lies in its tomographic nature. Measuring the 21 cm signal
ithin the full frequency range that will be accessible with SKAO 

ill provide a view of the late-time Universe with exquisite redshift
esolution up to redshift 3. This will complement the cosmological 
nformation carried by the CMB, which is a 2D probe of the early
niv erse. To pro v e the importance of observations within multiple

edshift bins, we compare in Fig. 5 our tomographic results with 
 single bin observation at redshift z = 0.82, that mimics the
nalysis carried out in Soares et al. ( 2021 ), when both are combined
ith Planck data. We find that using multiple bins observations 

ignificantly impro v es the constraints especially for �c h 2 and H 0 .
he error on H 0 shrinks from 0.25 per cent, in the single bin case, to
.16 per cent, in the tomographic one, as shown in Table 5 . 
We conclude that tomographic 21 cm observations pro- 
ide complementary information to the CMB, allowing for 
 significantly impro v ed estimation of the cosmological 
arameters. 
Note that the impro v ement is stronger than the effect of adding

AO measurements to the CMB (Planck Collaboration VI 2020 ). 
lthough we do not show results here, we tested also the effect
f using BAO (Beutler et al. 2011 ; Ross et al. 2015 ; Alam et al.
017 ) along with the multipoles and the CMB, finding no significant
epercussion on the constraints. 

.3 Intr oducing astr ophysical uncertainties 

n the analysis discussed abo v e, we assumed a perfect knowledge
f the astrophysics involved in the estimate of 21 cm signal obser-
ations. In particular, we assumed to know the total H I density
H I (that enters in equation 2 ) and the H I bias b H I as a func-

ion of redshift. Ho we ver, these quantities depend on the detailed
aryon physics at play and their connection with dark matter is
ot completely understood (e.g. Guo et al. 2017 ; Zoldan et al.
017 ; Villaescusa-Navarro et al. 2018 ; Spinelli et al. 2020 ). To
ake into account our ignorance on these parameters in our analysis,
e follow Bernal et al. ( 2019 ) and rewrite the power spectrum of 

quation ( 5 ) as 

ˆ 
 21 ( z, k, μ) = 

˜ B 

2 ( z, k, μ) 
[ 
T̄ b ( z) b HI ( z) σ8 ( z) 

+ T̄ b ( z ) f ( z ) σ8 ( z ) μ
2 
] 2 P m 

( z , k) 

σ8 ( z ) 
. (25) 

he redshift dependent combinations of functions T̄ b b HI σ8 ( z) and 
¯
 b f σ8 ( z) can be added to the set of estimated parameters as
uisances. The most general parametrization for these nuisance 
arameters does not impose any specific redshift e volution. Gi ven
hat we have six redshift bins, we need twelve new parameters:
ix [ ̄T b b HI σ8 ] i and six [ ̄T b f σ8 ] i , one for each redshift, with i
eing i = { 1, . . . , 6 } . Ho we ver, the high dimensionality of this
onfiguration impact significantly the required computational time 
or the convergence of the MCMC procedure for the exploration of
he posterior. 

Alternati vely, one can lo wer the number of nuisance parameters by
ssuming a parametrization for the redshift evolution of T̄ b b HI σ8 ( z)
nd T̄ b f σ8 ( z) in agreement with their theoretical prediction. We use
 3rd-degree polynomial model 

¯
 b b HI σ8 ( z) , T̄ b f σ8 ( z) = az 3 + bz 2 + cz + d, (26) 

nd reduce the nuisances from twelve to eight: four coefficients 
 ̄T b f σ8 ] q , with q = { a , b , c , d } , and other four [ ̄T b f σ8 ] q . We find
hat assuming this redshift e volution gi ves the same results with
espect to the twelve nuisances case while we achieve a better
nd faster convergence. Thus, we choose to work with this latter
arametrization of the nuisances. 
In Fig. 6 we show the theoretical redshift evolution (under the

ssumption discussed in Section 2.2 ) and the fitted one for T̄ b b HI σ8 

nd T̄ b f σ8 . In the following we show the results we obtain varying
he eight nuisances parameters. Note that we assume a very wide
at prior, centred at the theoretical expected value for each nuisance
arameter. 
We present the results for the multipoles alone in Table 6 and

ig. 7 . 
When opening the parameter space to the nuisances, we see a

omplete loss of constraining power on A s . This is expected, due
o the fact that varying the nuisances we loose information on the
MNRAS 521, 3221–3236 (2023) 
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Figure 7. Joint constraints (68% and 95% confidence regions) and marginalized posterior distributions on cosmological parameters. Here, the label “ ˆ P 0 + 

ˆ P 2 ”
stands for the baseline tomographic data set for the monopole and the quadrupole combined and with multipole covariance taken into account. The label 
“ ˆ P 

NL 
0 + 

ˆ P 

NL 
2 ” indicates that the full non-linear data set has been used. The label “nuisances” (dashed lines) indicates that we vary the nuisances parameters 

along with the cosmological ones. The relative constraints are listed in Table 6 . 
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mplitude of the power spectrum. The deterioration of the constraint
n A s translates in a weakening of the constraining power on σ 8 .
his, in turn, widens the errors also on τ . 
Nevertheless, the impact of nuisance parameters is limited to

hese two parameters. The constraints on the other cosmological
arameters remain unaffected showing the power of tomography:
sing the six redshift bins allows us to include the evolution of
he 21 cm power spectrum multipoles and, thus, preserves their
onstraining power in particular on �c h 2 and H 0 . 

The same discussion applies when we combine the multipoles with
MB, as in Section 4.2 but also varying the nuisance parameters.
esults are shown in Fig. 4 and Table 5 from which it can be seen

hat the constraints on �c h 2 and H 0 remain essentially unvaried.
NRAS 521, 3221–3236 (2023) 
ote, ho we ver, that the constrain on A s and τ and, consequently, on
8 are driven just by the Planck data. 
For completeness, 2D contours and the marginalized posteriors

or the nuisance parameters themselves are shown in Fig. B1 and
iscussed in Appendix B . 

.4 Extending to non-linear scales 

p to now, we investigated the constraining power on the cosmologi-
al parameters of 21 cm observations at linear scales, that are the once
est sampled by the large beam of the single-dish intensity mapping.
t the linear scales, it is also possible to e xplore be yond � CDM

art/stad685_f6.eps
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Table 5. Marginalized percentage constraints on cosmological parameters 
at the 68% confidence level. Here, the label ‘Planck 2018’ stands for TT, 
TE, EE + lowE + lensing, while the label ‘ ̂  P 0 + 

ˆ P 2 ’ stands for the baseline 
tomographic data set for the monopole and the quadrupole combined and 
with multipole covariance taken into account. The label ‘nuisances’ indicates 
that we vary the nuisances parameters along with the cosmological ones. 
The label ‘single bin’ indicates that use the mock observation of the 21 cm 

multipoles in a single redshift bin centred at z = 0.82. Confidence regions for 
the same set of results are shown in Fig. 4 . 

Parameter Planck 2018 + ̂

 P 0 + 

ˆ P 2 + nuisances single bin 

�b h 2 0.64% 0.49% 0.49% 0.73% 

�c h 2 0.99% 0.25% 0.27% 0.39% 

n s 0.42% 0.27% 0.31% 0.32% 

ln(10 10 A s ) 0.46% 0.17% 0.45% 0.26% 

τ 13.44% 6.09% 12.19% 7.69% 

100 θMC 0.03% 0.03% 0.03% 0.04% 

H 0 0.79% 0.16% 0.20% 0.25% 

σ 8 0.73% 0.26% 0.70% 0.45% 

Table 6. Marginalized percentage constraints on cosmological parameters 
at the 68% confidence level. Here, the label ‘ ̂  P 0 + 

ˆ P 2 ’ stands for the baseline 
tomographic data set for the monopole and the quadrupole combined and with 
multipole covariance taken into account. The label ‘ ̂  P 

NL 
0 + 

ˆ P 

NL 
2 ’ indicates 

that the full non-linear data set has been used. The label ‘nuis.’ indicates 
that we vary the nuisances parameters along with the cosmological ones. The 
symbol ‘–’ stands for unconstrained. Confidence regions for the same set of 
results are shown in Fig. 7 . 

Parameter ˆ P 0 + 

ˆ P 2 + nuis. ˆ P 

NL 
0 + 

ˆ P 

NL 
2 + nuis. ( ̂  P SN ) 

�b h 2 21.04% 22.81% 3.02% 17.30% 

�c h 2 13.36% 14.66% 1.16% 12.27% 

n s 3.44% 3.94% 0.95% 4.45% 

ln(10 10 A s ) 8.83% – 0.49% 3.00% 

100 θMC 1.53% 1.62% 0.18% 1.61% 

H 0 7.39% 8.10% 0.49% 5.90% 

σ 8 7.64% – 0.37% 2.41% 

Table 7. Shot noise values used in the computation of the non-linear 21 cm 

power spectrum, at each central redshift z c . For the first redshift bin ( z = 

0.25) we assume SKA-Mid Band 2 specifications, while we use SKA-Mid 
Band 1 parameters for the other bin. We refer to Table 1 for more instrumental 
details. 

z c Central redshift 0.25 0.75 

P SN Shot noise 0.72 2.4 [ mK 

2 h −3 Mpc 3 ] 
N Number of data points 83 58 –
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Figure 8. Computed signal-to-noise ratio as a function of k (see equation 20 ). 
We show the signal-to-noise computed for the six redshift bins and for the 
monopole and the quadrupole combined, considering a diagonal covariance 
matrix (dashed lines) or the full non-diagonal one (solid lines). The shaded 
area highlights the new scales acquired extending the mock 21 cm power 
spectrum to non-linear scales. 
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odels (Berti et al. 2022 ), for which we often lack non-linear scale
redictions. In a � CDM scenario and for the low-z bins, we can,
o we ver, push our analysis to larger k and study their constraining
ower. 
For all redshift bins but the first two, the k max cut-off due to the

requency dependent beam (see Section 3.2.4 ) is much stronger than 
he linear-scale cut-off k = 0 . 2 h Mpc −1 . The two lowest redshift
ins ( z = 0.25 and z = 0.75) can instead be extended to larger k if
e relax the linear-scale cut off. We acquire 15 and 67 new points

nd we are able to reach k ∼ 0 . 27 h Mpc −1 and k ∼ 1 h Mpc −1 at
edshifts z = 0.75 and z = 0.25, respectively. In this new k-range
he shot noise is non-negligible and it needs to be considered in the

odelling. 
We create the new mock non-linear data set as 

ˆ P 

NL 
21 ( z, k, μ) = 

˜ B 

2 ( z, k, μ) 
[
P 

NL 
21 ( z, k) + P SN ( z) 

]
, (27) 

here P SN is the shot noise level estimated at different redshift
nterpolating results from hydrodynamical simulations (Villaescusa- 
avarro et al. 2018 ). The non-linear 21 cm power spectrum P 

NL 
21 ( z, k)

s obtained as in equation ( 1 ), but substituting the linear matter
ower spectrum with the non-linear one, computed numerically 
ith CAMB . 7 The expressions for the 21 cm multipoles are changed

ccordingly. 
In Fig. 8 , we show the signal-to-noise for the new non-linear

omographic data set obtained with the model of equation ( 27 ). For
he scales larger than k = 0 . 2 h Mpc −1 , the results for the various
edshifts are analogous to the ones of Fig. 2 . 

With this non-linear data set we perform an analysis similar to the
ne discussed in the previous sections. We study the constraining 
ower of non-linear 21 cm observations alone and combined with 
MB. We first assume perfect knowledge of the quantities �H I and 
 H I linked to baryon physics. Note that, for this ideal case without
ny nuisance parameters, we assume also that the level of the shot
oise is known (see Table 7 ). 
Results are presented in Table 4 and Fig. 7 . 
Even if only the first two bins are concerned, the extension

f the data set to non-linear scales significantly impro v es on the
onstraining power of 21 cm observations. We find 

 0 = 67 . 28 ± 0 . 33 km s −1 Mpc −1 
(68 % , ˆ P NL 

0 + ̂

 P NL 
2 ) (28) 

hus a relative error of σH 0 = 0 . 49 per cent , competitive with the
ne from Planck 2018 data alone (i.e. σH 0 = 0 . 79 per cent ). 
We then test the more realistic case where we vary the nuisance

arameters. Along with the eight nuisances for the redshift evolution 
f T̄ b b HI σ8 ( z) and T̄ b f σ8 ( z) (see Section 4.3 ), we include six
dditional parameters P SN, i , with i = { 1, . . . , 6 } , to model the shot
oise in each redshift bin. 
We get 

 0 = 68 . 3 + 3 . 4 
−4 . 7 km s −1 Mpc −1 

(68 % , ˆ P NL 
0 + ̂

 P NL 
2 + nuis. ( P SN )) . (29) 
MNRAS 521, 3221–3236 (2023) 
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he relative error is σH 0 = 5 . 9 per cent , better than the correspond-
ng result for the linear-scale case discussed in Section 4.3 (i.e.
H 0 = 7 . 4 per cent ). When we open to nuisances with the non-linear
ata set, the presence of the shot noise terms helps us to fix the height
f the power spectrum and we do not loose all the constraining power
n A s and σ 8 . We can thus constrain all the cosmological parameters,
ith the exception of τ . The posteriors for the shot noise parameters
 SN, i and the other nuisances are shown in Fig. B2 and commented

n Appendix B . 
In summary, extending the data set to non-linear has an essential

ole in increasing the constraining power of the 21 cm multipoles
lone. Our results suggest that competitive constraints independent
rom other probes could be obtained with 21 cm intensity mapping
bservations at lower redshifts and non-linear scales. 
When combining the non-linear data set ˆ P 

NL 
0 + 

ˆ P 

NL 
2 + nuisances

ith Planck data, instead, we do not observe substantial changes in
he constraints with respect to the Planck + 

ˆ P 0 + 

ˆ P 2 + nuisances
ase (shown in Fig. 4 ). As discussed in Section 4.2 , the impro v ement
n combining the two probes mainly comes from the interaction
f opposite de generac y direction for some of the cosmological
arameters between the CMB and the 21 cm power spectrum.
hese are unaffected by the extension to non-linear scales and

hus, when combined with the Planck data, this extended mock
ata set does not add much information with respect to the linear
ne. 

 C O N C L U S I O N S  

n this work, we forecast the constraints on the � CDM cosmological
arameters for a neutral hydrogen intensity mapping surv e y with the
KAO telescope, assuming the measurement of the first multipoles of

he redshift-space 21 cm power spectrum. We construct and analyse
his mock data set as an alternative large-scale structure probe alone
nd in combination with Planck CMB data. We model monopole and
uadrupole signal of the 21 cm power spectrum at linear scales as
n Blake ( 2019 ); Cunnington et al. ( 2020 ); Soares et al. ( 2021 ) and
e include in our analysis the full non-diagonal covariance matrix
etween the multipoles. 

We follow the SKAO Red Book (SKA Cosmology SWG 2020 )
roposal and simulate single-dish observations with the SKA-Mid
elescope both in Band 2 (frequency range 0.95–1.75 GHz) and
n Band 1 (frequency range 0.35–1.05 GHz). Assuming a Planck
018 fiducial cosmology, we construct a tomographic data set of
bservations within six different redshift bins. To test the constraining
ower on the cosmological parameters of the constructed data set,
e implement the computation of the likelihood function for the
onopole and the quadrupole, fully integrated with the MCMC

ampler COSMOMC . We include a discussion on the impact of
ur lack of knowledge on the baryonic physics involved in the
omputation of the 21 cm power spectrum, as nuisance parameters
n the analysis. 

We first focus on the 21 cm power spectrum measurements at
inear scales, that are the preferred target of single-dish intensity

apping observations with SKA-Mid, due to the large beam on
he sky. Ho we ver, for the lo west redshifts, the telescope beam is
mall enough to allow to probe also the non-linear scales. We
hus extend our mock data set to non-linearities and we add the
hot noise contribution to check if this could impro v e on the
onstraining power. The results of our analysis can be summarized as
ollows. 

We find that the mock SKA-Mid 21 cm observations have a good
onstraining power on the cosmological parameters. The constraints
NRAS 521, 3221–3236 (2023) 
e obtain are comparable with other probes e.g. with the 21 cm
onopole and quadrupole combined, both H 0 and σ 8 are constrained

t the ∼ 7 per cent level. The 2D contours presents very marked
egeneracies between the parameters, especially in the �c h 2 – H 0 

nd ln (10 10 A s ) – σ 8 planes. 
Adding the mock 21 cm observations to Planck 2018 CMB data,

t is possible to significantly narrow the constraints, with respect to
lanck alone. Although the effect is observable on all the parameters,
e get the most significant impro v ement on �c h 2 and H 0 , for which

he errors are lessen by a fourth. With 21 cm multipoles + Planck we
stimate �c h 2 and H 0 at the 0.25 per cent and 0.16 per cent levels,
espectively, to be compared with 0.99 per cent and 0.79 per cent,
btained with Planck alone. For ln (10 10 A s ) and σ 8 the errors are
educed by more then a f actor tw o. We constrain ln (10 10 A s ) at the
.17 per cent and σ 8 at the 0.26 per cent level, to be compared with
he 0.46 per cent and 0.73 per cent Planck estimates, respectively.
urthermore, we observe that combining the tomographic 21 cm
ata set with CMB alleviates some of the degeneracies between the
arameters, resulting in impro v ed constraints. The strongest effect
s visible in the �c h 2 – H 0 plane. Although 21 cm observations are
ot sensitive to τ , we find that with Planck the impro v ement on the
ther parameters is reflected also on τ , reducing the error by a factor
wo. 

To take into account the lack of knowledge on the brightness
emperature T b (that depends on the total H I density �H I ) and the
 I bias b H I , we repeat our analysis including nuisance parameters.

n particular, we consider the combinations T̄ b b HI σ8 and T̄ b f σ8 ,
here f is the growth factor. We find that, when we open the
arameter space to these nuisances, the constraining power of 21 cm
ultipoles on A s , and consequently on σ 8 , is crucially reduced.
o we ver, the results obtained for �c h 2 and H 0 remain unaffected,

or both the 21 cm data set alone and combined with Planck. This
esult confirms the strength of 21 cm tomographic measurements
nd moti v ates e ven more the current observ ational ef fort in this 
eld. 
When we extend the 21 cm data set to non-linear scales we find a

ightening in the constraints. The most noteworthy result is that the
onstraining power of 21 cm multipoles observations on A s and σ 8 is
emarkably impro v ed, ev en when we open up the parameter space to
he nuisance parameters. This is due to fact the information at lower
cales helps fixing the amplitude of the power spectrum. 

We conclude that 21 cm SKAO observations will provide a
ompetitive cosmological probe, complementary to CMB and, thus,
ivotal for gaining statistical significance on the cosmological pa-
ameters constraints. 

The formalism presented in this work and the mock data set we
onstruct can be straightforwardly adapted to forecast constraints
n the neutrino mass and beyond � CDM models. These extensions
re currently under study. Note that our modelling does not include
ossible residual foregrounds contamination. A discussion on how
he constraints on the cosmological parameters could be biased by
his systematic is left for future work. 
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PPENDIX  A :  A NA LY T I C A L  C O M P U TAT I O N  

F  T H E  M O N O P O L E  A N D  T H E  QUA D RU P O L E  

ollowing other results in literature (e.g. Chung 2019 ) in this sec-
ion we compute the first two coefficient of the Legendre polynomial
xpansion of ˆ P 21 . We start from equation ( 8 ), i.e. 

ˆ 
 � ( z, k) = 

(2 � + 1) 

2 

∫ 1 

−1 
d μL � ( μ) ˆ P 21 ( z, k, μ) (A1) 

hat, substituting equation ( 5 ), becomes 

ˆ 
 � ( z, k) = 

(2 � + 1) 

2 
T̄ 2 b ( z ) P m 

( z , k) 
∫ 1 

−1 
d μL � ( μ) ̃  B 

2 ( z, k, μ) 

· [b HI ( z) + f ( z) μ2 
]2 

= 

(2 � + 1) 

2 
T̄ 2 b P m 

∫ 1 

−1 
d μL � ( μ) e −k 2 R 2 beam (1 −μ2 ) (A2) 

· [b HI + f μ2 
]2 

= 

(2 � + 1) 

2 
T̄ 2 b P m 

e −A 

∫ 1 

−1 
d μL � ( μ) e Aμ2 [

b HI + f μ2 
]2 

, 

here we defined A = k 2 R 

2 
beam 

and dropped the explicit dependen-
ies on z and k for the sake of notation. 

Computing ˆ P 0 

Using L 0 ( μ) = 1 we obtain 

ˆ 
 0 = 

T̄ 2 b P m 

2 
e −A 

∫ 1 

−1 
d μ e Aμ2 (

b 2 HI + 2 b HI f μ
2 + f 2 μ4 

)
. (A3) 

he computation reduces to the following integrals ∫ 1 

−1 
d μe Aμ2 = 

√ 

π erfi( 
√ 

A ) √ 

A 

, 

∫ 1 

−1 
d μe Aμ2 

μ2 = 

e A 

A 

−
√ 

π erfi( 
√ 

A ) 

2 A 

3 / 2 
, 

∫ 1 

−1 
d μe Aμ2 

μ4 = 

3 
√ 

π erfi( 
√ 

A ) 

4 A 

5 / 2 
+ 

e A (2 A − 3) 

2 A 

2 
, (A4) 

here erfi(x) is the imaginary error function. Thus, we get the
ollowing final expression for ˆ P 0 

ˆ 
 0 = 

T̄ 2 b P m 

2 
e −A 

[
b 2 HI 

√ 

π erfi( 
√ 

A ) √ 

A 

+ 2 b HI f 

(
e A 

A 

−
√ 

π erfi( 
√ 

A ) 

2 A 

3 / 2 

)

+ f 2 
(

3 
√ 

π erfi( 
√ 

A ) 

4 A 

5 / 2 
+ 

e A (2 A − 3) 

2 A 

2 

)]
. (A5

omputing ˆ P 2 
NRAS 521, 3221–3236 (2023) 
Using L 2 ( μ) = 

3 μ
2 − − − 1 

2 we obtain 

ˆ 
 2 = 

5 

2 
T̄ 2 b P m 

e −A 

∫ 1 

−1 
d μ

(
3 μ2 

2 
− 1 

2 

)
e Aμ2 

[
b HI + f μ2 

]2 

= 

5 

2 
T̄ 2 b P m 

e −A 

∫ 1 

−1 
d μ

3 μ2 

2 
e Aμ2 

[
b HI + f μ2 

]2 

− 5 

2 
ˆ P 0 . (A6) 

dding to the set of equation ( A4 ) the integral ∫ 1 

−1 
d μ e Aμ2 

μ6 = −15 
√ 

π erfi( 
√ 

A ) 

8 A 

7 / 2 
+ 

e A (15 − 10 A + 4 A 

2 ) 

4 A 

3 
, 

(A7) 
e can compute the final expression 

ˆ 
 2 = 

15 ̄T 2 b P m 

4 
e −A 

[
b 2 HI 

( 

e A 

A 

−
√ 

π erfi( 
√ 

A ) 

2 A 

3 / 2 

) 

+ 2 b HI f 

·
(

3 
√ 

π erfi( 
√ 

A ) 

4 A 

5 / 2 
+ 

e A (2 A − 3) 

2 A 

2 

)

+ f 2 
(

− 15 
√ 

π erfi( 
√ 

A ) 

8 A 

7 / 2 
+ 

e A (15 − 10 A + 4 A 

2 ) 

4 A 

3 

)]

− 5 

2 
ˆ P 0 . (A8) 

PPENDI X  B:  NUI SANCES  

n this section we present and comment the constraints on the
uisance parameters, discussed in Section 4.3 and Section 4.4 . 
Fig. B1 shows the 1D and 2D marginalized posterior distributions

f the nuisance parameters [ ̄T b b HI σ8 ] i and [ ̄T b f σ8 ] i ( i = { a , b , c , d } ),
hich describe the redshift evolution of T̄ b b HI σ8 ( z) and T̄ b f σ8 ( z).
e consider ˆ P 21 multipoles observations alone and combined with
MB. We find that the nuisances are constrained. The 2D contours

how a clear de generac y with the cosmological parameters, which
s eased when we open the parameter space to the shot noise. As
iscussed abo v e, adding the nuisance parameters we loose all the
onstraining power on A s , but we reco v er it when we extend the data
et to non-linear scales. 

Fig. B2 , instead, shows the marginalized posteriors for the shot
oise value P SN, i at each redshift bin i = { 1, . . . , 6 } . We obtain good
onstraints at low redshift ( i = { 1, 2 } ), where we have more data
oints, while in the highest bins ( i = { 3, 4, 5 } ), the shot noise results
nconstrained. P SN, 1 and P SN, 2 present a very mild degeneracy with
he cosmological parameters. The shot noise and the other nuisances
¯
 b b HI σ8 and T̄ b f σ8 are, instead, uncorrelated. 
n 23 February 2024
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Figure B1. Joint constraints (68% and 95% confidence regions) and marginalized posterior distributions on cosmological and nuisance parameters. Here, the 
label ‘Planck 2018’ stands for TT, TE, EE + lowE + lensing, while the label ’ ˆ P 0 + 

ˆ P 2 ’ stands for the baseline tomographic data set for the monopole and the 
quadrupole combined and with multipole covariance taken into account. The label ‘ ̂  P 

NL 
0 + 

ˆ P 

NL 
2 ’ indicates that the full non-linear data set has been used. The 

label ‘nuisances’ indicates that we vary the nuisances parameters along with the cosmological ones. 
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Figure B2. Joint constraints (68% and 95% confidence regions) and marginalized posterior distributions on cosmological parameters and the shot noise at 
different redshifts. Here, the label ‘ ˆ P 

NL 
0 + 

ˆ P 

NL 
2 ’ indicates that the full non-linear data set has been used. The label ‘nuisances’ indicates that we vary the 

nuisances parameters along with the cosmological ones. 
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