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A B S T R A C T

We present a method to obtain a high-significance detection of relativistic effects on cosmological scales.
Measurements of such effects would be instrumental for our understanding of the Universe, as they would
provide a further confirmation of the validity of general relativity as the correct description of the gravitational
interaction, in a regime very far from that of strong gravity, where it has been tested to exquisite accuracy.
Despite its relevance, the detection of relativistic effects has hitherto eluded us, mainly because they are
stronger on the largest cosmic scales, plagued by cosmic variance. Our work focuses on the cosmological
probe of galaxy clustering, describing the excess probability of finding pairs of galaxies at a given separation
due to them being part of the same underlying cosmic large-scale structure. We focus on the two-point
correlation function of the distribution of galaxies in Fourier space — the power spectrum — where relativistic
effects appear as an imaginary contribution to the real power spectrum. By carefully tailoring cuts in
magnitude/luminosity, we are able to obtain two samples (bright and faint) of the same galaxy population,
whose cross-correlation power spectrum allows for a detection of the relativistic contribution. In particular,
we optimise the definition of the samples to maximise the detection significance of the relativistic Doppler
term for both a low-𝑧 Bright Galaxy Sample and a high-𝑧 H𝛼 emission line galaxy population.
. Introduction

Gravity is the force that mostly drives the evolution of the Universe,
ince it is the fundamental interaction that can act on cosmic distances.
herefore, our understanding of its properties is paramount for cosmol-
gy. As such, the current concordance cosmological model is rooted
n the theory of general relativity (GR). Despite GR being supported
y several stunning experimental observations [1–7], it is still poorly
ested in the extremely-weak field regime of cosmological scales. In this
ontext, a measurement of an effect due to GR coming from cosmol-
gy would represent another amazing success of Einsteinian gravity,
hereas departures from GR would be a window into the intriguing

modified gravity’ scenario [8,9].
The large-scale structure of the Universe offers an important test

ench for gravity theories. The properties of galaxy clustering tell us
bout the driving force of cosmological evolution, simply because a
lumpy Universe like the one we live in has to be the result of ages of
ravitational accretion, starting from nearly-homogeneous primordial
tages. In particular, a statistical investigation of the distribution of a
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certain tracer, e.g. a type of galaxy, can display signatures of various
effects that affect the observed position and magnitude of sources in the
sky. We ascribe most of these phenomena to the fact that galaxy surveys
actually map cosmic structures in observed redshift space, rather than
in real space. Also, gravitational lensing is known to affect the observed
clustering of sources, because photons from distant galaxies are scat-
tered by the intervening large-scale structure on their journey towards
us. Other corrections that should be taken into account are so-called
relativistic effects, amongst which the dominant one is a relativistic
Doppler term. The amplitude of such Doppler term is itself affected
by gravitational lensing effects and the evolution of the target galaxy
population.

In this paper, we present a strategy to detect the relativistic Doppler
through the study of galaxy clustering. Following the idea first pro-
posed by Bonvin et al. [10], we divide a galaxy population according
to observed flux density (namely, according to luminosity) in order
to work with two complementary selections of the same sample (see
also [11,12]). The faint and bright samples thus obtained are by
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construction independent and are hence two promising candidates for
a cross-correlation study—i.e. the analysis of the covariance between
the galaxy distributions in the two sub-samples.

Since relativistic effects are subdominant on small scales, which
are also most affected by the non-linear growth of structures, it is
convenient to isolate small scales from large scales. The best way to
do so is by studying clustering in Fourier space, through the Fourier-
space galaxy two-point correlation function, viz. the power spectrum.
Hitherto, a detection of the Doppler term via power spectrum mea-
surement has not been achieved yet, primarily because the very large
scales, where relativistic effects are stronger, are afflicted by a dra-
matically low statistical sampling, which plagues experimental ob-
servations. To overcome this issue, McDonald [13] proposed to use
cross-correlations, due to them featuring a milder scale-dependence of
the Doppler contribution.

A further complication, which we deem an engaging opportunity,
stems from the fact that the relativistic effects are sample-dependent,
therefore different galaxy populations display different contributions
in their power spectra. For this reason, a search for tailored galaxy
samples, like the one we carry out in our work, appears to be useful
in the efforts to provide a detection of relativistic Doppler with the
upcoming observational campaigns. As complementary case studies, we
focus on a low-redshift bright-galaxy sample (BGS) and a high-redshift
emission-line galaxy sample. The former is modelled after the BGS of
the Dark Energy Spectroscopic Instrument [14,15], whilst the latter
mimics the H𝛼 target sample of the Euclid satellite (e.g. [16–20]).

This paper is organised as follows: we introduce the auto- and
ross-power spectrum with relativistic effects in Section 2, outline our
nalysis set up in Section 3 and present our forecasts in Sections 4
nd 5—focusing on a detection significance and an information matrix
pproach, respectively. Then, in Section 6 we argue on the possibility
f generalising our main results for different sky coverages and we
onclude in Section 7.

. Definitions

Up to the leading local contributions, the number density contrast
f galaxy counts reads [13,21–28]

(𝒙) = 𝑏 𝛿(𝒙) − 1


𝜕∥𝑣∥(𝒙) − 𝛼 𝑣∥(𝒙) , (1)

ith 𝑏 the linear bias, 𝛿 the matter density contrast (in comoving-
ynchronous gauge),  the conformal Hubble factor, 𝒗 the peculiar
elocity field, and subscript ‘∥’ denoting the component of a vector
long the line of sight (oriented from the observer towards the source).
bove,

∶= ′

2
+ 2

𝑟
+ 2

(

1 − 1
𝑟

)

−  (2)

is the overall amplitude of the Doppler term, with a prime denot-
ing derivation with respect to conformal time, 𝑟 the comoving radial
distance, and  and  , respectively, the so-called magnification and
evolution bias [22].1 They are defined by

 = −
𝜕 ln 𝑛(𝑧;𝐿 > 𝐿c)

𝜕 ln𝐿c
,  = −

𝜕 ln 𝑛(𝑧;𝐿 > 𝐿c)
𝜕 ln (1 + 𝑧)

, (3)

where 𝑛(𝑧;𝐿 > 𝐿c) is the comoving (volumetric) number density of
ources with a luminosity larger than 𝐿c.

1 A varied notation in the literature calls for some clarification. What we
enote here by 𝛼 is exactly −𝐴D in [29], −𝐴 in [30], and 𝛼GR∕(𝑟) in [24].

All those definitions of the Doppler amplitude are dimensionless, contrarily
to Paul et al. [31] who define it as 𝛼(ours) = 𝛼(theirs)∕. Regarding evolution
bias, we prefer to use the letter  versus other symbols used in the literature
(e.g. 𝑏e, 𝑏evo, 𝑓evo), to reduce clutter when adding further subscripts. Finally,
for magnification bias, other common notations are 𝑠 = 2∕5 or, globally,
𝑏mag = 2 − 5 𝑠 (e.g. [32] see also [29] for a thorough review of evolution and
magnification biases).
2

In Fourier space, Eq. (1) corresponds to

𝛥(𝒌) = (1)(𝒌) 𝛿(𝒌) , (4)

where (1)(𝒌) = (1)
N (𝒌) + (1)

GR(𝒌) is the redshift-space kernel at first
rder in perturbation theory,

(1)
N (𝑘, 𝜇) = 𝑏 + 𝑓 𝜇2 , (5)
(1)
GR(𝑘, 𝜇) = i 

𝑘
𝛼 𝑓 𝜇 , (6)

with 𝜇 being the cosine between the wavevector 𝒌 and the line of sight,
nd 𝑓 ∶= −d ln 𝛿∕d ln(1 + 𝑧) the growth rate. In Eqs. (4)–(6), 𝑓 𝜇2 𝛿(𝒌)
s the well-known linear redshift-space distortion (RSD) term, whereas
 𝛼 𝑓 𝜇 𝛿(𝒌)∕𝑘 represents the relativistic Doppler contribution. Then,
he power spectrum, i.e. the two-point correlation function in Fourier
pace, in the case of the auto-correlation of a tracer 𝑋 (e.g. a certain
alaxy population) is given by

𝑋𝑋 (𝒌) =
|

|

|

(1)
𝑋 (𝒌)||

|

2
𝑃 (𝑘)

=
[

(

𝑏𝑋 + 𝑓 𝜇2)2 +
(
𝑘

𝛼𝑋 𝑓 𝜇
)2]

𝑃 (𝑘) , (7)

ith 𝑃 (𝑘) the (linear) matter power spectrum.2 The relativistic contri-
ution is sub-dominant compared to the standard contributions (usually
eferred to as ‘Newtonian’), and due to its scaling ∝ 𝑘−2, relevant only
n ultra-large scales.

Conversely, the situation is remarkably different for the cross-
orrelation between two different tracers. In general, we can write

𝑋𝑌 (𝒌) = (1)
𝑋 (𝒌)(1)

𝑌 (−𝒌)𝑃 (𝑘) =
{

(

𝑏𝑋 + 𝑓 𝜇2) (

𝑏𝑌 + 𝑓 𝜇2) + 2

𝑘2
𝛼𝑋 𝛼𝑌 𝑓 2 𝜇2

+i 
𝑘

[

𝛼𝑋
(

𝑏𝑌 + 𝑓 𝜇2) − 𝛼𝑌
(

𝑏𝑋 + 𝑓 𝜇2)] 𝑓 𝜇

}

𝑃 (𝑘) , (8)

which refers to the cross-correlation power spectrum if 𝑋 ≠ 𝑌 and
resorts to Eq. (7) if 𝑋 = 𝑌 . McDonald [13] first noted that, thanks
to the not-vanishing imaginary term (which is inversely proportional
to 𝑘), cross-correlation measurements are more promising than auto-
correlations, as they allow the relativistic effects to be detected at
somewhat intermediate scales. It is also interesting to stress that, in
the case of cross-correlations, the real part is symmetric through the
exchange of the subscripts of the tracers, i.e. 𝑋 ↔ 𝑌 , whilst the
imaginary part is anti-symmetric. For this reason, we can always write
𝑃𝑋𝑌 (𝒌) = 𝑃𝑌 𝑋 (−𝒌) = 𝑃 ∗

𝑌 𝑋 (𝒌).
Finally, it is worth noting that our kernel in Eq. (4) only includes the

eading (∕𝑘) local terms and neglects further corrections as well as
ntegrated effects [27,28,33]. Other effects could be taken into account,
specially lensing and the so-called wide-angle effects [31,34–36];
evertheless, our main purpose is to coherently analyse the sample-
ependent quantities and thus we leave those expansions for future
orks.

. Methodology

The relativistic Doppler effect depends mainly on the luminosity
unction of the observed galaxy sample, since the evolution and the
agnification biases are both defined as a logarithmic derivative of the

alaxy number density (see Eq. (3)). Hence, we study the probability
f detecting the relativistic Doppler contribution by observing two
ypes of tracers: H𝛼 emitters, following Maartens et al. [29]; and a
ow-𝑧 bright galaxy sample (BGS), following Hahn et al. [37], DESI

2 The first line in Eq. (7) comes from the fact that (1)
N ≡ Re[(1)]

nd (1)
GR ≡ i Im[(1)]. Hence, (1)(−𝒌) = [(1)(𝒌)]∗, where an asterisk denotes

complex conjugation.
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Collaboration: Aghamousa et al. [38] and DESI Collaboration: Adame
et al. [39].

To perform a cross-correlation analysis, instead of considering all
the galaxies that are observed with a flux density higher than a fixed
flux cut 𝐹c (or, equivalently, with an apparent magnitude lower than
a fixed 𝑚c), we consider two complementary galaxies selections. The
former is composed of all the galaxies with an observed flux 𝐹 ∈
[𝐹c, 𝐹s), where 𝐹s is the value of the flux splitting between the two
samples, and the latter contains all the galaxies with 𝐹 ≥ 𝐹s. (Anal-
ogous for magnitudes.) Thanks to this split, we are able to obtain
two independent sub-samples, faint and bright, of the same galaxy
population (see [10–12]). Respectively labelling the faint, bright, and
total samples by subscripts ‘F’, ‘B’, and ‘T’, we have 𝑛T = 𝑛F + 𝑛B,
where 𝑛𝑋 is the galaxy number density for sample 𝑋. We choose to
show in this Section how we can retrieve the galaxy, magnification,
and evolution biases for the two sub-samples and leave to Appendix all
the details about our way of modelling both the H𝛼 and BGS luminosity
functions.

Now, we have to calculate the different terms of Eqs. (7) and (8) for
the two sub-samples. As it is shown in [40], it is possible to evaluate
the linear galaxy bias, in the case of multiple samples, by means of
a weighted average of the number densities of the individual biases.
Hence, we can write

𝑛T 𝑏T = 𝑛B 𝑏B + 𝑛F 𝑏F . (9)

As we can see, the linear bias for the faint sample is a function of 𝑏T and
B, where in this work 𝑏T and 𝑏B are obtained as described in Appendix.

Concerning the magnification bias  and the evolution bias  , given
y Eq. (3), we notice that the definitions of B and B are the same
e have for the total sample, being the bright sample nothing but a

otal sample with a reduced sensitivity. On the other hand, for the faint
ample, the expressions are somewhat different, due to the presence of
he two cuts. Specifically, in agreement with Bonvin et al. [41], we find

F =
𝑛T

𝑛T − 𝑛B
T −

𝑛B
𝑛T − 𝑛B

B , (10)

F = −
𝜕 ln (𝑛T − 𝑛B)
𝜕 ln (1 + 𝑧)

. (11)

To give the reader an idea of the properties of our samples, Fig. 1
shows magnification, evolution, and clustering biases for different mag-
nitude cuts, for both H𝛼 galaxies and BGS. Note that we model the H𝛼
target according to two slightly different luminosity functions, dubbed
Model 1 and 3 (see Appendix). To avoid too-busy figures, we simply plot
biases for different values of limiting flux/magnitudes. They correspond
to the total or bright cases, depending on whether the limiting flux is
the sample’s flux cut 𝐹c or our chosen splitting flux 𝐹s (or magnitude).
In turn, the faint sub-sample is a function of them.

Throughout this paper, we assume a standard 𝛬CDM [42] cosmol-
ogy in presenting our forecasts.

4. Detection significance

To quantify the presence of a relativistic Doppler signal in the
data, and its significance, against the null hypothesis of no relativistic
contributions, we rely on the 𝛥𝜒2 test statistics. In our analysis, we
use the theoretical predictions of Eqs. (7) and (8) to produce synthetic
data, and the 𝛥𝜒2 therefore corresponds simply to the chi-square for
a model with no Doppler term, against our synthetic data set that
includes Doppler. As it will be apparent in the next section, it is
useful to introduce three dummy, binary variables: 𝐴N, 𝐴K , and 𝐴D.
Respectively, they are responsible for switching off/on: the real-space
clustering signal, proportional to the galaxy bias; linear RSD; and the
Doppler term. Namely, we rewrite Eqs. (5) and (6) as

(1)
N (𝑘, 𝜇) = 𝐴N 𝑏 + 𝐴K 𝑓 𝜇2 ,

(1) (𝑘, 𝜇) = i𝐴  𝛼 𝑓 𝜇 ,
(12)
3

GR D 𝑘
Fig. 1. Linear galaxy bias (cyan curves), magnification bias (magenta curves) and
evolution bias (yellow curves) for all samples considered: BGS in the range 𝑧 ∈
[0.05, 0.55], H𝛼 Model 1 in 𝑧 ∈ [0.7, 2.0], and Model 3 in 𝑧 ∈ [0.9, 1.8]. Different line
styles correspond to different luminosity/magnitude cuts, as per the legend, where
𝐹 = 𝐹∕(10−16 erg cm−2 s−1). Transparency has been added to overlapping curves to the
ole purpose of enhancing readability. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)

hen, for a given redshift bin centred in 𝑧̄𝑖, the chi-square for the power
pectrum reads

2
𝑋𝑌 (𝑧̄𝑖) =

∑

𝑚,𝑛

|

|

|

𝑃 (1,1,1)
𝑋𝑌 (𝑘𝑚, 𝜇𝑛; 𝑧̄𝑖) − 𝑃 (1,1,0)

𝑋𝑌 (𝑘𝑚, 𝜇𝑛; 𝑧̄𝑖)
|

|

|

2

[

𝛥𝑃 (1,1,1)
𝑋𝑌 (𝑘𝑚, 𝜇𝑛; 𝑧̄𝑖)

]2
, (13)

here we assume, as customary, that the covariance matrix is diagonal
n 𝑘-, 𝜇-, and 𝑧-space, having denoted by 𝛥𝑃 2

𝑋𝑌 the variance on a mea-
urement of 𝑃𝑋𝑌 . In the expression above, superscripts in parentheses
efer to the values of (𝐴N, 𝐴K , 𝐴D). The variance is computed for the
otal signal, including Doppler. (Note that this does not affect the results
ignificantly, as Doppler is a sub-dominant term.)

Assuming a Gaussian covariance matrix for the power spectrum
ignal — accurate enough on the large, linear scales we are interested
n — the variance associated with a measurement of 𝑃𝑋𝑌 (𝒌) averaged
n a given redshift bin reads

𝑃 2
𝑋𝑌 (𝒌) =

1
𝑁𝒌

[

𝑃𝑋𝑌 (𝒌)𝑃𝑌 𝑋 (𝒌) + 𝑃𝑋𝑋 (𝒌)𝑃𝑌 𝑌 (𝒌)
]

, (14)

aving defined 𝑃 = 𝑃 +𝑁 , with 𝑁 the noise related to a measurement
f 𝑃 , and 𝑁𝒌 = 2𝜋 𝑘2 𝛥𝑘𝛥𝜇∕𝑘3f . The latter quantity represents the

number of independent modes available in the observed volume 𝑉 ,
having explicited the fundamental frequency 𝑘f = 2𝜋 𝑉 −1∕3. Lastly, 𝛥𝑘
and 𝛥𝜇 denote the sizes of the (𝑘, 𝜇)-bins, whereas 𝑉 depends on the

redshift width, 𝛥𝑧.
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evaluated against a null hypothesis of no Doppler contribution in the galaxy power spectrum. Colour code: blue, orange, and green respectively for auto-correlation power spectrum
of total, faint, and bright samples; red is for the faint-bright cross-correlation power spectrum.
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In the case of the galaxy power spectrum, the noise power spectrum
is a scale-independent, shot-noise term due to galaxies discretely sam-
pling the underlying continuous matter distribution. Specifically, we
have 𝑁𝑋𝑌 (𝒌; 𝑧̄𝑖) ≡ 𝑁𝑋𝑌 (𝑧̄𝑖) = 𝛿𝑋𝑌

(K) ∕𝑛̄𝑋 (𝑧̄𝑖), with 𝛿(K) the Kronecker delta
ymbol and 𝑛̄𝑋 the mean (volumetric) galaxy number density. Finally,
t is worth noting that the variance of the faint-bright cross-correlation
ower spectrum, 𝑃FB, is real, despite the signal itself being complex.
his is due to the fact that 𝑃𝑋𝑌 = 𝑃 ∗

𝑌 𝑋 for any pair of tracers.
In our analysis, we fix the largest wavenumber, 𝑘max, to 𝑘nl =

0.2ℎMpc−1, viz. the scale at which non-linear effects take over the
linear growth of structure at 𝑧 = 0. This is a conservative approach,
since 𝑘nl is a redshift-dependent quantity, monotonically increasing
with redshift; and, furthermore, there are available recipes to push at
least to mildly non-linear scales. But our choice is motivated by the
Doppler signal scaling with 𝑘−1 or 𝑘−2, meaning that large wavenum-
bers will in practice not contribute to the detection of the relativistic
signal. On the other hand, the smallest wavenumber, 𝑘min, is a critical
quantity. We choose to fix it to the fundamental frequency, 𝑘f . By
definition, this quantity is survey-dependent, being determined by the
redshift range and binning, and by the observed fraction of the sky,
𝑓sky. For the sake of generality, we shall for now assume to be observing
the entire sky, providing later on the reader with means to rescale our
findings to any 𝑓sky.

For the definition of the redshift ranges we report the details in
Appendix. Since we are interested in the largest scales, we choose to
take slightly thicker redshift bins than what used in most galaxy survey
forecasts, with 𝛥𝑧 ≈ 0.2—but we shall also discuss different binning
choices. For H𝛼 emitters, our choice implies a total of 7 𝑧-bins for Model
1 and 5 𝑧-bins for Model 3. On the other hand, for the BGS, we have
3 redshift bins. Finally, we adopt 30 log-spaced 𝑘-bins in the range
𝑘 ∈ [𝑘min, 𝑘max] and 10 𝜇-bins in the range 𝜇 ∈ [−1, 1]. We have checked
that the actual number of 𝑘- and 𝜇-bins does not significantly affect the
final results.

Illustratively, in the right-hand panel of Fig. 2 we display the
detection significance for the relativistic Doppler term for the Model
1 H𝛼 luminosity function. We consider two galaxy populations with
𝐹c = 2.0 × 10−16 erg cm−2 s−1 and splitting flux between the two samples
𝐹s = 3.2 × 10−16 erg cm−2 s−1. The value of 𝐹s is chosen so that the faint
and bright samples are almost equally dense. Analogously, we show in
the left-hand panel the differential statistics significance for the BGS
with 𝑚c = 20.175 and 𝑚s = 19.5.

First of all, by comparing separately the orange (faint sample) and
the green (bright sample) histograms to the blue (total sample) one,
it is clear that a larger statistics — that is, the total sample, with
the largest number density — does not imply a better measurement
of the Doppler term in either tracer, be it H𝛼 emission-line galaxies
4

or bright galaxies. This happens because on the largest scales, where
the Doppler contribution becomes non-negligible, shot-noise is not an
issue. On the other hand, the larger  and  (in absolute value),
the larger the amplitude of the Doppler term 𝛼 (see Eq. (2)), and for
both sub-samples the improvement of 𝛼 roughly compensates for the
sparsity of the samples. However, the average 𝛥𝜒2 per redshift bin
remains at most of order 0.01∕0.001 for H𝛼/BGS, making any detection
effectively unrealistic. Conversely, the use of the cross-correlation turns
the situation around, thanks to the appearance of the ∝ 𝑘−1 term
in Eq. (8). Indeed, per-bin 𝛥𝜒2 values are now well above unity for
almost all the redshifts considered, with an average improvement of
a factor 100–1000 over the auto-correlation power spectrum of the
otal sample. This demonstrates the constraining power of the cross-
ower spectrum and the luminosity cut technique. This is in agreement
ith [41], who looked at the dipole of the galaxy two-point correlation

unction in real space as a proxy of the Doppler term (see also [43–45],
or the cross-correlation dipole, mainly at small-scales).

Now, focusing on the most promising observable — the cross-
orrelation power spectrum — Figs. 3 and 4 show the total 𝛥𝜒2 asso-

ciated with the detection of the relativistic Doppler effect, cumulative
over all redshift bins, as a function of the splitting flux/magnitude, 𝐹s
or 𝑚s, for two values of survey sensitivity, 𝐹c or 𝑚c. In particular, the
former refers to a Euclid/Roman-like H𝛼 emission-line galaxy survey,
whereas the latter to a DESI-like bright galaxy survey.

Let us start from Fig. 3, where both Model 1 (solid curves) and Model
3 (dashed curves) are presented. The reference 𝛥𝑧 ≈ 0.2 is shown, but
we have also checked that varying the redshift-bin width within the
range 𝛥𝑧 ≈ 0.05 to 0.3 does not lead to significant differences in the
results. In the reference scenario, for the higher detector sensitivity
case, i.e. with the lower 𝐹c (denoted with a slightly brighter red
colour), the cumulative

√

𝛥𝜒2 for Model 1 reaches readings above the
3 𝜎 detection threshold when 𝐹s ≥ 3.5× 10−16 erg cm−2 s−1. On the other
and, results obtained with 𝐹c = 3.0 × 10−16 erg cm−2 s−1 (darker red

curves and markers) show a similar behaviour, reaching for Model 1
1 𝜎 confidence level if 𝐹s ≥ 3.1×10−16 erg cm−2 s−1. Conversely, Model 3
curves do not look that promising, as they do not allow for a detection
of the relativistic contribution, even though they are much higher
than those for the corresponding auto-correlation measurements (not
shown).

Despite the fact that difference between the two models of the lumi-
nosity function is partly driven by the number densities, by comparing
results from Model 1 at 𝐹c = 3.0 × 10−16 erg cm−2 s−1 and Model 3 at
𝐹c = 2.0 × 10−16 erg cm−2 s−1, it is remarkably clear that 𝛼 is the major
responsible for this outcome. Indeed, we have checked that the impact
of the variation of the available 𝑧-range is minimal, with the curve

reduced only by a factor of about 10% if we run the analysis on Model
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Fig. 3. Cumulative statistical significance of the detection of the relativistic Doppler
effect associated with a faint-bright cross-correlation power spectrum measurement as
a function of 𝐹s, for a H𝛼 galaxy population. Solid curve is for Model 1 and dashed
curve for Model 3, whilst dotted lines mark 1𝜎, 3𝜎, and 5𝜎 significance levels. Results
for two flux cuts are depicted, i.e. 𝐹c = 2.0 (red) and 𝐹c = 3.0 (dark red), with
̃ = 𝐹∕(10−16 erg cm−2 s−1). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

1 using the redshift range of Model 3. Also, by comparing the results
of Model 1 at the worse 𝐹c with those of Model 3 with the optimistic
flux cut, we see that the difference between the two outcomes is still
clearly noticeable, even though the number densities (and thus the
shot noises) are similar. These findings remind us of the importance
of modelling the relativistic sample-dependent biases properly. Since,
when we deal with relativistic corrections, different galaxy populations
display different contributions in their power spectra, we have to face
the issue of describing their luminosity function features correctly if we
aim to study the probability of detecting the relativistic Doppler, as was
clearly stated in [29,30].

Fig. 4 depicts the cumulative detection significance for the DESI-
like BGS, as a function of the splitting 𝑟-magnitude, for two threshold
values 𝑚c = 20.175 and 𝑚c = 19.5—corresponding respectively to the so-
alled BGS bright and BGS faint [37]. In this case, we choose to draw
he 𝛥𝑧 ≈ 0.5 (upper edges of the shaded areas) results—that is, the
𝑧-bin result—on top of the reference 𝛥𝑧 ≈ 0.2 curves (lower lines).
s expected, the larger the redshift bins, the higher the 𝛥𝜒2, due to

he increase in the volume, which is particularly relevant at very low
edshift. Interestingly, we reach a 3 𝜎 detection in the reference scenario
or 𝑚s ≤ 19.1(18.3) with 𝑚c ≤ 20.175(19.5) whereas we are able to obtain

detection well above 5 𝜎 confidence level if we consider only one
edshift bin—namely, we find readings 𝛥𝜒2 ≥ 25 where 𝑚s ≤ 18.7(18.2)
nd 𝑚c ≤ 20.175(19.5). We conclude, by comparing Figs. 3 and 4, that
GS turns out to be more likely to allow us to observe the relativistic
oppler effect in the future than H𝛼 sample.

This finding is somehow expected, since there are claims in the
iterature of the Doppler being dominant at low redshift and overtaken
y the other corrections as 𝑧 increases. However, we argue that in our
nalysis this outcome is mainly driven by sample specifications, i.e. the
ifferences in the Doppler amplitude due to  and  , rather than follow
rom a way general perspective (see e.g. [46] for an example of high-𝑧
yman-break galaxy populations). Furthermore, the signal we refer to
s relativistic Doppler is mainly given by the imaginary term within
he cross-correlation, which in fact results in a dipole, hence it is not
irectly comparable with monopole power spectra shown, for instance,
n [28].
5

h

Fig. 4. Same as Fig. 3, but in the case of BGS. Shaded areas around each curve bracket
the dependence upon 𝛥𝑧, from ∼ 0.17 (bottom edge) to ∼ 0.5 (top edge). Results are
lotted as a function of 𝑟-magnitude, for two magnitude limits, namely, 𝑚c = 20.175
light-red) and 𝑚c = 19.5 (dark red). (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)

. Parameter constraints

We now move to estimate the error associated with a measurement
f each of the contributions to the power spectrum, namely the three
arameters we introduced before: the amplitude of the Newtonian
erm, 𝐴N; that of the Kaiser RSD contribution, 𝐴K ; and that of the
oppler effect, 𝐴D. Going back to Eq. (4), we include these dummy
ariables as amplitude parameters (see Eq. (12)), whose fiducial values
re fixed to 𝐴N = 𝐴K = 𝐴D = 1. Then, the uncertainty on a measure-
ent of them can be evaluated through an information matrix analysis.

n the 𝑖th redshift bin, the information matrix for the parameter set
= {𝐴N, 𝐴K , 𝐴D} reads

𝛼𝛽 (𝑧̄𝑖) =
∑

𝑚,𝑛

[

𝛥𝑃 (1,1,1)
𝑋𝑌 (𝑘𝑚, 𝜇𝑛; 𝑧̄𝑖)

]−2

×
[

𝜕𝑃𝑋𝑌 (𝑘𝑚, 𝜇𝑛; 𝑧̄𝑖)
𝜕𝜃(𝛼

𝜕𝑃 ∗
𝑋𝑌 (𝑘𝑚, 𝜇𝑛; 𝑧̄𝑖)

𝜕𝜃𝛽)

]

𝜽=1
, (15)

where parentheses around indexes denote symmetrisation, the variance
is again given by Eq. (14), and the sum runs over all the configurations
(𝑘𝑚, 𝜇𝑛). Hence, the total Fisher matrix, cumulative over all redshift
bins, is simply 𝖨 =

∑

𝑖 𝖨(𝑧̄𝑖). Lastly, the cumulative marginal errors on
{𝜃𝛼} are given by 𝜎𝜃𝛼 =

√

(𝖨−1)𝛼𝛼 . It is useful to stress, at this point, that
the definition of the information matrix Eq. (15) is consistent for both
auto- and cross-correlations. Concerning auto-correlations (𝑋 = 𝑌 ), the
ymmetrisation is in fact trivial, just because the power spectrum is
eal. On the other hand, symmetrisation plays a crucial role in the
ase of cross-correlation 𝑋 ≠ 𝑌 . Being 𝑃𝑋𝑌 complex, it ensures the
nformation matrix to be real.

Since the differential detection significance analysis points out the
upremacy of the faint-bright cross-correlation, in this section we focus
n this case alone, leaving aside auto-correlation forecasts. Analogously
o Figs. 3 and 4, Fig. 5 shows, for both galaxy populations, the cumu-
ative marginal error on the estimation of 𝐴D, 𝜎𝐴D

, as a function of
he adopted flux/magnitude split. In the top panel, which refers to H𝛼

emission-line galaxies, solid and dashed lines are for Model 1 and Model
3, respectively. The lower panel shows 𝜎𝐴D

(𝑚s) for the BGS, for either a
ide or a narrow 𝑧-bins scenario, as before. Since the fiducial value is

et to 𝐴D = 1, we at least need 𝜎𝐴D
< 1 in order to claim a detection of

he relativistic contribution. For Model 1 this condition is almost always
erified, whereas for Model 3 it is never. On the other hand, BGS always
as a marginal error lower than 𝜎 = 1.
𝐴D
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Fig. 5. Cumulative marginal error on a measurement of the Doppler amplitude 𝜎𝐴D
as

function of the adopted split (as in Figs. 3 and 4 we use a flux-based description
or H𝛼 emiterrs and a 𝑟-band magnitude-based framework for BGS). Top panel: H𝛼
alaxies, Model 1 and 3 are shown with solid and dashed lines, respectively. Bottom
anel: DESI-like BGS results, curves for 𝛥𝑧 ∼ 0.17 and 𝛥𝑧 ∼ 0.5 are drawn. Note that
imits of shaded areas are now reversed, with 𝛥𝑧 ≃ 0.17(0.5) being the top(bottom)
dge.

It is worth noting that these findings on the behaviour of the galaxy
amples further confirm the cumulative detection significance results.
t may be noticed that the constrain coming from the thick-bin scenario
ecomes slightly worse than that in the case 𝛥𝑧 ≃ 0.17 when 𝑚c = 19.5
nd 𝑚s = 19.4. Despite this is a minimal difference and does not modify
ur general discussion, we point out that such behaviour might arise
ut of our assumption of evaluating all the quantities at 𝑧̄𝑖, that is, the
entral value of the 𝑧-bins, so that we might have lost some accuracy
n the study of the single bin case.

Furthermore, we find a clear relation between the two statistical
ools we adopt: because of the 𝐴D definition, we have

√

𝛥𝜒2 ∼ 𝜎−1𝐴D
.

Indeed, 𝐴D is almost uncorrelated to either 𝐴N and 𝐴K , due to its
presence in the imaginary part of the spectrum [13]. To estimate the
correlation between two parameters we can use the elements of the
information matrix, defining the correlation coefficient (no implicit
summation)

𝜌𝛼𝛽 =

(

𝖨−1
)

𝛼𝛽
√

(

𝖨−1
)

𝛼𝛼
(

𝖨−1
)

𝛽𝛽

, (16)

with 𝜃𝛼 and 𝜃𝛽 the two parameters under consideration. If we compute
the correlation coefficients between 𝐴 and either 𝐴 or 𝐴 in the
6

D N K l
Fig. 6. Cumulative marginal error on the estimation of 𝐴N and 𝐴K as a function
of the splitting flux or 𝑟-magnitude, for both H𝛼 emitters (top panel) and DESI-like
BGS (bottom panel), for the faint-bright cross-correlation. In each panel, the upper
part concerns the Newtonian amplitude, while the lower one is for the Kaiser RSD
term. Above, solid and dashed lines are for Model 1 and Model 3, respectively; below,
shaded areas bracket 0.17 ≲ 𝛥𝑧 ≲ 0.5. Light-red curves refer to the optimistic cut
(𝐹c = 2.0 × 10−16 erg cm−2 s−1 or 𝑚c = 20.175), whilst dark-red ones are for 𝐹c =
3.0 × 10−16 erg cm−2 s−1 or 𝑚c = 19.5. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

case of the faint-bright correlation we always find values < 21%,
which clearly mean that 𝐴D is basically uncorrelated with either two
of the other parameters, which are instead quite correlated between
themselves.

Fig. 6 shows the results of the information matrix analysis for 𝜎𝐴N
and 𝜎𝐴K

. As before, forecasts are presented for both an optimistic
luminosity threshold—i.e. 𝐹c = 2.0 × 10−16 erg cm−2 s−1 or 𝑚c =
20.175, light-red curves—and a pessimistic one—that is, 𝐹c = 3.0 ×
10−16 erg cm−2 s−1 or 𝑚c = 19.5, dark-red lines. First of all, we note
that, being the Newtonian and the Kaiser contributions dominant, the
constraining power on 𝐴N and 𝐴K of the cross-correlation power spec-
trum is much stronger than that for the relativistic contribution. In the
case of H𝛼 galaxies, almost all of the probed splitting fluxes — namely
𝐹s ∈ [2.0, 6.0] × 10−16 erg cm−2 s−1 — correspond to tiny marginalised
errors, such that 𝜎𝐴N

< 1.0 × 10−3 and 𝜎𝐴K
< 4.0 × 10−3. Analogously,

e have 𝜎𝐴N
< 2.0 × 10−3 and 𝜎𝐴K

< 1.5 × 10−2 when 𝑚s ∈ [18.0, 20.1]
or DESI BGS. In addition, as expected on the basis of the improvement
n the galaxy survey sensitivity, marginalised errors associated with a
easurement of the dominant terms with the optimistic flux cuts are

etter than those with the more conservative limits. Such a behaviour
ooks reasonable because of the higher statistics achieved by a survey
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with a lower(higher) flux(magnitude) limit. Even the shape of the
curves 𝜎𝐴N

and 𝜎𝐴K
as a function of the flux/magnitude split can

be easily explained: the presence of a minimum in all the studied
configurations means that there exists an optimal value of the splitting
flux that can maximise the detection probability of the dominant terms.

Also, we discuss the impact of diverse redshift bins. We notice that
whichever width 𝛥𝑧 ∈ [0.05, 0.3] almost leads to the same information

atrix results for H𝛼 emitters. Conversely, because of the greater rela-
ive gain in the volume at low-𝑧, we find an appreciable improvement
n the marginal errors in moving from a narrow (𝛥𝑧 ∼ 0.17) to a wide
𝛥𝑧 = 0.5) 𝑧-bins scenario, as pointed out in Section 4. However, in each
onsidered case the variations due to statistical choices appear to be far
maller than the differences due to the physical observable — that is,
uto- versus cross-correlation — or to the choice of the galaxy samples.
his test conveys an important message: it suggests that the specific
tatistical framework adopted in our analysis does not significantly
ffect the results. In such a context, the luminosity cut technique looks
romising also because it proves to be solid, in the sense that different
ata-analysis approaches lead to essentially the same results.

. Partial sky coverage

Let us remind the reader that the results hitherto presented refer
o the idealistic case of full-sky observations. In truth, this is never the
ase, either because a ground-based telescope will have access only to a
ortion of the celestial sphere, or because even a space-born experiment
ill not be able to pierce through our own Galaxy, whose stars will
lock the line of sight and whose diffuse gas will absorb incoming
adiation. Nonetheless, for the wide sky coverages usually envisioned
or cosmological analyses, the effect of partial sky can be folded in by
escaling the volume 𝑉 in Eq. (14) by the fraction of observed sky, 𝑓sky.

For most applications, the effect of an 𝑓sky ≠ 1 on a measurement
of 𝑃𝑋𝑌 can be thought of as a simple inflation of the error bars by a
factor 𝑓−1∕2

sky . However, in the present case in which we seek to detect
an effect relevant on the largest scales, we should also in principle
account for the fact that a smaller volume directly translates into a
larger fundamental frequency, 𝑘f ; and that the fundamental frequency
is the smallest wavenumber observable. Hence, any 𝑓sky ≠ 1 would
call for a rerun of the analysis, with a larger 𝑘min (which, we remind
the reader, we fix equal to 𝑘f ) and, possibly, a different 𝑘-binning.
However, we find that this effect is relevant only when looking at the
differential, per-bin 𝛥𝜒2 and 𝜎𝐴D

, whilst it effectively cancels out in
the cumulative ones. More quantitatively, the simple rescaling of the
variance of Eq. (14) by 𝑓sky works remarkably well, with discrepancies
< 15% even for sky coverages as small as 𝑓sky ≃ 0.05 (except for the any-
ways non-detectable case of Model 3 with 𝐹c = 3.0 × 10−16 erg cm−2 s−1,

here we find discrepancies up to ∼ 40%). Thanks to the validity of
uch scaling relation, our main results of Figs. 3–5 can be easily related
o any 𝑓sky.

. Discussion and conclusions

A measurement of a peculiar GR effect on cosmological scales would
e an astonishing confirmation of the validity of Einstein’s theory in a
egime where it is poorly probed experimentally. With the upcoming
alaxy surveys, this wish looks set to become a reality, thanks to the
nprecedented cosmic volumes probed, which will allow us to sample
ven the largest scales in the structure of the Universe (see e.g. [27]).
n this work, we have presented forecasts for the detection of the
elativistic Doppler term with galaxy power spectrum measurements,
or both auto- and cross-correlations of various galaxy samples. Since
he amplitude of such Doppler term differs according to the target
alaxy population, we set to the task of optimising sample selection,
or the search for a relativistic signature. In particular, we have focused
n two complementary tracers of the cosmic large-scale structure: a
7

ample of bright galaxies at low redshift and an higher-redshift sample a
f emission-line galaxies. This is done in the spirit of the oncoming data
rom DESI and the Euclid satellite.

The contribution from the dominant relativistic Doppler term, is to
be relevant only on very large scales in the case of auto-correlation
measurements, but its presence in the imaginary part of the cross-power
spectrum appears to be measurable even at somewhat intermediate
scales [13]. Thus, the comparison between auto- and cross-correlation
measurements points out the supremacy of the latter, mostly due to
the milder scale dependence of the Doppler term. When the cross-
correlation is performed over two non-overlapping sub-samples of faint
and bright galaxies, the differential Doppler detection significance is
around two orders of magnitude larger over the entire redshift range
than that found in the auto-correlation cases.

Considering the whole redshift range, i.e. the cumulative cross-
correlation detection significance, with a DESI-like BGS we can obtain
a detection of the relativistic Doppler effect with a confidence level
well above 3 𝜎, by carefully selecting 𝑚s, namely the value of the 𝑟-

agnitude that splits the two sub-samples. However, this is not the
ase for H𝛼 emitters, where we have tested two luminosity function
odels but only one of them seems to allow for a detection. As a

onsequence, we state that in the present case, a bright galaxy survey
like DESI BGS) is a better target to look at. This finding does not come
s unexpected, since relativistic Doppler should be more relevant at low
edshift. Quantitatively, the 3 𝜎 level is reached in a DESI-like BGS in
he case of a maximum 𝑟-band magnitude of 𝑚c = 20.175(19.5) whether
s < 19.4–19.0(18.7–18.3), depending on the redshift bin width. On the
𝛼 side, only the Model 1 curve with 𝐹c = 2.0 × 10−16 erg cm−2 s−1

eaches the 3 𝜎 detection, when 𝐹s > 3.4 × 10−16 erg cm−2 s−1.
Results for the detection significance are confirmed by the estima-

ion of the marginal error via the information matrix formalism. The
arginal error associated with a measurement of the Doppler contri-

ution has a minimum at about 𝐹s ∼ 𝐹c+2.5×10−16 erg cm−2 s−1 for H𝛼
odel 1 and 𝐹s ∼ 𝐹c+0.5×10−16 erg cm−2 s−1 for Model 3. The presence

f such a minimum is meaningful, since it tells us we can somehow
ine-tune the faint-bright sub-division to maximise the probability of
etecting the GR effect. Conversely, the Doppler cumulative marginal
rror for a DESI-like BGS improves as we depopulate the bright sample,
lthough we would have expected to find a minimum. From a less
heoretical point of view, we cannot assume the marginal error to
e decreasing monotonically as we push up (in luminosity) the split
etween the two sub-samples, because, at a certain point, the bright
ample should become too sparsely populated to extract information. It
s therefore worth noting that the choice of the optimal splitting flux (or
agnitude) has to take into account at least also the behaviour of the
arginal errors on the dominant contributions—namely, the clustering

Newtonian) and RSD (Kaiser) terms. Indeed, these in principle might
how a different position of the minimum, as is the case, hence we
annot forget about them, even in a purely theoretical study.

In addition, a check on the impact of the statistical framework used
that is the width of the bins in 𝑧, 𝜇, 𝑘 — tells us that all the

nalyses presented are robust, in the sense that the results do not vary
ignificantly if we vary the analysis set-up.

To conclude, the luminosity cut technique proposed by Bonvin et al.
10] appears to be very promising for power spectrum analyses, not
nly because it makes cross-correlation measurements possible using
ust one data set, but also because for specific faint-bright divisions, it
an somehow boost the relativistic contribution. Note that the results
resented here come, for the first time, from a fully self-consistent
reatment of all the relevant observational quantities, such as the galaxy
ias and the magnification and evolution biases. We have been able to
chieve this thanks to the implementation of analytical scaling relations
alibrated on real data (see also [47]).

Interesting extensions of this work are going to include the full
elativistic correction to the galaxy number density in a power spectrum

nalysis in harmonic space [48], with the additional purpose of better
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investigating whether the Doppler contribution is effectively the domi-
nant correction. Furthermore, a theoretical study will have to assess the
non-trivial interplay between wide-angle and relativistic effects when
using the luminosity cut technique. Future studies will also have to
assess the reliability of the strategy using simulated data. For instance,
it will be important to assess how much some aspects are due to the
modelling adopted. Moreover, flux density measurements are subject
to several technical details, like the angular size and the magnitude of
the target galaxy, the exposure time, etc. For this reason, some issues
might occur in the definition of the sub-samples, and thus caution might
be needed in the choice of the splitting flux and in the estimation of the
galaxy brightness uncertainty.
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ppendix. Modelling galaxy populations

.1. H𝛼 Survey

To derive all the key quantities in a self-consistent way for H𝛼
alaxy populations, we start from the galaxy luminosity function. In this
ork, we use models that present a factorised form for the luminosity

unction,

(𝑧, 𝐿) = 𝜙∗(𝑧) 𝑔[𝑦(𝑧, 𝐿)] , (A.1)

where 𝜙∗ is a characteristic number density and 𝑦(𝑧, 𝐿) = 𝐿∕𝐿∗(𝑧) is
he luminosity 𝐿 normalised with respect to a characteristic luminos-
ty 𝐿∗(𝑧). We adopt two models for the luminosity function: one of
chechter type and another coming from fits to observational data.
n line with the nomenclature of Pozzetti et al. [49], we dub them
odel 1 and Model 3, respectively. For the definition of the redshift

anges for Model 1 and Model 3, we follow Maartens et al. [29], namely
8

∈ [0.7, 2.0] for the former and 𝑧 ∈ [0.9, 1.8] for the latter.
Fig. A.7. Galaxy number density for a total/bright galaxy population (i.e. without
the upper cut) in the case of the Model 1 (solid lines) and Model 3 (dashed lines)
luminosity function models. Different colours represent different luminosity lower
cuts, that is, black for 𝐹c = 2.0, blue for 𝐹c = 3.0 and green for 𝐹c = 4.0—where
𝐹 = 𝐹∕(10−16 erg cm−2 s−1). As expected, the larger 𝐹c, the smaller 𝑛(𝑧;𝐹 > 𝐹c).

Operatively, we model the luminosity functions following the
recipes outlined in [29]. However, being the luminosity 𝐿 an intrinsic
property of galaxies, we cannot measure it directly. Experimental
observations usually deal with flux density or apparent magnitude,
and it is hence useful to move from a luminosity-based to a flux-
based description. To this purpose, we take into account the observed
density flux 𝐹 as related to 𝐿 by the well-known inverse-square law
𝐹 = 𝐿∕(4𝜋 𝑑2L), where 𝑑L(𝑧) is the luminosity distance to redshift 𝑧.
or this reason, we use 𝐹 , rather than 𝐿, to define galaxy samples.
herefore, in our description we have a total sample—defined as the
et of all the sources observed with a flux density 𝐹 ≥ 𝐹c—and the faint
nd bright subsamples—where 𝐹 ∈ [𝐹c, 𝐹s) and 𝐹 ≥ 𝐹s, respectively.

Regarding the linear clustering bias, we adopt the phenomenolog-
ical formula presented in [50], which gives us the cumulative bias
for H𝛼 galaxies for both the total and the bright populations. (Recall
that we can express the 𝑏F as a function of the other biases thanks
to Eq. (9).) Then, we follow the procedure outlined in [29] to obtain the
magnification end evolution biases. As described above, we notice that
the definitions of B and B are derived exactly as for the total sample
by simply substituting 𝐹c with 𝐹s. However, for the faint sample, the
expressions are somewhat different, due to the presence of the upper
cut 𝐹s. Specifically, we write the following original relations for the
faint sample,

F =
𝑦c 𝑔(𝑦s) − 𝑦s 𝑔(𝑦c)

∫

𝑦s

𝑦c
𝑔(𝑦) d𝑦

, (A.2)

F = −
d ln𝜙∗(𝑧)
d ln (1 + 𝑧)

−
d ln𝐿∗(𝑧)
d ln (1 + 𝑧)

F . (A.3)

Fig. A.7 depicts the number density of sources for both Model 1
and Model 3, with three minimum fluxes. All curves refer to a bright
population — i.e. they do not undergo any upper cut in luminosity —
as the presence of the faint sub-sample would have been trivial, being
𝑛F the difference between 𝑛T and 𝑛B. We note that Model 1 is more
optimistic in estimating the number density with respect to Model 3,
for this reason [29] use 𝐹c = 3.0 × 10−16 erg cm−2 s−1 as a reference for
Model 1 while they fix 𝐹c = 2.0 × 10−16 erg cm−2 s−1 in Model 3 [20].

A.2. Bright galaxy survey

The DESI BGS survey detects 𝑟-band magnitude bright sources up

to 𝑧 ∼ 0.5. Since we have to know how to describe the number counts
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Fig. A.8. Galaxy number density 𝑛(𝑧;𝑚 < 𝑚c) for a DESI-like Bright Galaxy Sample.
Solid lines refer to the number density obtained with our HOD-based approach — those
used for the analysis — and dashed lines represent the analytical Schechter luminosity
function, for comparison. As in Fig. A.7, there is no upper luminosity cut — namely,
no minimum apparent 𝑟-magnitude — and the colour code is: black for 𝑚c = 20, blue
or 𝑚c = 19.5 and green for 𝑚c = 19.

f sources and the linear galaxy bias depending on both redshift and
agnitude limit, we coherently recover all those quantities thanks to

he results shown in [51]. That paper provides us with a Halo Occupa-
ion Distribution (HOD) fit for BGS sample that takes into account the
absolute) magnitude of the sources. Starting from their main results,
e are thus able to get the number density — whose logarithmic
erivatives give us T,B and T,B — as well as 𝑏T,B. In doing so, we
witch to a 𝑟-band apparent magnitude-based formalism and consider
K correction, accounting for the redshifting effect on the band, which
e model according to Jelic-Cizmek et al. [52]. We then redefine the
agnification bias as

T = 5
2
𝜕 log10 𝑛(𝑧;𝑚 < 𝑚c)

𝜕𝑚c
, (A.4)

being 𝑚 the 𝑟-band magnitude and 𝑚c the critical magnitude, in this
description. In our calculations, we parametrise the HOD smooth step
function describing the occupation number of central galaxies as an
error function [53] and do not use Eq. (2) of Smith et al. [51].3

Again, following Maartens et al. [29] we estimate the magnification
and evolution bias for the total and the bright samples and then
compute the values for the faint selection with Eqs. (10) and (11).

Moreover, before computing any galaxy power spectrum, we assess
the consistency of our HOD-driven approach by comparing its outcomes
with a simpler analytical Schechter luminosity function model. We plot
in Fig. A.8 our 𝑛g — obtained following Smith et al. [51], whose work
relies on simulated data — as well as the number density given by the
luminosity function in [29]. The analytical model underestimates the
number of objects at low redshift and, vice-versa, overestimates it at
higher 𝑧 values. However, the agreement between the two approaches
is enough to cross-validate the analytical description. We also point out
that magnification and evolution bias plotted in Fig. 1 are reasonably
in line with Fig. 10 of Maartens et al. [29].
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