Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   DSpace Home
    • Faculty of Natural Sciences
    • South African National Bioinformatics Institute (SANBI)
    • Research Articles (SANBI)
    • View Item
    •   DSpace Home
    • Faculty of Natural Sciences
    • South African National Bioinformatics Institute (SANBI)
    • Research Articles (SANBI)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Gonad differentiation in zebrafish is regulated by the canonical Wnt signalling pathway

    Thumbnail
    View/Open
    sreenivasan_gonad_biology_2014.pdf (431.2Kb)
    Date
    2014
    Author
    Sreenivasan, Rajini
    Jiang, Junhai
    Wang, Xingang
    Bartfai, Richard
    Kwan, Hsiao, Y.
    Christoffels, Alan
    Orban, Laszlo
    Metadata
    Show full item record
    Abstract
    Zebrafish males undergo a ‘‘juvenile ovary-to-testis’’ gonadal transformation process. Several genes, including nuclear receptor subfamily 5, group A (nr5a) and anti-Mu¨ llerian hormone (amh), and pathways such as Tp53-mediated germ-cell apoptosis have been implicated in zebrafish testis formation. However, our knowledge of the regulation of this complex process is incomplete, and much remains to be investigated about the molecular pathways and network of genes that control it. Using a microarray-based analysis of transforming zebrafish male gonads, we demonstrated that their transcriptomes undergo transition from an ovary-like pattern to an ovotestis to a testislike profile. Microarray results also validated the previous histological and immunohistochemical observation that there is high variation in the duration and extent of commitment to the juvenile ovary phase among individuals. Interestingly, global gene expression profiling of diverging zebrafish juvenile ovaries and transforming ovotestes revealed that some members of the canonical Wnt/beta-catenin signaling pathway were differentially expressed between these two phases. To investigate whether Wnt/beta-catenin signaling plays a role in zebrafish gonad differentiation, we used the Tg (hsp70l:dkk1b-GFP)w32 line to inhibit Wnt/beta-catenin signaling during gonad differentiation. Activation of dkk1b-GFP expression by heat shock resulted in an increased proportion of males and corresponding decrease in gonadal aromatase gene (cyp19a1a) expression. The Wnt target gene, lymphocyte enhancer binding factor 1 (lef1), was also down-regulated in the process. Together, these results provide the first functional evidence that, similarly to mammals, Wnt/beta-catenin signaling is a ‘‘pro-female’’ pathway that regulates gonad differentiation in zebrafish.
    URI
    http://hdl.handle.net/10566/1518
    Collections
    • Prof. Alan Christoffels
    • Research Articles (SANBI)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV