
Vol 5. No. 4, June 2012 ISSN 2006-1781

African Journal of Computing & ICT

© 2012 Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

 33

Context-Aware Stemming Algorithm for Semantically Related Root Words

1K.K. Agbele, 2A.O. Adesina, 3N.A. Azeez , & 4A.P. Abidoye
1, 2, 3, 4 University of the Western Cape, Computer Science Department

Private Bag X17, Bellville 7535, Cape Town, South Africa
1, 2, 4 Machine Learning and Intelligent Systems Research Group

3Grid Computing and Security Research Group
agbelek@yahoo.com, inadesina@gmail.com, nurayhn1@gmail.com, ademaola.abidoye@gmail.com

1
Corresponding Author

ABSTRACT
 There is a growing interest in the use of context-awareness as a technique for developing pervasive computing applications that are
 flexible and adaptable for users. In this context, however, information retrieval (IR) is often defined in terms of location and delivery
 of documents to a user to satisfy their information need. In most cases, morphological variants of words have similar semantic
 interpretations and can be considered as equivalent for the purpose of IR applications. Consequently, document indexing will also be
 more meaningful if semantically related root words are used instead of stems. The popular Porter’s stemmer was studied with the aim
 to produce intelligible stems. In this paper, we propose Context-Aware Stemming (CAS) algorithm, which is a modified version of
 the extensively used Porter’s stemmer. Considering only generated meaningful stemming words as the stemmer output, the results
 show that the modified algorithm significantly reduces the error rate of Porter’s algorithm from 76.7% to 6.7% without compromising

 the efficacy of Porter’s algorithm.

 Keywords- Context-awareness; information retrieval; stemming, precision; recal.

1. INTRODUCTION

Stemming is a step in processing textual data preceding the tasks
of information retrieval, text mining, and natural language
processing. Thus, it is an important feature supported by present
day indexing and searching systems. Stemming algorithms reduce
different morphological variants to their base form (the stem).
Stemming is used to enable matching of queries and documents in

keyword-based information retrieval systems. This assumes that
morphological variants of words have similar semantic
interpretations and can be considered as equivalent for the purpose
of IR applications. It is for this reason, that stemming algorithms,
or stemmers, have been developed, which attempt to reduce a word
to its stem or root form.

Thus, the keyword terms of a query or document are represented

by their stems rather than by the original words, during the
matching stage of information retrieval. However, it is often the
case that morphological variations of stems can have unrelated
contexts. For example, the word “deliberation” often refers to a
logical discussion that is presumed to lead to a common
understanding or position on a given issue.

African Journal of Computing & ICT Reference Format:

K.K. Agbele, A.O. Adesina, N.A. Azeez , & A.P. Abidoye (2012).

Context-Aware Stemming Algorithm for Semantically Related Root

Words. Afr J. of Comp & ICTs. Vol 5, No. 4. pp 33-42

© African Journal of Computing & ICT June, 2012

 - ISSN 2006-1781

Thus, the stem term of “deliberation”, “deliberate” means the act
of performing a “deliberation”, but, it can also mean an act that is
done intentionally and not by accident, or one that is done
cautiously. Conversely, many stem word have other different, but

semantically related terms. Many retrieved documents do not often
convey the semantic context of the original query. For these
reasons, stemmers are used in IR to reduce the size of index files.
Terms can be stemmed either at indexing time or at search time.
The advantages of stemming at indexing time are efficiency and
index file compression. In this context, the capability of search
engines to find morphologically related terms with respect to every
term would greatly enhance the IR effectiveness.

However, it is clear that the retrieval performance can go down
drastically when stemming results in unrelated words being
conflated to a single stem. For this reason, it is required that stem
produced is very close to their root morphemes. Considering the
fact that linguistic correctness of stems may become critical to
effective retrieval in future, design of an intelligible root word has
been proposed in this study in terms of context-awareness. This
intelligible root word stemmer is an enhanced version of the

popular affix stemmer, developed by [3]. The rule-based approach
of Porter’s stemmer has been considerably enhanced in context so
as to give meaningful stems as output in as many cases as possible.
Many studies have been conducted to evaluate the efficiency,
accuracy and performance of the different types of stemming
algorithms. The proposed Context-Aware Stemming (CAS)
algorithm in context is intended for reducing the morphological
variation of a given stream of query term through conflation;
commonly called stemming.

Vol 5. No. 4, June 2012 ISSN 2006-1781

African Journal of Computing & ICT

© 2012 Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

 34

The rest of the paper is organized as follows. Section 2 presents and
describes the existing stemming approaches in IR. Section 3 gives
the background of Porter’s stemming algorithms. Section 4
discusses the notion of context in IR. Section 5 presents and
discusses the proposed context-aware stemming algorithm. Section

6 illustrates some evaluation of the results and we conclude the
paper in Section 7.

2. CLASSIFICATION OF STEMMERS APPROACHES

 IN INFORMATION RETRIEVAL

Among the diverse approaches to stemming, the notable ones are

Affix removal [1, 2, 3, 4, & 5], n-gram stemmers [6], HMM

stemmer [7], YASS stemmer [8], Corpus-based stemmer [9],

Context Sensitive Stemmer [10]. However, in this paper, we have

used a rule-based (affix removal) to implement our CAS algorithm.

2.1. Affix Removal Approaches

This sub-section describes an overview of the state-of-the-art in the
area of stemming algorithms. It covers basic ideas of ‘‘classical’’
(endings removal) techniques of inflectional and derivational
suffixes. A number of stemming algorithms have been described in
literature, noteworthy among them being [1, 2, 3, 4 and 5]. Lovins
stemmer is a single pass and context-sensitive, which removes
ending based on the longest-match principle. Dawson stemmer
keeps the longest match and single pass nature of Lovins, and

replaces the recoding rules, which were found to be unreliable,
using instead an extension of the partial matching procedure also
defined within the Lovins stemmer, while the Porter stemmer is a
rule-based stemmer that eliminates the endings from a word based
on a set of conditions in definite number of rules. Paice-Husk
stemmer is a simple iterative method that removes the endings
from a word in an indefinite number of steps. Finally, the Krovetz
stemmer is a linguistic lexical validation stemmer. It is a very

complicated low strength algorithm due to the processes involved
in linguistic morphology and its inflectional nature. The most
popular one among them is [3], which is more compact than [1].
We observe that all the approaches to stemming mentioned above
not only ignore word meanings out of contexts, but also operate in
the absence of any lexicon at all. The design goals of all of them
seem to be better efficient and effective retrieval and compression
performance and not the production of a linguistically correct root

word. Our major objective is to maximize the proportion of the
meaningful stems (root words) in our modified stemmer output for
a given set of input words in context, without compromising the
other performance measure.

2.2 Statistical Approaches

2.2.1. N-Gram Stemmer: This is a very interesting method and it
is language independent. The string-similarity approach is used to
convert word conflation to its stem. An n-gram is a set of n
consecutive characters extracted from a word. The main idea

behind this approach is that, similar words will have a high
proportion of n-grams in common. For n equals to 2 or 3, the
words extracted are called digrams or trigrams, respectively.

There are n+1 such diagrams and n+2 such trigrams in a word
containing n characters. The N-gram matching technique as one of
the most common approaches to stemming was described by [2].
Besides, n-grams have been used in the automatic spelling
correction on the assumption that the problems of morphological
variants and spelling variants are similar. This stemmer has an
advantage that it is language independent and hence very useful in
many applications. The disadvantage is it requires a significant

amount of memory and storage for creating and storing the n-
grams and indexes and hence is not a very practical approach.

2.2.2. HMM Stemmer
This approach is based on the concept of the Hidden Markov
Model (HMMs) which are finite-state automata where transitions
between states are ruled by probability functions. At each
transition, the new state emits a symbol with a given probability.

This model was proposed by [7]. This method is based on
unsupervised learning and does not need a prior linguistic
knowledge of the dataset. In this method the probability of each
path can be computed and the most probable path is found using
the Viterbi coding in the automata graph. In order to apply HMMs
to stemming, a sequence of letters that forms a word can be
considered as the result of a concatenation of two sub sequences: a
prefix and a suffix. A way to model this process is through an

HMM where the states are divided into two disjoint sets: initial can
be the stems only and the later can be the stems or suffixes.
Transitions between states define word building process based on
the assumptions made. For any given word, the most probable path
from initial to final states will produce the split point (a transition
from roots to suffixes). Then the sequence of characters before this
point can be considered as a stem. The advantage of this method is
it is unsupervised and hence knowledge of the language is not

required. The disadvantage is it is a little complex and may over
stem the words sometimes.

2.2.3. YASS Stemmer
This is an acronym for Yet Another Suffix Striper. This approach
was proposed by [8]. According to the authors the performance of
a stemmer generated by clustering a lexicon without any linguistic
input is comparable to that obtained using standard, rule-based

stemmers such as Porter’s. This stemmer comes under the category
of statistical as well as corpus based. It does not rely on linguistic
expertise. Retrieval experiments on English, French, and Bengali
datasets show that the proposed approach is effective for languages
that are primarily suffixing in nature. The clusters are created using
hierarchical approach and distance measures. Then the resulting
clusters are considered as equivalence classes and their centroid as
the stems. A study by [8] highlighted the details in the edit distance
and YASS distance calculations for two string comparisons. The

advantage of this method is based on corpus method and can be
used for any language without knowing the morphology. The
disadvantage is difficult to decide a threshold for creating clusters
and requires a significant computing power.

Vol 5. No. 4, June 2012 ISSN 2006-1781

African Journal of Computing & ICT

© 2012 Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

 35

2.3 Hybrid Approaches

2.3.1. Linguistic Lexical Validation Stemmer
A study by [5] presented the linguistic lexical validation stemmer.

With the intention to decrease stemming errors and increase the
stemmer’s accuracy, Krovetz added a dictionary to validate the
correctness of stems. The Krovetz stemmer performs a dictionary
lookup after the removal of suffixes in a specific order. First, plural
forms are converted to singular forms. Next, past tense words are
converted to present. Finally, the “ing” suffix is removed. Besides,
the Krovetz stemmer attempts to increase accuracy and robustness
by treating spelling errors and meaningless stems. Spelling errors

and meaningless stems are transformed into the closest word.
Although this weak stemmer produced highly accurate results and
a huge reduction in stemming errors, the addition of the dictionary
lookup increased the complexity of the stemmer. The major and
obvious flaw in dictionary-based algorithms is their inability to
cope with words, which are not in the lexicon. Also, a lexicon must
be manually created in advance, which requires significant efforts.
This stemmer does not consistently produce a good recall and

precision performance.

2.3.2. Corpus Based Stemmer
 This method of stemming was proposed by [9]. The authors
suggested an approach which tries to overcome some of the
drawbacks of Porter stemmer. For example, the words ‘policy’ and
‘police’ are conflated though they have a different meaning but the
words ‘index’ and ‘indices’ are not conflated though they have the
same root. Porter stemmer also generates stems which are not real

words. Another problem is that while some stemming algorithms
may be suitable for one corpus, they will produce too many errors
on another. Corpus based stemming refers to automatic
modification of conflation classes – words that have resulted in a
common stem, to suit the characteristics of a given text corpus
using statistical methods. The basic hypothesis is that word forms
that should be conflated for a given corpus will co-occur in
documents from that corpus. Using this concept some of the over

stemming or under stemming drawbacks are resolved. A study by
[9] used statistical measure to determine the significance of word
form co-occurrence. The advantage of this method is it can
potentially avoid making conflations that are not appropriate for a
given corpus and the result is an actual word and not an incomplete
stem. The disadvantage is that you need to develop the statistical
measure for every corpus separately and this increases the
processing time.

2.3.3. Context Sensitive Stemmer
This is a very interesting method of stemming unlike the usual
method where stemming is done before indexing a document, for a
Web Search, context sensitive analysis is done using statistical
modelling on the query side. This method was proposed by [10].
Basically for the words of the input query, the morphological
variants which would be useful for the search are predicted before

the query is submitted to the search engine. This dramatically
reduces the number of bad expansions, which in turn reduces the
cost of additional computation and improves the precision at the
same time.
After the predicted word variants from the query have been
derived, a context sensitive document matching is done for these

variants. This conservative strategy serves as a safeguard against
spurious stemming, and it turns out to be very important for
improving precision. The advantage of this stemmer is it improves
selective word expansion on the query side and conservative word
occurrence matching on the document side. The disadvantage is
the processing time and the complex nature of the stemmer. There
can be errors in finding the noun phrases in the query and the
proximity words.

3. THE PORTER’S STEMMING ALGORITHM

Porter’s Stemmer [3] uses suffix stripping in English language for
stemming an input word. The algorithm operates in five steps. At
each step the input word is transformed based on a list of rules.
This stemmer is a linear step algorithm. If a suffix rule gets
matched to a word, then the conditions attached to that rule are
tested for the resulting stem as if that suffix were removed, as per
the rule. One such condition may be that the number of vowel

characters followed by a consonant character in the stem must be
greater than one, for the rule to be applied. Porter’s algorithm does
not remove a suffix when the stem is too short, i.e. when the
number of vowel-consonant pairs in a word is zero. The measure
m, is used as the decision making variable.

Porter algorithm [3] may remove a few characters of the word
being stemmed. These characters may be restored, in a later step.
Each of the subsequent steps transforms the partial stem,

depending on the rule applicable for the given value of m. When a
rule fires, the suffix is removed and the control moves to the next
step. The rules in a step are tested successfully until either a rule
from that step fires and control passes to the next step, or there are
no more rules in that step, in which case control moves to the next
step. This process continues at all the five steps, until the stem is
returned by the stemmer. It is important to note that, in a particular
step, it is sufficient if exactly one rule matches. It then proceeds to

the next step.

Our work, instead, focuses on getting reasonable stemmer in terms
of context-aware. We highlight some of the drawbacks of Porter’s
algorithm, from the perspective of getting understandable stems as
output. Consider Table 1, which displays two list A and B, with m
value greater than 0. The condition for stripping the suffix – ATE
is: (m>0) ATE ‘-‘, an empty right hand side in the rule indicates the
removal of the suffix indicated on the left hand side. Here, the

suffix –ATE is removed from the words of list B, whereas the
suffix E is removed from the words of list A. Complex suffixes are
removed letter by letter in different steps. Thus, the word
generalizations is first stripped to get generalization (Step 1); then
to generalize (Step 2); then to general (Step 3) and then finally to
GENER (Step 4), which is not an understandable word in context.
The stemmed word (GENER) is completely out of semantic
context to the query (GENERAL).

Table 1: Words and the measure m

Vol 5. No. 4, June 2012 ISSN 2006-1781

African Journal of Computing & ICT

© 2012 Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

 36

List A List B

Relate Derivate
Probate Activate

Conflate Demonstrate
Pirate Necessitate
Prelate Renovate

The main drawback of this algorithm is that it does not make use
of a stem dictionary (lexicon). As per the algorithm, a list of
suffixes is considered and with each suffix, there is a criterion
under which it may be removed from a word during the formation
of a valid stem. The main strengths of this algorithm are that it is
small, fast and reasonably simple.

The algorithm feature often produces stems, which are
unintelligible. For example, the stems result for the word anxious
is anxiou. This is one of the cases in which the suffix has been
identified as denoting the plural form of the given word. We also
get stems like Microscop, Secur and Envi for Microscope, Secure
and Envy respectively, which are clearly meaningless. As another
example, if Sand and Sander get conflated, so do wand and
wander. The error committed here is that the –er part of wander

has been treated as its suffix when in fact it is part of the stem.
However, the absence of a lexicon results in improper conflations
and an associated loss of precision. Converting words like general
to gener and iteration to iter make it difficult to relate them to
dictionary entries. It also complicates the process of query
enhancement. We observe that all the approaches to stemming
mentioned not only ignore word meanings, but also operate in the
absence of any lexicon at all. The design goals of these
approaches seem to be better retrieval and compression

performance and not the generation of a linguistically correct root
word that is in context. Our main goal is to maximize the
proportion of the meaningful stems (words) in the stemmer output
for a given set of input words, without compromising the other
performance measures.

4. CONTEXT IN INFORMATION RETRIEVAL

Some definition of context is greatly dependent on the field of
applications, as shown by the analysis of 150 different definitions
by [11]. In order to use context in developing context aware
applications, the notion of context has to be well understood. A
widely adopted definition of context for ubiquitous computing –
which is also considered with context-aware IR defines context as

any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application,
including the user and applications themselves [12].

The central aspects in this definition are identity (user), activity
(interaction with an application), location and time (as the temporal
constraints of a certain situation). In the same article, Dey defines

context awareness as a system that is context-aware if it uses
context to provide relevant information and/or services to the user,
where relevancy depends on the user’s task [12]. Dey’s definition
of context points to potential sources of contextual information on
a generic level. His definition of context awareness, however, is

directly related to the view on context for IR taken in this study,
which defines an IR task’s context as any information whose
change modifies the task’s outcome, for instance (stemming
reduces any given query term(token), to a common base). To
achieve this goal, we develop an approach for context-aware IR
that enables a system to provide relevant information to the user.

Research activities on context-aware IR have increased remarkably

in recent years. The ubiquitous and pervasive computing
communities have developed numerous approaches to
automatically provide users with information and services based on
their current situation [13] for an overview. Existing context-aware
applications range from smart spaces [14] over mobile tour guides
[15] to generic prototyping platforms [16]. Context has been
successfully employed in a number of ways for personalization [17
& 18] and to improve retrieval from the Web [19 & 20], from

email archives [21], from Wikipedia [22], as well as for ontology-
based alert services [23], intention recognition [24]. Diverse
approaches based on vector spaces have been proposed to enable
context-aware information retrieval [25]. Maeda identifies context
as one of his laws of simplicity, stating that “what lies in the
periphery of simplicity is definitely not peripheral” [26] transferred
to IR, this statement is a clear hint that the context of a retrieval
task needs to be taken into account to make completing the task as

simple as possible for the user.

Lawrence [27] provides an overview of the different strategies to
make Web search context-aware. Yahoo introduced context-aware
tools [20] that automatically extend the user’s query by text from
the Web site the user is currently visiting or from the file she is
working on. Dumitrescu and Santini [28] present a context-aware
IR method for documents. Contexts are traces of documents the

user has been working on, which they represent as self-organizing
maps [29]. The authors point out that the advantage of this
approach is that context does not need to be represented by logical
means. Semantic contexts are therefore an inevitable requirement
to reason about contextual information.

5. CONTEXT AWARE MODIFICATIONS APPROACH TO

PORTER’S ALGORITHM

We examine that the addition of more rules in order to increase the
performance in one part of the vocabulary may cause deprivation
of performance elsewhere. To achieve the goal, after a meticulous
analysis, new suffixes and the context in which they must be
removed have been identified and suitable changes have been
made to the original Porter’s stemming algorithm. Altogether, 31
modifications comprising of 15 additions, 11 replacements and 5
deletions have been carried out so that the Porter’s stemming
algorithm now consists of 65 rules compared to 60 in the original

algorithm. The modifications were carried out in each step without
changing the order suggested by Porter. The Porter’s algorithm is a
basic building block for the proposed context-aware stemmer. The
suffix stripping method is rule-based. The following is the
summary of modification steps used by the CAS algorithm.

Step 1 Rules: The first modified rule US → US, in step 1 of rule 1
(Table 2) of the stemmer helps to avoid the stripping of the suffix
‘S’ from words like generous, enormous, and anxious and more.

Vol 5. No. 4, June 2012 ISSN 2006-1781

African Journal of Computing & ICT

© 2012 Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

 37

Besides, another modification CEED → CEES was carried out on
the same step so that stems given by the stemmer for words like
succeed (as success), and exceed (as excess). In order to
compensate for the earlier changes for words like breed, greed etc.,
and a new rule EED → EED was introduced. Next, another rule
IES → Y replaces IES → I in the original Porter’s algorithm to
transform words like Ponies to Poni. The rule IED → Y was added
to transform words like tried and intensified to try and intensify.

Words of the form (*V*) ING → have been modified to (*V*)
ING → E. So that the stems for words such as scoring → score
and guiding → guide are stemmed accordingly. The rule (*V*) Y
→ I is deleted to transform words like happy to happi. A new rule
ED → E is added to generate stems for words like guided (guide),
and demonstrated (demonstrate) and more.

Step 2 Rules: The modifications in step 2 are described in the
following. The rule ANCI → ANCE was modified into ANCY →

ANCE. This rule was used to generate stems for mendicancy to
medicance. The rule ENCI → ENCE is assumed to be replaced by
ENCY → ENCY. This rule was used to consider cases like
urgency, frequency, and exigency. The other modification in step 2
is ABLI → ABLE that is replaced with ABLY → ABLE to
generate stems for words like creditably (as creditable), miserably

(as miserable), and notably (as notable) and more. Likewise the
rule OUSLI → OUS has been modified to OUSLY → OUS.

Consequently, callously, seriously, and dubiously are stemmed into
callous, serious, and dubious respectively. Words like sensitivity,
captivity, and productivity can be stemmed into sensitive, captive,
and productive using rule 14, IVITY → IVE. On modifying
BILITI→BLE as BILITY→BLE, a word like capability is
stemmed into capable.

Step 3 Rules: A new rule FULLY → FUL was added to stem
words like thankfully to thankful. The rule FUL → removes the

said suffix from the words completely. For example, thankful is
stemmed into thank. The rule LESSLY → LESS stems words like
carelessly to careless and aimlessly to aimless. A word like
possibly is stemmed into possible using BLY → BLE. In this case,
there are only two changes in step 3. A new rule LESS → is added
to remove suffix ‘less’ from worthless and priceless. For example,
this rule removes the suffix less and generates worth and price. The
rule ICITI → IC is modified into ICITY → IC to consider cases

like publicity (public), electricity (electric) and ethnicity (ethnic).

Step 4 Rules: Changes in step 4 are described in the following.
The rule AL → is modified into AL → E. This rule is to transform
agricultural to agriculture, arrival to arrive, and revival to revive

respectively. A new rule IABLE → Y was added to generate stems
for words like variable (vary) and identifiable (identify). The rule
ANCE → is discarded as it results in meaningless stems like vari
for variance, and appli as appliance etc. The stems for words
ending in scopic, such as telescopic (telescope) are obtained by
applying the rule SCOPIC → SCOPE. Removal of IC suffix is
done away with, so that on stemming words such as gyroscopic do
not end up on gyroscope. The rule ATE → is discarded to avoid

unpredictable results for words like activate. The rule FYE → FY
was added to convert words like purifying into their root form
purify. The ‘e’ gets added as a result of a rule in step1 of original
Porter’s stemmer replacing ‘ing’ with ‘e’. The rule TLY → T takes
care of words like diligently (diligent) and silently (silent) etc
which is not done in original Porter’s stemming algorithm.

Step 5 Rules: The change in step 5 is the rule which removes the
trailing E from words such as possible and avoidable have been

removed. This is shown in Table 2. From Table 3, it can be seen
that the modifications to Porter’s stemming algorithm have led to
the generation of better stem words in context. By context, we
refer to the circumstances or situation in which a computing task
takes place.

Table 2: Modified Rules

Step No. Rule No. Process Porter’s algorithm Context-aware stemmer

1 1 Add US → US

 2 Add CEED → CESS

 3 Add EED → EED

 4 Modify IES → I IES → Y

 5 Add IED → Y

 6 Modify (*V*) ING → (*V*) ING → E

 7 Delete (*V*) Y → I

 8 Add ED → E

2 9 Modify ANCI → ANCE ANCY → ANCE

 10 Modify ENCI → ENCE ENCY → ENCY

 11 Modify ABLI → ABLE ABLY → ABLE

 12 Modify OUSLI → OUS OUSLY → OUS

 13 Modify ALITI → AL ALITY → AL

 14 Modify IVITI → IVE IVITY → IVE

 15 Modify BILITI → BLE BILITY → BLE

 16 Add FULLY → FUL

 17 Add FUL →

 18 Add LESSLY → LESS

 19 Add BLY → BLE

3 20 Add LESS →

 21 Modify ICITI → IC ICITY → IC

4 22 Modify AL → AL → E

 23 Add IABLE → Y

 24 Delete ANCE →

 25 Add SCOPIC → SCOPE

 26 Delete IC →

 27 Delete ATE →

 28 Add FYE → FY

 29 Add ALLY → AL

 30 Add TLY → T

5 31 Delete E →

Vol 5. No. 4, June 2012 ISSN 2006-1781

African Journal of Computing & ICT

© 2012 Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

 38

Table 3: Comparison of stems generated by Porter’s algorithm

and CAS algorithm

Word (Input) Porter stemmer (Output) CAS (Output)

Probate Probat Probate

Gladly Gladli Gladly

Microscopic Microscop Microscope

Possibly Possibli Possible

Anxious Anxiou Anxious

Identifiable Identifi Identify

Thankfully Thankfulli Thank

Carelessly Carelessli Care

Purifying Purifye Purify

Biblically Biblic Biblical

Exceed Excee Excess

Capability Capabiliti Capable

Festivity Festiviti Festive

Diligently Diligentli Diligent

Ethnicity Ethniciti Ethnic

Guiding Guid Guide

Happy Happi Happy

Demonstrated Demonstrat Demonstrate

Callously Callousli Callous

Arrival Arriv Arrive

Effective Effect Effect

Falling Fall Fall

Generalization Gener General

Conditional Condit Condit

Archaeology Archaeologi Archaeology

Appointment Appoint Appoint

Allowance Allow Allow

Adoption Adopt Adopt

Formalize Formal Formal

Adjustable Adjust Adjust

5.1. Our Proposed (CAS) Algorithm

In this sub-section, we describe our Context-Aware Stemming
(CAS) algorithm in detail. CAS algorithm was proposed to lessen
the problems of traditional stemming approach that performs blind

transformation of all query terms without considering the context
of the stemmed word for effective search with regard to context
awareness. The application flow involves modified rule-based
approach that will add, replace, and remove query term matching
endings in generating new stem words are illustrated in Figure 1.

The modified CAS algorithm uses a list of rules to reduce any
given query term (token), such as word, to a common base. The
rules are applied iteratively by matching a suffix string against
query term endings. The rule is conditioned so that it may or may

not apply to the query term depending on if the query term has
already been modified by a previous rule. Each rule specifies
removing, replacing, or adding characters to the end of the query
term.

The ordering of the rules is important because a rule may be
designed to act upon changes made by the previous rule. Each rule
may be of arbitrary length and comprises of one or more instances
of the five CAS algorithm rule components. The list of rules is

processed iteratively until each has had a chance to apply itself to
the query term. When considering the conditioned of the second or
greater instance in a rule, the condition only applies to changes
made to the rule.

Within each step, if a suffix rule matched to a word, then the
conditions attached to that rule is tested on what would be the
resulting stem, if that suffix was removed, in the way defined by
the rule? Once a rule passes its condition and is accepted the rule
applies and suffix is removed/replaced/added and control moves to

the next step.

The CAS will enforce the following boundary conditions. The
input must be greater than two characters in length and must
contain at least one vowel and one consonant. The output must be
greater than two characters in length. For example, the query word
‘filing’. After performing stemming process, the -ING ending is
stripped such that the remaining word contains consonant-vowel-
consonant (cvc) pattern i.e. ‘fil’, using step 1 rule 6, we simply add

‘e’, so that, ‘fil’ becomes ‘file’. The new stemmed word ‘file’ can
be used in different contexts. It could be a tool used in smoothing,
polishing or grinding. Moreover, it could be a folder or box that
houses objects such as papers or cards. In this context, for this
reason, the semantic of the original query (filing) has changed.

5.2. CAS Algorithm Rule Format

1. A suffix string (token endings) of 1 or more characters.
2. A condition (‘Y’ or ‘N’) indicating if the rule can be

applied to the query term. If the condition is ‘Y’ and the
query term has already been modified by another rule or
this same rule (for rule with multiple instances) then
rules cannot be applied to the token.

3. The number of characters to remove.
4. The string to add to the query term (token) consisting of

0 or more characters.
5. The number of characters to replace

5.3. The CAS Algorithm Description

In this section, we describe step by step method of our CAS

algorithm as follows:

Step 1 Initialization:

Input the query term

Step 2 Select relevant text ending:

Examine the final letters of the query term;

Consider the first rule in the relevant ending for the input query

term, and to indicate the first query term among stemming

candidates.

Step 3 Check applicability of rule:

If the final letters of the query term do not match the ending rule,

output stem, then terminate;

if the final letters of the query term and the ending rule matches,

then goto 4;

if the final letters of the query term and the rule matches, and

matching ending acceptability conditions are not satisfied, then

goto 5;

Vol 5. No. 4, June 2012 ISSN 2006-1781

African Journal of Computing & ICT

© 2012 Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

 39

Step 4 Apply rule:

Delete from the right end of the token the number of characters

specified by the remove rules;

if there is an add string, then add it to the end of the query term

specified by the rule;

if there is a replace string, then replace the number specified to the

end of the query term;

if the condition specified is "no applicable rule" output the stem,

then terminate;

if the condition specified is "match ending found" then take output

to the next rule to access;

Otherwise goto 2.

Step 5 Search for another rule:

Go to the next rule in the rule engine database;

if the endings of the query term has changed, output stem, then

terminate;

Otherwise goto 3.

Step 6 Termination Condition:

If matching endings acceptability conditions are satisfied, and then

terminate the stemming process

Rules engine

Database

Start

Access stemming rules according to the final letters of the query term.

Input query term: Examples: car price generalization, conditional appointments, agricultural produce, ethnicity crisis etc

Access next Rule

Output stem

Apply Rule to

produce new stem

Take the output to

the next rule.

Do the final letters in

the query term and

rule match?

Should the new stem be

stemmed?

Can the rule match

be applied to the

query term?

No rule applies NO

Y

E

S

NO

Y

E

S

Stop

Ending found
Ending found Remove ending

No matching
ending found

Match found

No matching
ending found

No stemming operation

Replace/add/remove
ending

Access rules

NO

Y

E

S

Fig 1: An Overview of the Proposed CAS Application Flow Architecture

Vol 5. No. 4, June 2012 ISSN 2006-1781

African Journal of Computing & ICT

© 2012 Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

 40

6. EVALUATION OF RESULTS

Stemmer evaluations measures have been discussed and evaluated
in literature [30, 31 & 32]. Among the notable criteria for judging
stemmer performance, includes compression performance,
retrieval performance, and correctness. The extents of
overstemming and understemming are two other measures that
indicate how incorrect a stemmer can be. Stemmers can also be

judged by their retrieval effectiveness, usually measured by recall
and precision, as well as the speed and size. This involves
substituting different stemmers to see which gives the best
precision and recall. As a third measure, they can be judged by
their compression performance. We use a new evaluation measure
in which the ability of the stemmer to output intelligible stems is
the only performance measure.

In this context, we derived meaningful stems from the
words,which imply that the derived stems are linguistically correct
when compared with most Porter’s stem words that are obviously
meaningless. We measured the performance of CAS algorithm
output by finding the proportion (percentage) of meaningful stems
generated by CAS algorithm and comparing that with the output of

the original Porter’s algorithm. Here we have taken a set of 30
English words used by Porter’s algorithm as our working example
excluding stop words. Our stem produced meaningful stems in
93.3% of the cases on an average while the original Porter’s was
successful in 23.3% cases as shown in Figure 2. Consequently, the
error rate of our stemmer is 6.7% against 76.7% due to the Porter’s
algorithm. In this context, this improvement has been achieved
without losing the efficiency of Porter’s algorithm.

Fig. 2: Performance comparison

7. CONCLUSIONS

So far, none of the stemming algorithms give 100% output but is
good enough to be applied to the text mining, NLP or IR
applications. The main difference lies in using either a rule-based
approach or a linguistic one. The popular Porter’s stemming
algorithm was studied with an aim to generate understandable stem
as output, in order to improve the effectiveness of information
retrieval system.

By modifying the rule-based used by Porter’s algorithm, the
accuracy was improved from 23.3% to 93.3% in terms of the
proportion of meaningful stems produced by CAS algorithm. The
stemmer was introduced to address the traditional blind
transformation of all query terms in the context of IR. Thus, the
CAS algorithm conveys the semantics context of related terms by
the original query in diverse contexts. In this context, CAS
algorithm uses semantic knowledge to reduce stemming errors.

The CAS technique can be effectively used in pre-processing

Vol 5. No. 4, June 2012 ISSN 2006-1781

African Journal of Computing & ICT

© 2012 Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

 41

stages of text summarization and text classification systems in the
context of information retrieval.

Acknowledgement

The authors wish to thank and appreciate colleagues within the
research group for their helpful comments and suggestions at the
implementation stage.

REFERENCES

[1] J. B. Lovins. (1968). Development of a Stemming Algorithm,
Mechanical Translation and Computational Linguistics,
vol.11, no. 12, pp: 22-31.

[2] J. Dawson. (1974). Suffix removal and word conflation.

ALLC Bulletin, vol. 2, no. 3, pp: 33-46.

[3] M. Porter (1980). An Algorithm for Suffix Stripping.
Program, vol. 14, no. 3, pp: 130 – 137.

[4] D. Paice Chris. (1990). Another Stemmer. ACM SIGIR
Forum, Volume 24, No. 3, pp: 56-61.

[5] R. Krovetz. (1993). Viewing morphology as an inference
process. In Proceedings of the 16th Annual International

ACM SIGIR Conference on Research and Development in
Information Retrieval, Pittsburgh, PA, USA – June 27th –July
01, 1993, pp: 191-202.

[6] G.E. Freund and P. Willet. (1982), ‘Online identification of

word variants and arbitrary truncation searching using a string
similarity measure’. Information Technology: Research and
Development, vol. 1, pp: 177-187.

[7] M. Melucci and N. Orio. (2003), A novel method for stemmer
generation based on hidden Markov models. Proceedings of

the 12th international conference on Information and
knowledge management, New Orleans, LA, USA, Nov 03 –
08, pp:131-138.

[8] M. Prasenjit, M. Mandar, K. Swapan K. Parui, K. Gobinda,
M. Pabitra and D. Kalyankumar. (2007). YASS: Yet another

suffix stripper. ACM Transactions on Information Systems.
vol. 25, no. 4, article 18.

[9] J. Xu, W.B. Croft, (1998). Corpus-based stemming using co-
occurrence of word variants, ACM Transactions on
Information Systems, vol. 16, no. 1, pp: 61-81.

[10] P. Funchun, A. Nawaaz, L. Xin and L. Yumao (2007),
Context sensitive stemming for web search. Proceedings of
the 30th annual international ACM SIGIR conference on
Research and development in information retrieval
Amsterdam, July 23 – 27, pp: 639-646.

[11] M. Bazire and P. Brézillon. Understanding Context Before
Using It (2005). In A. K. Dey, B. N. Kokinov, D. B. Leake,
and R. M. Turner, editors, Modelling and Using Context, 5th
International and Interdisciplinary Conference (CONTEXT

2005), volume 3554 of Lecture Notes in Computer Science,
pp: 29–40. Springer, July 2005.

[12] A. K. Dey. Understanding and Using Context (2001).
Personal Ubiquitous Computing, vol. 5, no. 1, pp: 4–7.

[13] S. Loke. Context-Aware Pervasive Systems: Architectures for
a New Breed of Applications. Auerbach Publications, 2006.

[14] X. Wang, J. S. Dong, C. Chin, S. Hettiarachchi, and D. Zhang
(2004). Semantic Space: An Infrastructure for Smart Spaces.
IEEE Pervasive Computing, vol. 3, no. 3, pp: 32–39.

[15] S. Chou, W. Hsieh, F. Gandon, and N. Sadeh (2005).
Semantic Web technologies for context-aware museum tour
guide applications. In Advanced Information Networking and
Applications, 2005. AINA 2005. 19th International
Conference on, vol. 2.

[16] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen. Context-
Phone (2005): A Prototyping Platform for Context-Aware
Mobile Applications. IEEE Pervasive Computing, vol. 4, no.
2, pp: 51–59.

[17] H. R. Kim and P. K. Chan (2008). Learning implicit user
interest hierarchy for context in personalization. Applied
Intelligence, vol. 28, no. 2, pp: 153–166.

[18] C. Keßler, M. Raubal, and C. Wosniok (2009). Semantic
Rules for Context-Aware Geographical Information Retrieval.

In P. Barnaghi, editor, 4th European Conference on Smart
Sensing and Context, EuroSSC 2009, volume 5741 of Lecture
Notes in Computer Science, pp: 77–92. University of Surrey,
Springer.

[19] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan,
G. Wolfman, and E. Ruppin (2001). Placing search in context:
the concept revisited. In WWW ’01: Proceedings of the 10th
international conference onWorldWideWeb, pp: 406–414,
New York, NY, USA, ACM Press.

[20] R. Kraft, C. C. Chang, F. Maghoul, and R. Kumar (2006).
Searching with context. In WWW ’06: Proceedings of the
15th international conference onWorldWideWeb, pages 477–
486, New York, NY, USA, ACM Press.

[21] W. Weerkamp, K. Balog, and M. de Rijke (2009). Using

Contextual Information to Improve Search in Email Archives.
In Advances in Information Retrieval. 31st European
Conference on Information Retrieval Conference (ECIR
2009), pp: 400–411.

[22] A. Ukkonen, C. Castillo, D. Donato, and A. Gionis (2008).

Searching the Wikipedia with Contextual Information. In
CIKM ’08: Proceedings of the 17th ACM conference on
Information and knowledge mining, pp: 1351–1352, New
York, NY, USA, ACM.

[23] A. Leonidis, G. Baryannis, X. Fafoutis, M. Korozi, N.

Gazoni, M. Dimitriou, M. Koutsogiannaki, A. Boutsika, M.
Papadakis, H. Papagiannakis, G. Tesseris, E. Voskakis, A.
Bikakis, and G. Antoniou (2009). AlertMe: A Semantics-
based Context-Aware Notification System. In 33rd Annual
IEEE International Computer Software and Applications
Conference, pp: 200–205. IEEE.

[24] P. Kiefer and C. Schlieder (2007). Exploring context-
sensitivity in spatial intention recognition. In Proceedings of
the Workshop on Behavior Monitoring and Interpretation
(BMI’07), pp: 102–116.

[25] M. Melucci. A basis for information retrieval in context
(2008). ACM Trans on Info Sys, Vol. 26, No. 3, pp: 1–41.

Vol 5. No. 4, June 2012 ISSN 2006-1781

African Journal of Computing & ICT

© 2012 Afr J Comp & ICT – All Rights Reserved

www.ajocict.net

 42

[26] J. Maeda. The Laws of Simplicity (Simplicity: Design,
Technology, Business, Life). The MIT Press, August 2006.

[27] S. Lawrence. Context in Web Search (2000). IEEE Data
Engineering Bulletin, vol. 23, no.3, pp: 25–32.

[28] A. Dumitrescu and S. Santini. Think locally, search globally;
context based information retrieval (2009). In International
Conference on Semantic Computing, pages 396–401, Los
Alamitos, CA, USA, 2009. IEEE Computer Society.

[29] T. Kohonen. Self-Organizing Maps. Springer, 3rd edition,
2000.

[30] J. B. Lovins (1971). Error evaluation for stemming algorithms
as clustering algorithms. Journal America Social of
Information Science, vol. 22, pp: 28-40.

[31] C. D. Paice (1994). An Evaluation Methods for Stemming
Algorithms in Croft, W. B. and C. J. Van Rijsbergen, (Eds.).

Proceedings of the 17th ACM SIGIR Conference, Dublin, July
3-6, pp: 42-50.W. Kraaij and R. Pohlmann (1996). Viewing
stemming as recall enhancement. Proceedings of the 17th
ACM SIGIR Conference, Zurich, August 18-22, pp: 40-48

Authors’ Briefs

Kehinde Kayode AGBELE is a
Lecturer at Department of Mathematical
Sciences (Computer Science Option),
EKSU, Ado-Ekiti, Nigeria. AGBELE
received B.Sc (Hons) degree in

Computer Science from Ondo State
University (now Ekiti State University),
Ado in 1997, and M.Tech degree in

Computer Science from the Federal University of Technology,
Akure, in 2005. Currently, AGBELE is a Doctoral Research
student at University of the Western Cape, Computer Science
Department (Machine Learning and Intelligent Systems Research
Group), Cape Town, South Africa. His research interests include

Information Retrieval, Data Mining, Text Mining, Web Search
Engine, Agent Technology, Pattern Classification and Clustering,
Ubiquitous Healthcare, ICTs & Applications. He can be reached
by phone on +27789345755 and through E-mail at
agbelek@yahoo.com.

Ademola Olusola ADESINA, a lecturer of Computer Science in
Lagos State University (LASU), obtained his First Degree in
Computer Science from Ogun State University (now Olabisi

Onabanjo University), Ago-Iwoye and Masters Degree in
Computer Science from the University of Ibadan, Nigeria. He is
presently a doctoral student at the University of the Western Cape,
Department of Computer Science (Machine Learning and
Intelligent Systems Research Group), Cape Town, South Africa.
His research interests are in Mobile computing, Text Processing,
Agent Technology, Information Retrieval, Web Search and Mobile
security. Email: inadesina@gmail.com

Azeez Nureni Ayofe graduates with
B.Sc. (Hons) degree in Computer
Science with Second Class (Hons.)
Upper Division, from the Federal
University of Technology, Akure
(FUTA), Ondo State, Nigeria in 2004.
He proceeded in 2006 to the University
of Ibadan, Oyo State, Nigeria, after

completing his National Youth Service
Corps (NYSC) programme, for his

Masters Degree programme in Computer Science which he
successfully completed in 2008. He is currently a PhD research
student in Computer Science at the University of the Western
Cape, South Africa. He was a lecturer in the Departments of
Computer Science of Crescent University, Abeokuta, Ogun State,
Nigeria and the Fountain University, Osogbo, Osun State, Nigeria

between 2008 - 2010. His areas of research include security and
privacy; Grid and Cloud computing, knowledge representations
and Computer Education & Applications. He can be contacted on
+277 3 899 1735; nurayhn@yahoo.ca; and 3008814@uwc.ac.za.

Abidoye Ademola Philip received
B.Tech degree from Federal
University of Technology Akure,
Ondo State, Nigeria in 2001. He went
further for his master’s degree (M.Sc.)
in Computer Science from University
of Ibadan, Oyo State, Nigeria and

completed it in 2006. He is presently a
PhD student in Computer Science at University of the Western
Cape, Cape Town South Africa. He is working as a Lecturer in the
Department of Computer Science, Lagos State University, Ojo
Nigeria. He has attended both local and international conferences,
written many papers published in reputable international journals.
His research areas include wireless sensor network, energy
optimization, security, and mobile health. He can be contacted

through Email: ademaola.abidoye@gmail.com

