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ABSTRACT 
 There is a growing interest in the use of context-awareness as a technique for developing pervasive computing applications that are 
 flexible and adaptable for users. In this context, however, information retrieval (IR) is often defined in terms of location and delivery 
 of documents to a user to satisfy their information need. In most cases, morphological variants of words have similar semantic 
 interpretations and can be considered as equivalent for the purpose of IR applications. Consequently, document indexing will also be 
 more meaningful if semantically related root words are used instead of stems. The popular Porter’s stemmer was studied with the aim 
 to produce intelligible stems. In this paper, we propose Context-Aware Stemming (CAS) algorithm, which is a modified version of 
 the extensively used Porter’s stemmer. Considering only generated meaningful stemming words as the stemmer output, the results 
 show that the modified algorithm significantly reduces the error rate of Porter’s algorithm from 76.7% to 6.7% without  compromising 

 the efficacy of Porter’s algorithm.  
  
 Keywords- Context-awareness; information retrieval; stemming, precision; recal.   

 

 
1.  INTRODUCTION    
 
Stemming is a step in processing textual data preceding the tasks 
of information retrieval, text mining, and natural language 
processing. Thus, it is an important feature supported by present 
day indexing and searching systems. Stemming algorithms reduce 
different morphological variants to their base form (the stem). 
Stemming is used to enable matching of queries and documents in 

keyword-based information retrieval systems. This assumes that 
morphological variants of words have similar semantic 
interpretations and can be considered as equivalent for the purpose 
of IR applications. It is for this reason, that stemming algorithms, 
or stemmers, have been developed, which attempt to reduce a word 
to its stem or root form.  
 
Thus, the keyword terms of a query or document are represented 

by their stems rather than by the original words, during the 
matching stage of information retrieval. However, it is often the 
case that morphological variations of stems can have unrelated 
contexts. For example, the word “deliberation” often refers to a 
logical discussion that is presumed to lead to a common 
understanding or position on a given issue.  
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Thus, the stem term of “deliberation”, “deliberate” means the act 
of performing a “deliberation”, but, it can also mean an act that is 
done intentionally and not by accident, or one that is done 
cautiously. Conversely, many stem word have other different, but 

semantically related terms. Many retrieved documents do not often 
convey the semantic context of the original query. For these 
reasons, stemmers are used in IR to reduce the size of index files. 
Terms can be stemmed either at indexing time or at search time. 
The advantages of stemming at indexing time are efficiency and 
index file compression. In this context, the capability of search 
engines to find morphologically related terms with respect to every 
term would greatly enhance the IR effectiveness.  

However, it is clear that the retrieval performance can go down 
drastically when stemming results in unrelated words being 
conflated to a single stem. For this reason, it is required that stem 
produced is very close to their root morphemes. Considering the 
fact that linguistic correctness of stems may become critical to 
effective retrieval in future, design of an intelligible root word has 
been proposed in this study in terms of context-awareness. This 
intelligible root word stemmer is an enhanced version of the 

popular affix stemmer, developed by [3]. The rule-based approach 
of Porter’s stemmer has been considerably enhanced in context so 
as to give meaningful stems as output in as many cases as possible. 
Many studies have been conducted to evaluate the efficiency, 
accuracy and performance of the different types of stemming 
algorithms. The proposed Context-Aware Stemming (CAS) 
algorithm in context is intended for reducing the morphological 
variation of a given stream of query term through conflation; 
commonly called stemming. 



Vol 5. No. 4,  June  2012          ISSN 2006-1781 

African Journal of Computing & ICT 

      
© 2012 Afr J Comp & ICT – All Rights Reserved 

www.ajocict.net   

 

 

                  

 34  

 

 

The rest of the paper is organized as follows. Section 2 presents and 
describes the existing stemming approaches in IR. Section 3 gives 
the background of Porter’s stemming algorithms. Section 4 
discusses the notion of context in IR. Section 5 presents and 
discusses the proposed context-aware stemming algorithm. Section 

6 illustrates some evaluation of the results and we conclude the 
paper in Section 7.  

 

2. CLASSIFICATION OF STEMMERS APPROACHES  

   IN INFORMATION RETRIEVAL 
 
Among the diverse approaches to stemming, the notable ones are 

Affix removal [1, 2, 3, 4, & 5], n-gram stemmers [6], HMM 

stemmer [7], YASS stemmer [8], Corpus-based stemmer [9], 

Context Sensitive Stemmer [10].  However, in this paper, we have 

used a rule-based (affix removal) to implement our CAS algorithm.   

2.1. Affix Removal Approaches  

This sub-section describes an overview of the state-of-the-art in the 
area of stemming algorithms. It covers basic ideas of ‘‘classical’’ 
(endings removal) techniques of inflectional and derivational 
suffixes. A number of stemming algorithms have been described in 
literature, noteworthy among them being [1, 2, 3, 4 and 5]. Lovins 
stemmer is a single pass and context-sensitive, which removes 
ending based on the longest-match principle. Dawson stemmer 
keeps the longest match and single pass nature of Lovins, and 

replaces the recoding rules, which were found to be unreliable, 
using instead an extension of the partial matching procedure also 
defined within the Lovins stemmer, while the Porter stemmer is a 
rule-based stemmer that eliminates the endings from a word based 
on a set of conditions in definite number of rules. Paice-Husk 
stemmer is a simple iterative method that removes the endings 
from a word in an indefinite number of steps. Finally, the Krovetz 
stemmer is a linguistic lexical validation stemmer. It is a very 

complicated low strength algorithm due to the processes involved 
in linguistic morphology and its inflectional nature. The most 
popular one among them is [3], which is more compact than [1]. 
We observe that all the approaches to stemming mentioned above 
not only ignore word meanings out of contexts, but also operate in 
the absence of any lexicon at all. The design goals of all of them 
seem to be better efficient and effective retrieval and compression 
performance and not the production of a linguistically correct root 

word. Our major objective is to maximize the proportion of the 
meaningful stems (root words) in our modified stemmer output for 
a given set of input words in context, without compromising the 
other performance measure.  

2.2 Statistical Approaches  

2.2.1. N-Gram Stemmer: This is a very interesting method and it 
is language independent. The string-similarity approach is used to 
convert word conflation to its stem. An n-gram is a set of n 
consecutive characters extracted from a word. The main idea 

behind this approach is that, similar words will have a high 
proportion of n-grams in common. For n equals to 2 or 3, the 
words extracted are called digrams or trigrams, respectively.  

There are n+1 such diagrams and n+2 such trigrams in a word 
containing n characters. The N-gram matching technique as one of 
the most common approaches to stemming was described by [2]. 
Besides, n-grams have been used in the automatic spelling 
correction on the assumption that the problems of morphological 
variants and spelling variants are similar. This stemmer has an 
advantage that it is language independent and hence very useful in 
many applications. The disadvantage is it requires a significant 

amount of memory and storage for creating and storing the n-
grams and indexes and hence is not a very practical approach. 
 

2.2.2. HMM Stemmer 
This approach is based on the concept of the Hidden Markov 
Model (HMMs) which are finite-state automata where transitions 
between states are ruled by probability functions. At each 
transition, the new state emits a symbol with a given probability. 

This model was proposed by [7]. This method is based on 
unsupervised learning and does not need a prior linguistic 
knowledge of the dataset. In this method the probability of each 
path can be computed and the most probable path is found using 
the Viterbi coding in the automata graph. In order to apply HMMs 
to stemming, a sequence of letters that forms a word can be 
considered as the result of a concatenation of two sub sequences: a 
prefix and a suffix. A way to model this process is through an 

HMM where the states are divided into two disjoint sets: initial can 
be the stems only and the later can be the stems or suffixes. 
Transitions between states define word building process based on 
the assumptions made. For any given word, the most probable path 
from initial to final states will produce the split point (a transition 
from roots to suffixes). Then the sequence of characters before this 
point can be considered as a stem. The advantage of this method is 
it is unsupervised and hence knowledge of the language is not 

required. The disadvantage is it is a little complex and may over 
stem the words sometimes. 
 

2.2.3. YASS Stemmer 
This is an acronym for Yet Another Suffix Striper. This approach 
was proposed by [8]. According to the authors the performance of 
a stemmer generated by clustering a lexicon without any linguistic 
input is comparable to that obtained using standard, rule-based 

stemmers such as Porter’s. This stemmer comes under the category 
of statistical as well as corpus based. It does not rely on linguistic 
expertise. Retrieval experiments on English, French, and Bengali 
datasets show that the proposed approach is effective for languages 
that are primarily suffixing in nature. The clusters are created using 
hierarchical approach and distance measures. Then the resulting 
clusters are considered as equivalence classes and their centroid as 
the stems. A study by [8] highlighted the details in the edit distance 
and YASS distance calculations for two string comparisons. The 

advantage of this method is based on corpus method and can be 
used for any language without knowing the morphology. The 
disadvantage is difficult to decide a threshold for creating clusters 
and requires a significant computing power. 
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2.3 Hybrid Approaches  

2.3.1. Linguistic Lexical Validation Stemmer  
A study by [5] presented the linguistic lexical validation stemmer. 

With the intention to decrease stemming errors and increase the 
stemmer’s accuracy, Krovetz added a dictionary to validate the 
correctness of stems. The Krovetz stemmer performs a dictionary 
lookup after the removal of suffixes in a specific order. First, plural 
forms are converted to singular forms. Next, past tense words are 
converted to present. Finally, the “ing” suffix is removed. Besides, 
the Krovetz stemmer attempts to increase accuracy and robustness 
by treating spelling errors and meaningless stems. Spelling errors 

and meaningless stems are transformed into the closest word. 
Although this weak stemmer produced highly accurate results and 
a huge reduction in stemming errors, the addition of the dictionary 
lookup increased the complexity of the stemmer. The major and 
obvious flaw in dictionary-based algorithms is their inability to 
cope with words, which are not in the lexicon. Also, a lexicon must 
be manually created in advance, which requires significant efforts. 
This stemmer does not consistently produce a good recall and 

precision performance. 
 

2.3.2. Corpus Based Stemmer 
 This method of stemming was proposed by [9]. The authors 
suggested an approach which tries to overcome some of the 
drawbacks of Porter stemmer. For example, the words ‘policy’ and 
‘police’ are conflated though they have a different meaning but the 
words ‘index’ and ‘indices’ are not conflated though they have the 
same root. Porter stemmer also generates stems which are not real 

words. Another problem is that while some stemming algorithms 
may be suitable for one corpus, they will produce too many errors 
on another. Corpus based stemming refers to automatic 
modification of conflation classes – words that have resulted in a 
common stem, to suit the characteristics of a given text corpus 
using statistical methods. The basic hypothesis is that word forms 
that should be conflated for a given corpus will co-occur in 
documents from that corpus. Using this concept some of the over 

stemming or under stemming drawbacks are resolved. A study by 
[9] used statistical measure to determine the significance of word 
form co-occurrence. The advantage of this method is it can 
potentially avoid making conflations that are not appropriate for a 
given corpus and the result is an actual word and not an incomplete 
stem. The disadvantage is that you need to develop the statistical 
measure for every corpus separately and this increases the 
processing time. 

 

2.3.3. Context Sensitive Stemmer 
This is a very interesting method of stemming unlike the usual 
method where stemming is done before indexing a document, for a 
Web Search, context sensitive analysis is done using statistical 
modelling on the query side. This method was proposed by [10]. 
Basically for the words of the input query, the morphological 
variants which would be useful for the search are predicted before 

the query is submitted to the search engine. This dramatically 
reduces the number of bad expansions, which in turn reduces the 
cost of additional computation and improves the precision at the 
same time. 
After the predicted word variants from the query have been 
derived, a context sensitive document matching is done for these 

variants. This conservative strategy serves as a safeguard against 
spurious stemming, and it turns out to be very important for 
improving precision. The advantage of this stemmer is it improves 
selective word expansion on the query side and conservative word 
occurrence matching on the document side. The disadvantage is 
the processing time and the complex nature of the stemmer. There 
can be errors in finding the noun phrases in the query and the 
proximity words. 

3.  THE PORTER’S STEMMING ALGORITHM 

Porter’s Stemmer [3] uses suffix stripping in English language for 
stemming an input word. The algorithm operates in five steps. At 
each step the input word is transformed based on a list of rules. 
This stemmer is a linear step algorithm. If a suffix rule gets 
matched to a word, then the conditions attached to that rule are 
tested for the resulting stem as if that suffix were removed, as per 
the rule. One such condition may be that the number of vowel 

characters followed by a consonant character in the stem must be 
greater than one, for the rule to be applied. Porter’s algorithm does 
not remove a suffix when the stem is too short, i.e. when the 
number of vowel-consonant pairs in a word is zero. The measure 
m, is used as the decision making variable.  

Porter algorithm [3] may remove a few characters of the word 
being stemmed. These characters may be restored, in a later step. 
Each of the subsequent steps transforms the partial stem, 

depending on the rule applicable for the given value of m. When a 
rule fires, the suffix is removed and the control moves to the next 
step. The rules in a step are tested successfully until either a rule 
from that step fires and control passes to the next step, or there are 
no more rules in that step, in which case control moves to the next 
step. This process continues at all the five steps, until the stem is 
returned by the stemmer. It is important to note that, in a particular 
step, it is sufficient if exactly one rule matches. It then proceeds to 

the next step. 

Our work, instead, focuses on getting reasonable stemmer in terms 
of context-aware. We highlight some of the drawbacks of Porter’s 
algorithm, from the perspective of getting understandable stems as 
output. Consider Table 1, which displays two list A and B, with m 
value greater than 0. The condition for stripping the suffix – ATE 
is: (m>0) ATE ‘-‘, an empty right hand side in the rule indicates the 
removal of the suffix indicated on the left hand side. Here, the 

suffix –ATE is removed from the words of list B, whereas the 
suffix E is removed from the words of list A. Complex suffixes are 
removed letter by letter in different steps. Thus, the word 
generalizations is first stripped to get generalization (Step 1); then 
to generalize (Step 2); then to general (Step 3) and then finally to 
GENER (Step 4), which is not an understandable word in context. 
The stemmed word (GENER) is completely out of semantic 
context to the query (GENERAL). 
 

 
 
 
 
 
Table 1: Words and the measure m 
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List A                                                                   List B  

Relate                                                                   Derivate 
Probate                                                                 Activate 

Conflate                                                               Demonstrate 
Pirate                                                                    Necessitate 
Prelate                                                                  Renovate      

 

The main drawback of this algorithm is that it does not make use 
of a stem dictionary (lexicon). As per the algorithm, a list of 
suffixes is considered and with each suffix, there is a criterion 
under which it may be removed from a word during the formation 
of a valid stem. The main strengths of this algorithm are that it is 
small, fast and reasonably simple.  

The algorithm feature often produces stems, which are 
unintelligible. For example, the stems result for the word anxious 
is anxiou. This is one of the cases in which the suffix has been 
identified as denoting the plural form of the given word. We also 
get stems like Microscop, Secur and Envi for Microscope, Secure 
and Envy respectively, which are clearly meaningless. As another 
example, if Sand and Sander get conflated, so do wand and 
wander. The error committed here is that the –er part of wander 

has been treated as its suffix when in fact it is part of the stem. 
However, the absence of a lexicon results in improper conflations 
and an associated loss of precision. Converting words like general 
to gener and iteration to iter make it difficult to relate them to 
dictionary entries. It also complicates the process of query 
enhancement. We observe that all the approaches to stemming 
mentioned not only ignore word meanings, but also operate in the 
absence of any lexicon at all.  The design goals of these 
approaches seem to be better retrieval and compression 

performance and not the generation of a linguistically correct root 
word that is in context. Our main goal is to maximize the 
proportion of the meaningful stems (words) in the stemmer output 
for a given set of input words, without compromising the other 
performance measures.  

4. CONTEXT IN INFORMATION RETRIEVAL 

Some definition of context is greatly dependent on the field of 
applications, as shown by the analysis of 150 different definitions 
by [11]. In order to use context in developing context aware 
applications, the notion of context has to be well understood. A 
widely adopted definition of context for ubiquitous computing – 
which is also considered with context-aware IR defines context as 

any information that can be used to characterize the situation of an 
entity. An entity is a person, place, or object that is considered 
relevant to the interaction between a user and an application, 
including the user and applications themselves [12].  
 
The central aspects in this definition are identity (user), activity 
(interaction with an application), location and time (as the temporal 
constraints of a certain situation). In the same article, Dey defines 

context awareness as a system that is context-aware if it uses 
context to provide relevant information and/or services to the user, 
where relevancy depends on the user’s task [12]. Dey’s definition 
of context points to potential sources of contextual information on 
a generic level. His definition of context awareness, however, is 

directly related to the view on context for IR taken in this study, 
which defines an IR task’s context as any information whose 
change modifies the task’s outcome, for instance (stemming 
reduces any given query term(token), to a common base). To 
achieve this goal, we develop an approach for context-aware IR 
that enables a system to provide relevant information to the user.  
  
Research activities on context-aware IR have increased remarkably 

in recent years. The ubiquitous and pervasive computing 
communities have developed numerous approaches to 
automatically provide users with information and services based on 
their current situation [13] for an overview. Existing context-aware 
applications range from smart spaces [14] over mobile tour guides 
[15] to generic prototyping platforms [16]. Context has been 
successfully employed in a number of ways for personalization [17 
& 18] and to improve retrieval from the Web [19 & 20], from 

email archives [21], from Wikipedia [22], as well as for ontology-
based alert services [23], intention recognition [24]. Diverse 
approaches based on vector spaces have been proposed to enable 
context-aware information retrieval [25]. Maeda identifies context 
as one of his laws of simplicity, stating that “what lies in the 
periphery of simplicity is definitely not peripheral” [26] transferred 
to IR, this statement is a clear hint that the context of a retrieval 
task needs to be taken into account to make completing the task as 

simple as possible for the user.  
 
Lawrence [27] provides an overview of the different strategies to 
make Web search context-aware. Yahoo introduced context-aware 
tools [20] that automatically extend the user’s query by text from 
the Web site the user is currently visiting or from the file she is 
working on. Dumitrescu and Santini [28] present a context-aware 
IR method for documents. Contexts are traces of documents the 

user has been working on, which they represent as self-organizing 
maps [29]. The authors point out that the advantage of this 
approach is that context does not need to be represented by logical 
means. Semantic contexts are therefore an inevitable requirement 
to reason about contextual information.  
  

5. CONTEXT AWARE MODIFICATIONS APPROACH TO 

PORTER’S ALGORITHM 

We examine that the addition of more rules in order to increase the 
performance in one part of the vocabulary may cause deprivation 
of performance elsewhere. To achieve the goal, after a meticulous 
analysis, new suffixes and the context in which they must be 
removed have been identified and suitable changes have been 
made to the original Porter’s stemming algorithm. Altogether, 31 
modifications comprising of 15 additions, 11 replacements and 5 
deletions have been carried out so that the Porter’s stemming 
algorithm now consists of 65 rules compared to 60 in the original 

algorithm. The modifications were carried out in each step without 
changing the order suggested by Porter. The Porter’s algorithm is a 
basic building block for the proposed context-aware stemmer. The 
suffix stripping method is rule-based. The following is the 
summary of modification steps used by the CAS algorithm.  

Step 1 Rules: The first modified rule US → US, in step 1 of rule 1 
(Table 2) of the stemmer helps to avoid the stripping of the suffix 
‘S’ from words like generous, enormous, and anxious and more. 
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Besides, another modification CEED → CEES was carried out on 
the same step so that stems given by the stemmer for words like 
succeed (as success), and exceed (as excess). In order to 
compensate for the earlier changes for words like breed, greed etc., 
and a new rule EED → EED was introduced. Next, another rule 
IES → Y replaces IES → I in the original Porter’s algorithm to 
transform words like Ponies to Poni. The rule IED → Y was added 
to transform words like tried and intensified to try and intensify. 

Words of the form (*V*) ING → have been modified to (*V*) 
ING → E. So that the stems for words such as scoring → score 
and guiding → guide are stemmed accordingly. The rule (*V*) Y 
→ I is deleted to transform words like happy to happi. A new rule 
ED → E is added to generate stems for words like guided (guide), 
and demonstrated (demonstrate) and more. 

Step 2 Rules:  The modifications in step 2 are described in the 
following. The rule ANCI → ANCE was modified into ANCY → 

ANCE. This rule was used to generate stems for mendicancy to 
medicance. The rule ENCI → ENCE is assumed to be replaced by 
ENCY → ENCY. This rule was used to consider cases like 
urgency, frequency, and exigency. The other modification in step 2 
is ABLI → ABLE that is replaced with ABLY → ABLE to 
generate stems for words like creditably (as creditable), miserably 

(as miserable), and notably (as notable) and more. Likewise the 
rule OUSLI → OUS has been modified to OUSLY → OUS. 

Consequently, callously, seriously, and dubiously are stemmed into 
callous, serious, and dubious respectively. Words like sensitivity, 
captivity, and productivity can be stemmed into sensitive, captive, 
and productive using rule 14, IVITY → IVE. On modifying 
BILITI→BLE as BILITY→BLE, a word like capability is 
stemmed into capable.  

Step 3 Rules: A new rule FULLY → FUL was added to stem 
words like thankfully to thankful. The rule FUL → removes the 

said suffix from the words completely. For example, thankful is 
stemmed into thank. The rule LESSLY → LESS stems words like 
carelessly to careless and aimlessly to aimless. A word like 
possibly is stemmed into possible using BLY → BLE. In this case, 
there are only two changes in step 3. A new rule LESS → is added 
to remove suffix ‘less’ from worthless and priceless. For example, 
this rule removes the suffix less and generates worth and price. The 
rule ICITI → IC is modified into ICITY → IC to consider cases 

like publicity (public), electricity (electric) and ethnicity (ethnic).   

 

 

Step 4 Rules: Changes in step 4 are described in the following. 
The rule AL → is modified into AL → E. This rule is to transform 
agricultural to agriculture, arrival to arrive, and revival to revive 

respectively. A new rule IABLE → Y was added to generate stems 
for words like variable (vary) and identifiable (identify). The rule 
ANCE → is discarded as it results in meaningless stems like vari 
for variance, and appli as appliance etc. The stems for words 
ending in scopic, such as telescopic (telescope) are obtained by 
applying the rule SCOPIC → SCOPE. Removal of IC suffix is 
done away with, so that on stemming words such as gyroscopic do 
not end up on gyroscope. The rule ATE → is discarded to avoid 

unpredictable results for words like activate. The rule FYE → FY 
was added to convert words like purifying into their root form 
purify. The ‘e’ gets added as a result of a rule in step1 of original 
Porter’s stemmer replacing ‘ing’ with ‘e’. The rule TLY → T takes 
care of words like diligently (diligent) and silently (silent) etc 
which is not done in original Porter’s stemming algorithm.  

Step 5 Rules: The change in step 5 is the rule which removes the 
trailing E from words such as possible and avoidable have been 

removed. This is shown in Table 2. From Table 3, it can be seen 
that the modifications to Porter’s stemming algorithm have led to 
the generation of better stem words in context. By context, we 
refer to the circumstances or situation in which a computing task 
takes place. 

Table 2: Modified Rules 

Step No.  Rule No.   Process   Porter’s algorithm      Context-aware stemmer 

1             1             Add                                             US → US 

               2            Add                                              CEED → CESS  

               3            Add                                              EED → EED 

               4            Modify       IES → I                     IES → Y 

               5             Add                                             IED → Y  

               6             Modify     (*V*) ING →            (*V*) ING → E 

               7             Delete       (*V*) Y → I 

               8             Add                                             ED → E 

2             9           Modify    ANCI → ANCE        ANCY → ANCE     

             10           Modify     ENCI → ENCE         ENCY → ENCY    

             11           Modify    ABLI → ABLE          ABLY → ABLE 

             12           Modify      OUSLI → OUS         OUSLY → OUS 

             13           Modify     ALITI → AL              ALITY → AL 

             14           Modify     IVITI → IVE               IVITY → IVE 

             15           Modify     BILITI → BLE            BILITY → BLE   

            16           Add                                               FULLY → FUL 

            17           Add                                                FUL → 

           18            Add                                               LESSLY → LESS 

           19            Add                                                BLY → BLE 

3           20          Add                                              LESS → 

             21           Modify    ICITI → IC                  ICITY → IC 

4           22           Modify    AL →                          AL → E 

             23           Add                                               IABLE → Y 

             24           Delete     ANCE →  

             25          Add                                            SCOPIC → SCOPE 

             26           Delete     IC → 

             27           Delete    ATE → 

             28           Add                                             FYE → FY 

             29           Add                                             ALLY → AL 

             30           Add                                             TLY → T 

5           31           Delete     E →                              
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Table 3: Comparison of stems generated by Porter’s algorithm               

and CAS algorithm 
 
Word (Input)      Porter stemmer (Output)              CAS (Output) 

Probate                           Probat                                       Probate 

Gladly                             Gladli                                       Gladly 

Microscopic                    Microscop                               Microscope 

Possibly                          Possibli                                    Possible 

Anxious                          Anxiou                                    Anxious 

Identifiable                      Identifi                                    Identify 

Thankfully                      Thankfulli                               Thank 

Carelessly                        Carelessli                                Care 

Purifying                         Purifye                                    Purify 

Biblically                        Biblic                                      Biblical 

Exceed                            Excee                                      Excess 

Capability                       Capabiliti                               Capable 

Festivity                          Festiviti                                  Festive 

Diligently                       Diligentli                                 Diligent 

Ethnicity                         Ethniciti                                 Ethnic 

Guiding                           Guid                                       Guide 

Happy                             Happi                                     Happy 

Demonstrated                 Demonstrat                             Demonstrate 

Callously                        Callousli                                 Callous 

Arrival                            Arriv                                      Arrive 

Effective                         Effect                                      Effect 

Falling                            Fall                                          Fall 

Generalization                Gener                                      General 

Conditional                     Condit                                     Condit 

Archaeology                   Archaeologi                            Archaeology   

Appointment                  Appoint                                    Appoint 

Allowance                       Allow                                      Allow 

Adoption                         Adopt                                      Adopt 

Formalize                        Formal                                    Formal 

Adjustable                      Adjust                                      Adjust 

 

5.1. Our Proposed (CAS) Algorithm 

In this sub-section, we describe our Context-Aware Stemming 
(CAS) algorithm in detail. CAS algorithm was proposed to lessen 
the problems of traditional stemming approach that performs blind 

transformation of all query terms without considering the context 
of the stemmed word for effective search with regard to context 
awareness. The application flow involves modified rule-based 
approach that will add, replace, and remove query term matching 
endings in generating new stem words are illustrated in Figure 1.  

The modified CAS algorithm uses a list of rules to reduce any 
given query term (token), such as word, to a common base. The 
rules are applied iteratively by matching a suffix string against 
query term endings. The rule is conditioned so that it may or may 

not apply to the query term depending on if the query term has 
already been modified by a previous rule. Each rule specifies 
removing, replacing, or adding characters to the end of the query 
term.  

The ordering of the rules is important because a rule may be 
designed to act upon changes made by the previous rule. Each rule 
may be of arbitrary length and comprises of one or more instances 
of the five CAS algorithm rule components. The list of rules is 

processed iteratively until each has had a chance to apply itself to 
the query term. When considering the conditioned of the second or 
greater instance in a rule, the condition only applies to changes 
made to the rule.  

Within each step, if a suffix rule matched to a word, then the 
conditions attached to that rule is tested on what would be the 
resulting stem, if that suffix was removed, in the way defined by 
the rule? Once a rule passes its condition and is accepted the rule 
applies and suffix is removed/replaced/added and control moves to 

the next step.  

The CAS will enforce the following boundary conditions. The 
input must be greater than two characters in length and must 
contain at least one vowel and one consonant. The output must be 
greater than two characters in length. For example, the query word 
‘filing’. After performing stemming process, the -ING ending is 
stripped such that the remaining word contains consonant-vowel- 
consonant (cvc) pattern i.e. ‘fil’, using step 1 rule 6, we simply add 

‘e’, so that, ‘fil’ becomes ‘file’. The new stemmed word ‘file’ can 
be used in different contexts. It could be a tool used in smoothing, 
polishing or grinding. Moreover, it could be a folder or box that 
houses objects such as papers or cards. In this context, for this 
reason, the semantic of the original query (filing) has changed. 

5.2. CAS Algorithm Rule Format 

1. A suffix string (token endings) of 1 or more characters. 
2. A condition (‘Y’ or ‘N’) indicating if the rule can be 

applied to the query term. If the condition is ‘Y’ and the 
query term has already been modified by another rule or 
this same rule (for rule with multiple instances) then 
rules cannot be applied to the token. 

3. The number of characters to remove. 
4. The string to add to the query term (token) consisting of 

0 or more characters. 
5. The number of characters to replace 

 

5.3. The CAS Algorithm Description 

In this section, we describe step by step method of our CAS 

algorithm as follows: 

Step 1 Initialization:  

Input the query term 

Step 2 Select relevant text ending:  

Examine the final letters of the query term; 

Consider the first rule in the relevant ending for the input query 

term, and to indicate the first query term among stemming 

candidates.  

Step 3 Check applicability of rule:   

If the final letters of the query term do not match the ending rule, 

output stem, then terminate;  

if the final letters of the query term and the ending rule matches, 

then goto 4;  

if the final letters of the query term and the rule matches, and 

matching ending acceptability conditions are not satisfied, then 

goto 5;   
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Step 4 Apply rule: 

Delete from the right end of the token the number of characters 

specified by the remove rules; 

if there is an add string, then add it to the end of the query term 

specified by the rule; 

if there is a replace string, then replace the number specified to the 

end of the query term; 

if the condition specified is "no applicable rule" output the stem, 

then terminate; 

if the condition specified is  "match ending found" then take output 

to the next rule to access; 

Otherwise goto 2.  

Step 5 Search for another rule: 

Go to the next rule in the rule engine database; 

if the endings of the query term has changed, output stem, then 

terminate; 

Otherwise goto 3. 

Step 6 Termination Condition:  

If matching endings acceptability conditions are satisfied, and then 

terminate the stemming process 
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Fig 1: An Overview of the Proposed CAS Application Flow Architecture 
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6. EVALUATION OF RESULTS 

Stemmer evaluations measures have been discussed and evaluated 
in literature [30, 31 & 32].  Among the notable criteria for judging 
stemmer performance, includes compression performance, 
retrieval performance, and correctness. The extents of 
overstemming and understemming are two other measures that 
indicate how incorrect a stemmer can be. Stemmers can also be 

judged by their retrieval effectiveness, usually measured by recall 
and precision, as well as the speed and size. This involves 
substituting different stemmers to see which gives the best 
precision and recall. As a third measure, they can be judged by 
their compression performance. We use a new evaluation measure 
in which the ability of the stemmer to output intelligible stems is 
the only performance measure.  

 

 

 

In this context, we derived meaningful stems from the 
words,which imply that the derived stems are linguistically correct 
when compared with most Porter’s stem words that are obviously 
meaningless. We measured the performance of CAS algorithm 
output by finding the proportion (percentage) of meaningful stems 
generated by CAS algorithm and comparing that with the output of 

the original Porter’s algorithm. Here we have taken a set of 30 
English words used by Porter’s algorithm as our working example 
excluding stop words. Our stem produced meaningful stems in 
93.3% of the cases on an average while the original Porter’s was 
successful in 23.3% cases as shown in Figure 2. Consequently, the 
error rate of our stemmer is 6.7% against 76.7% due to the Porter’s 
algorithm. In this context, this improvement has been achieved 
without losing the efficiency of Porter’s algorithm.       

 

                                                                                  

    

Fig. 2: Performance comparison 
 

7. CONCLUSIONS 

So far, none of the stemming algorithms give 100% output but is 
good enough to be applied to the text mining, NLP or IR 
applications. The main difference lies in using either a rule-based 
approach or a linguistic one. The popular Porter’s stemming 
algorithm was studied with an aim to generate understandable stem 
as output, in order to improve the effectiveness of information 
retrieval system.   

 
 

By modifying the rule-based used by Porter’s algorithm, the 
accuracy was improved from 23.3% to 93.3% in terms of the 
proportion of meaningful stems produced by CAS algorithm. The 
stemmer was introduced to address the traditional blind 
transformation of all query terms in the context of IR. Thus, the 
CAS algorithm conveys the semantics context of related terms by 
the original query in diverse contexts. In this context, CAS 
algorithm uses semantic knowledge to reduce stemming errors. 

The CAS technique can be effectively used in pre-processing 
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stages of text summarization and text classification systems in the 
context of information retrieval. 
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