
Socially Aware Software Engineering for
the Developing World

Edwin BLAKE1, William TUCKER2

1Dept Computer Science, University of Cape Town, Rondebosch, 7701, South Africa
Tel: +27 21 650 3661, Fax: + 27 21 689 9465, Email: edwin@cs.uct.ac.za

2 Dept Computer Science, University of the Western Cape, Bellville, 7535, South Africa
Tel: +27 21 959 2516, Fax: +27 21 959 1274, Email: btucker@uwc.ac.za

Abstract: While the social effects of Information Technology (IT) have received
much attention there is very little work on targeted methodologies to develop IT
applications and content in a developing world environment. This paper describes a
methodology called Socially Aware Software Engineering we are busy formulating
based on firsthand experience building Information and Communication Technology
solutions. Our method is based on a classical user-centred approach from Human
Computer Interaction combined with aspects of Participatory Design and cyclical
software engineering practises. These approaches are wrapped into an iterative
Action Research paradigm in order to directly include the community-based users of
our systems. We outline three cases studies based on our evolving method. The
paper concludes with suggestions on changing the nature of tertiary curricula in
developing countries in a way that integrates this socially aware software
engineering methodology.

Keywords: Action Research, Computer Science, Developing world, Human
Computer Interaction, Participatory Design, Software Engineering, Free and Open
Source Software.

1. Introduction
How can we develop software for rural and disadvantaged communities in the developing
world? Making useful and useable Information and Communication Technology (ICT)
applications for characteristic developing world situations turns out to be quite difficult.
The problems that arise are different from the typical software engineering issues that
confront software analysts and developers working in the paradigmatic situations covered
by most computer science training, even in developing world universities.

 This research set out to develop and deploy useful systems for the kinds of users one
meets in the developing world. Our method is to build systems and then reflect on the
design method that will enable us to have a useful and sustainable impact.

We explore software engineering and methodological development issues in this paper
with reference to three case studies from South Africa. The paper presents our alternative
approach to software engineering for these situations, and provides some indicators of
success and failure. The paper concludes with implications for training ICT developers in
tertiary educational institutions situated within the developing world. While we speak of
software in general the issues apply to Free and Open Source Software as well.

2. How to solve local problems in the developing world?
Ironically, the students nurtured by Computer Science departments in developing countries
are well positioned to create ICT solutions that meet the needs of users in the developed
world. Training projects often focus on applications that are far removed from the needs of

local communities. Computer Science innovation, when applied with a too narrow and
technical focus, produces applications suitable for developed countries instead of solving
local problems.

Students come from diverse backgrounds and they have some understanding of the
needs in local communities and how technology can help. Students who emerge from
Computer Science programmes are able to produce software for export but unfortunately
they are often simply trained to emigrate and support the economies of developed countries.
These students actually possess the social and technical abilities to address problems that
arise in local user communities, and our aim is to leverage their skills toward local
solutions.

We are busy deriving an application development methodology suited to community-
oriented development in a developing country environment, mainly targeted to
underprivileged urban and remote rural areas. Aside from dealing with well-understood and
easily addressed technical challenges1, we also focus on ways to steer Computer Science
students and researchers towards understanding community needs and social mechanisms,
and how these social implications affect technological choices and development.

We believe that a Computer Science point of view is a fruitful one to bring to the
discussion on the use of ICT for development, because Computer Scientists have a
profound realization that ICT is completely adaptable and malleable. People who are
trained in developing new software have less of a tendency to take existing systems as
immutable and given. Rather, systems are seen as adaptable, and are often constructed in
components that lend themselves to usage in innovative ways. We do not have to make do
with fixed applications and content that is aimed at specific user communities. Instead, we
can easily adapt software technology to cater for social needs. Although we all know this
about ICT, we have not yet learnt how to exploit this flexibility for the typical user groups
found in the developing world.

3. Software Development Methodology
The potential impact of Computer Science comes from the task that is facing developing
countries: ICT helps to make scarce knowledge resources available in a widespread fashion.
For this to happen we must have applications and content that address local needs. We
maintain that such development of new applications, as well as developing tools for
creating content and new software engineering methods is the task of Computer Scientists.

We believe that Computer Scientists in the developing world have to learn to target
their applications to the needs of local users. This requires an appropriately situated
methodology for systems development that can elicit user requirements from user
communities and produce solutions that work effectively. Computer Scientists will have to
overcome a mindset that is fascinated by technological issues and somewhat disdains social
involvement. As Software Engineers we have to find partners from social disciplines to
assist us in this and we have to train our students to work accordingly.

The needs that arise in underdeveloped communities are not served by merely providing
access to equipment, or to applications developed for first world users, or simply access to
the Internet. A serious process of co-development has to be followed that involves a com-
munity as a whole together with socially sensitive ICT specialists. It is the responsibility of
the ICT specialists to initiate and guide this cooperative process. It is the responsibility of
Computer Science departments to research and develop this process, investigate it with
pilot sites and then train students according to the outcomes.

1 We are not suggesting that developing world applications should use old technology: frequently the most
advanced technology is the easiest to use. Our emphasis is however on training for design; training to use
technology is understood.

In order to avoid the technical bias associated with traditional software engineering
approaches we are reaching towards a synthesis of several approaches. A bottom-up
research approach was chosen to understand and address real community needs. It takes
into account the issues related to developing and using software in the community aside
from only the technical ones. This process lead to a Socially Aware Software Engineering
approach based on a combination of the following:
• User-centred methods taken from the field of Human Computer Interaction (HCI)
• Participatory Design methods to ensure that solutions meet user requirements
• Action Research cycles to guide the process of working with actual communities

Essentially, the socially aware software engineering framework adopted for this project
represents a customized version of the Action Research process described by Susman and
Evered [16], with pertinent HCI and participatory design principles included in an iterative
development process. This is an alternative to the standard waterfall model of software
development [15].

Human Computer Interaction: The field of HCI has a long history of user
involvement, or user-centred design. Many classical HCI heuristics and techniques can be
tailored for use in developing world situations. We have employed techniques such as paper
prototyping and mapping work processes but have come to see that many HCI heuristics
fail to capture the social complexities involved when designing ICT solutions for the
developing world [14]. In a developing world context, Dray et al. [9] recommend working
the answers to questions like “How to improve the fit between technology, specific human
needs, and human contexts; how to design technology to facilitate human interaction with
it; and how best to manage the process of technology introduction” into the software design
process.

Participatory Design: Participatory Design evolved from attempts to empower workers
in industrial settings [7]. Contemporary Participatory Design specifies a set of techniques to
increase user involvement in the software development life cycle. This is done to increase
the chance that software solutions are appropriate for the people they serve. Participatory
Design provides guidelines on the techniques to ensure that the software prototypes
developed addressed user needs. These include discussion groups and paper prototyping
amongst others. However, as we found when trying to deploy these methods in a
developing world context, the users are not ICT savvy enough to fully participate in the
process. This is addressed in our conclusions with human access points.

Action Research: Action Research is a methodology geared towards solving a problem
for a target group of people by involving them as equal partners in the process and using
their expertise in their area of work [1]. It aims to empower groups by creating relevant
solutions for their problems and benefits both participants and researchers in the process.
Action Research provides the steps needed for engineering a locally relevant application. It
describes the overall process for approaching a target community and guidelines on how to
work with that community in order to discover a problem area and provide a solution for
this problem. The key aspect, however, is the personal participation of the researchers in the
community [13].

Socially Aware Software Engineering: The process we used (in the case studies
presented below) was essentially user-centred and participatory since it involved the target
community in the entire software development process. The development process was
cyclical and iterative, involving traditional Action Research stages to analyse the
circumstances of the target community, identify a problem to work on, plan an intervention,
implement an intervention and evaluate the outcomes [2]. Finally, after each Action
Research cycle, there was a period of reflection on the results of that cycle in order to plan
the next cycle correctly. At each stage of the process, requirements were continually
gathered for the design of prototype applications. The entire process was documented using

notes, semi-structured interviews, questionnaires and audio records as suggested by
[1][13][16]. Additionally, the different versions of the software prototypes developed acted
as documents of the changes that were undertaken throughout the Action Research cycles.

This contrasts with the (much critiqued) waterfall model of software development that
is commonly used for software engineering and has five pre-determined stages consisting of
requirements definition, system and software design, implementation and unit testing,
integration and system testing and operation and maintenance [15].

The socially aware software engineering methodology does not include specific markers
or indicators to measure success. Rather these need to be developed on a per-project basis.
Three such projects are described below. In addition, a number of different evaluation
methodologies are compatible with socially aware computing, including Outcome Mapping
[10] and the Real Access/Real Impact criteria prescribed by bridges.org [4].

4. Case Studies

4.1. Cyber Tracker

This project enabled ‘illiterate’ animal trackers to use a PDA and GPS system to record
field observations in wildlife parks. These trackers are literate in reading the tracks and
signs left by animals as they moved through the park. By re-designing the interface of a
PDA (Personal Digital Assistant) — a device designed for business executives — we
created a system which the trackers could understand and use to record their observations.
This made their expertise available to the park management and scientific communities and
also improved their position: a key empowerment/indigenous knowledge system.

This project was developed over several critical action research cycles. The iterative
process involved the target users at every stage. The end solution was one developed jointly
by the researchers and the trackers who were involved as users [3]. The target users felt
comfortable using the system because they had a significant stake in designing the system
and the system was appropriate to their needs.

4.2. Rural Tele-Health

We developed a tele-health system for rural communities in South Africa. The system made
uses of VoIP technology to enable nurses at a rural clinic to consult with doctors in order to
provide consistent and improved health care to local people [6]. An intriguing feature of
rural areas in South Africa is that people are not concentrated in small towns and villages
but are rather spread out as scattered settlements throughout the countryside. Rural
hospitals tend to support 10-12 satellite clinics scattered in a roughly 20km radius. Each
clinic then supports a somewhat scattered population of up to 20,000. We built a long-range
WiFi network and designed a mixed synchronous (real-time) and asynchronous (store-and-
forward) communication system to support remote tele-consultation. The asynchronous
feature requirements emerged from the end-users as the researchers learned that frequent
power outages, and more importantly, over-burdened doctors and nurses meant that end-
users could rarely talk in real-time when they wanted to.

Now in the third year of active field trials, consisting of a long series of Action
Research cycles, we have come to focus on the human computer interface [14]. The long-
term iterative process allowed the target users to participate and guide the development of
the system, even though they largely remain limited in ICT skills. We have incorporated a
continuing ICT training element to the process in order to move toward the goal of
employing more and more Participatory Design techniques as user skills improve.

4.3. Deaf Telephony

The Deaf Community of Cape Town (DCCT) is a doubly disadvantaged community due to
both poverty and hearing disorders. Using our development methodology we have built a
telecommunication bridge between Deaf and hearing users using PCs, the Public Switched
Telephone Network (PSTN) and various open source Internet technologies [11]. A Deaf
user types and reads text with an Instant Messaging client on a PC. The system
automatically converts text to voice and relays it to the PSTN via VoIP. The hearing user
replies as usual but the speech is intercepted and translated to text with the help of a human
relay operator (instead of automated speech recognition, of which open source tools are still
not up to task). Usage of the tool can be problematic. From repeated weekly contact with
Deaf users, we have come to learn that Deaf users use a different grammar (specifically
related to South African Sign Language) and this causes problems for text communication
in English. Deaf users would prefer to use sign language, which means we must include
video into the tool (at the expense of losing the limited automation already provided since
sign language recognition and translation remains one of the most difficult natural language
challenges). Deaf users also prefer to use cell phones as input/output devices instead of
physically travelling to the Deaf community centre to access the system on a PC.

The Deaf users suffer from poor literacy due to poverty and poor education and are also
computer illiterate. As with the rural tele-health project, an ICT training programme was
put into place. In addition, DCCT also provides daily access to an essentially free Internet
café. With repeated exposure to training and open access to technology, a small core group
of users has emerged to be able to participate in the software requirement process. We have
incorporated many of their suggestions into the software to improve the human computer
interface, such as an audio “isTyping” for hearing users.

5. Challenges in Transforming the Computer Science Curriculum
Computer Science departments in South Africa tend to be rather small, are generally
understaffed and often suffer from high staff turnover rates. At an institutional level the
obstacles to be overcome include the lack of recognition given to work that spills over
traditional discipline boundaries (in spite of years of claims that interdisciplinary research is
a "good thing") and to largely qualitative research with its concomitant lack of hard
research results. Students that come to Computer Science are frequently interested in
technology and not initially interested in learning how to communicate with members of
disadvantaged communities. These difficulties in communication have many aspects,
including large cultural and language differences.

There are four major influences on Computer Science curricula in South Africa:
1. Tradition: this tradition has dictated a four-year Bachelors (Honours) degree followed

by a two-year purely research based Masters Degree. The Honours degree typically has
a large self-study development project in the final year. The course of study is based on
contributions from several largely autonomous departments in the Science Faculty.

2. Industry: emphasizes immediately useful practical skills for companies that have very
often not appreciated the implications of globalization. These are companies whose idea
of innovation is to be the first adopter in the country of an established practice from the
US or Europe.

3. Curricula: the work of the US bodies (ACM & IEEE) on Computer Science curricula
has been influential in determining content. The amount of material placed in the "core"
of discipline is large and leaves little room for local-orientated content.

4. Process: the impact of the British Computer Society (BCS) with its emphasis on the
process of teaching (rather than content) has been felt recently. The influence is

generally very positive except for the reduced emphasis on large group projects in the
final year in favour of individually assessable work.
None of these influences is particularly favourable to the kinds of innovations that are

needed to provide the kind of training for the approach outlined in the previous section and
developed in the rest of this paper.

6. Conclusions
In this paper we have argued for a new method of Software Engineering that is required in
the developing world. It is one that is equally aware of social issues as it is of technical
issues. We have outlined the process by which we arrived at our conclusion via a number of
practical software development projects that we have undertaken. We have also looked at
issues that will have to be addressed to change the Computer Science and Software
Engineering curriculum in the case of South Africa.

We address these issues below.
Finally we believe that advancing Free and Open Source Software (FOSS) for the

developing world will require the kind of Software Engineering processes and skills that we
advocate in this paper. The strength of FOSS is in part predicated on access to the source
but that of course implies the need for local Software Engineering skills that can use and
modify the source appropriately. As Gabriella Coleman points out [8] there is significant
lock-in to proprietary software in the developing world due to a lack of skills in exploiting
FOSS. The report on FOSS by bridges.org [5] points out “specific software applications
(whether FOSS or proprietary) that could make computers more useful to local
communities — such as putting ICT to work to improve healthcare and education, and
designed with cultural factors in mind — are still missing”. If the developing world is to
take ownership of FOSS we will have to address such issues of technical skills and useful
and useable software.

6.1. Academic Policy for Community-Based Computer Science

The following conclusions and recommendations are intended to shape academic policy to
make computer science research more relevant to the needs of local communities. They are
specifically targeted at Computer Science Departments at Universities in developing
countries.
• Software Engineering as a profession has to change to emphasize the social and

economic needs of local communities. A Software Engineering method that extends
beyond purely technical aspects, as demonstrated in this paper, is needed. An Ethics
focussed on dealing with development priorities has to replace the emphasis on first
world professional issues and values.

• IT professionals have to accept a new interdisciplinary approach to Software
Engineering that involves co-development of applications in a socially sensitive
fashion. In practice these projects are difficult to manage and further work is needed on
this. The members of the team have to understand and value the different roles and
perspectives.

• Universities (and NGO’s) have great opportunities to design and implement new
approaches to using technology to support local communities in developing countries.
The responsibility incurred to avoid “forever pilots” [12] and to ensure that solutions
and projects that work are continued beyond the initial engagement.

• Innovative niche products arise from such IT developments and social entrepreneurship
can turn the outputs of community-based development into products and businesses.

6.2. Software Engineering Methodology for Developing Countries

We have outlined our method above for a Socially Aware Software Engineering
methodology. The basis of Critical Action Research gives a strong emphasis on the
empowerment of groups: facilitating change in a community through facilitating action.
The precepts of Participatory Design require the end user to participate in the software
design process. The flaw from our point of view is that it assumes at least a degree of
sophistication of the user community in relation to technological possibilities and an ability
of software designers to bridge large cultural and linguistic gaps. This may not be possible.
The cultural gaps can be enormous. The technological requirements exist within a complex
web of other needs, relationships and societal obligations. Misinterpretation (on both sides)
and unexpected needs are common. It is difficult for IT practitioners to appreciate, for
example, how an IT empowerment exercise may threaten power relations in such
communities with dangerous consequences for several participants.

Our tentative solution to this is to have local “interpreters” or champions who can
bridge the gaps. These act as our human access points into the communities. These are
often school teachers or students at the University who come form the target community
groups. Through them, we are better able to carry out Action Research cycles incorporating
the most appropriate aspects of participatory design and user-centred HCI into the software
engineering process.

6.3. Future work

The socially aware software engineering methodology needs to be refined and documented.
This means more work on integrating the Action Research, Participatory Design and HCI
aspects, and then relating those issues specifically to the software design and development
process. Furthermore, the study has to be expanded to include Computer Science in other
developing world nations: our interest is particularly in those in Sub-Saharan Africa.

References
[1] E.R. Babbie and J. Mouton (2001). The Practice of Social Research. Oxford University Press.
[2] R.L. Baskerville and A.T. Wood-Harper (1996). A Critical Perspective on Action Research as a Method

for Information Systems Research. Journal of Information Technology, 11:235-246.
[3] E.H. Blake (2001). A field computer for animal trackers. Proc. 2nd South African Conference on Human-

Computer Interaction. (CHI-SA 2001), published in ACM CHI ’02 Extended Abstracts on Human
Factors in Computing Systems, ACM Press, 532-533.

[4] Bridges.org (2004). The Real Access/Real Impact Framework for Improving The Way ICT Is Used In
Development. Available at: www.bridges.org/real_access/RealAccess_overview_bridges_03Aug04ii.pdf.

[5] Bridges.org (2005). Comparison Study of Free/Open Source and Proprietary Software in an African
Context. Avaliable at http://www.bridges.org/software_comparison/report.html

[6] M. Chetty, W. Tucker and E. Blake (2004). Developing Locally Relevant Applications for Rural Areas: A
South African Example. Proc. SAICSIT 2004, Cape Town, South Africa, ACM Press, 234-239.

[7] A. Clement and P. Van den Besselaar (1993). A Retrospective Look at Participatory Design Projects.
Communications of the ACM, 36(6):29-37.

[8] Gabriella Coleman (2004) The Politics of Open Source Adoption, NGO's in the Developing World.
Published by Tactical Technology Collective, found at http://www.tacticaltech.org/SSRC_Report.

[9] S. Dray, D.A. Siegel and P. Kotze (2003). Indra’s Net: HCI in the Developing World. Interactions, ACM
Press, 11(2):28-37.

[10] S. Earl, F. Carden and T. Smutylo (2001). Outcome Mapping: Building Learning and Reflection into
Development Programs. Ottowa, Canada: International Development Research Centre.

[11] M. Glaser and W.D. Tucker (2004) Telecommunications bridging between Deaf and hearing users in
South Africa. Proc. Conference and Workshop on Assistive Technologies for Vision and Hearing
Impairment, (CVHI 2004), Granada, Spain, (CD-ROM publication).

[12] N. Gunawardene (2005) Waiting for Pilots to Land in Tunis. Islam Online.
www.islamonline.net/English/Science/2005/11/article10.shtml

[13] S. Kemmis and R. McTaggart (2000). Participatory Action Research. Handbook of Qualitative Research,
N.K. Denzin and Y.S. Lincoln (Eds), 567-606.

[14] A. Maunder, G. Marsden and W. D. Tucker (2006). Evaluating the relevance of the ‘Real Access’ criteria
as a framework for rural HCI research. Proc. Computer Human Interaction in South Africa, CHI-SA
2006, Cape Town, South Africa, ACM Press.

[15] I. Sommerville (1998). Software Engineering. Addison Wesley, Fifth edition.
[16] G.I. Susman and R.D. Evered (1978). An assessment of the Scientific Merits of Action Research.

Administrative Science Quarterly, 23:582-603.

