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ABSTRACT
With few exceptions, theoretical studies of periodogram properties focus on pure noise time
series. This paper considers the case in which the time series consists of noise together with a
single sinusoid, observed at regularly spaced time points. The distribution of the periodogram
ordinates in this case is shown to be of exponentially modified Gaussian form. Simulations
are used to demonstrate that if the periodogram is substantially oversampled (i.e. calculated
in a dense grid of frequencies), then the distribution of the periodogram maxima can be
accurately approximated by a simple form (at least at moderate signal-to-noise ratios). This
result can be used to derive a calculation formula for the probability of correct signal frequency
identification at given values of the time series length and (true) signal-to-noise ratio. A set of
curves is presented which can be used to apply the theory to, for example, asteroseismic data.
An illustrative application to Kepler data is given.
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1 IN T RO D U C T I O N

A paper by Baran, Koen & Pokrzywka (2015) provides a different
view of the hoary problem of testing periodogram peaks for signif-
icance. Standard procedure is to consider whether the largest peak
is consistent with the time series consisting of only noise. If this
null hypothesis is rejected, it is assumed that the frequency associ-
ated with the maximum peak is due to the presence of a sinusoidal
component with that frequency. Baran et al. (2015), on the other
hand, simulated time series consisting of noise together with a si-
nusoid. They presented probabilities of extracting the correct signal
frequency, depending on the signal amplitude and the length N of
the time series. Their results demonstrate that a surprisingly high
signal-to-noise ratio R is required to find the correct frequency with
high probability. They also show that the necessaryR increases with
increasing N.

The aim of this paper is to further explore the Baran et al. (2015)
model. In particular, simulations are used to show that the distribu-
tion of signal peaks in the periodogram has a simple form if spectra
are substantially oversampled, and the signal-to-noise ratio not too
low. This result can be used to derive a calculation formula for
the probability of correctly identifying the signal frequency from a
noisy time series, in the case of measurements which are regularly
spaced in time.

The reader should bear in mind that throughout the paper loga-
rithms are to the base e.

� E-mail: ckoen@uwc.ac.za

2 TH E P E R I O D O G R A M O F A SI N U S O I DA L
S I G NA L

Let

yt = st + et t = 1, 2, . . . , N, (1)

where

st = A cos(ω∗t + φ) = A cos(2πν∗t + φ) (2)

is the signal, and et is zero mean Gaussian noise with variance σ 2
e .

The standard periodogram is

I (ω) = 1

N

⎧⎨
⎩

[∑
t

(yt − y) cos ωt

]2

+
[∑

t

(yt − y) sin ωt

]2
⎫⎬
⎭

(3)

Substituting (1) and (2) into (3) and multiplying out

I (ω) = Is(ω) + Ie(ω) + H (ω), (4)

where

Is(ω) = 1

N

⎧⎨
⎩

[∑
t

(st − s) cos ωt

]2

+
[∑

t

(st − s) sin ωt

]2
⎫⎬
⎭

Ie(ω) = 1

N

⎧⎨
⎩

[∑
t

(et − e) cos ωt

]2

+
[∑

t

(et − e) sin ωt

]2
⎫⎬
⎭

= 1

N

∑
j,k

(ej − e)(ek − e) cos(j − k)ω (5)
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H (ω) ≡ 2

N

N∑
j=1

N∑
k=1

(sj − s)(ek − e)[cos jω cos kω + sin jω sin kω].

(6)

The three spectra are now each examined in more detail.
It is well known that the signal periodogram has the sinc2-function

form

Is(ω) = NA2

4

[
sin πN (ν − ν∗)

πN (ν − ν∗)

]2

= NA2

4
sinc2[N (ν − ν∗)].

The signal-to-noise ratio is defined as

R = A

2σe/
√

N
(7)

so that in terms of R
Is(ω) = R2σ 2

e sinc2[N (ν − ν∗)]. (8)

The presence of the sinc2 factor in equation (8) implies that the
signal spectrum is effectively zero outside a very narrow interval
(ν∗ − 1/N, ν∗ + 1/N), i.e. I(ω) ≈ Ie(ω) and hence

EI (ω) ≈ EIe(ω) = σ 2
e (9)

outside the narrow frequency interval. It follows that

Is(ω) ≈ R2I sinc2[N (ν − ν∗)]. (10)

Values of Ie at different frequencies are all exponentially dis-
tributed with mean σ 2

e . Consequently, using equation (9),

Ie(ω)/Ie ≈ Ie(ω)/I

≡ I ′
e(ω) ∼ exp(1), (11)

i.e. an exponential distribution with unit mean. In what follows I

will usually be treated as a constant: it is, of course, a random
variable, with a variance of σ 2

e /N . Since the paper is concerned
with large data sets, the variability of this mean value is negligible.

The distribution of the third spectrum in equation (4), namely
H(ω), is dealt with next. Re-arranging equation (6),

H (ω) = 2

N

∑
t

[α(ω) cos ωt + β(ω) sin ωt] et

= 2

N

∑
t

γt (ω)et , (12)

where

α(ω) =
∑

t

(st − s) cos ωt

β(ω) =
∑

t

(st − s) sin ωt

γt (ω) = α(ω) cos ωt + β(ω) sin ωt. (13)

It follows from equations (12) and (13) that

H (ω) ∼ N (0, v), (14)

where v(ω) = 4σ 2
e

∑
t γ 2

t (ω)/N2.
From equation (13),

v(ω) = 4σ 2
e

N2

[
α2

∑
t

cos2 ωt + β2
∑

t

sin2 ωt

+ 2αβ
∑

t

cos ωt sin ωt

]

≈ 2σ 2
e

N
(α2 + β2)

= 2σ 2
e Is(ω). (15)

The noise spectrum Ie and the function H are uncorrelated, as can
be seen from their definitions (5) and (6),

cov [Ie(ω),H (ω)] = 2

N3

∑
i,�

∑
j,k

cos(i − �)ω cos(j − k)ω(sj − s)

× E [(ei − e)(e� − e)(ek − e)] = 0

since the third moment of Gaussian noise is zero.
It is convenient to combine Is(ω) and H(ω):

Is(ω) + H (ω) ∼ N
[
Is(ω), 2σ 2

e Is(ω)
]
.

If this is scaled by the mean periodogram,

I ′
s(ω) ≡ [Is(ω) + H (ω)]/I ∼ N [Is(ω)/I , 2Is(ω)/I ]. (16)

The full scaled spectrum I ′(ω) = I (ω)/I is thus the sum of the two
uncorrelated spectra I ′

e(ω) and I ′
s(ω). It follows from equations (11)

and (16) that

I ′(ω) ∼ exp(1) + N [I ′
s(ω), 2I ′

s(ω)], (17)

i.e. the scaled periodogram is distributed as the sum of uncorrelated
exponentially distributed and normal variates.

An extensive discussion of the ‘exponentially modified Gaussian
distribution’, of which equation (17) is a special case, can be found
in Haney (2011). The probability density function (PDF) of this
distribution at given ω is

f (x; ω) = exp

(
μ + 1

2
σ 2 − x

)
�

(
x − μ − σ 2

σ

)
, (18)

where μ = I ′
s(ω), σ = √

2I ′
s(ω) and �(•) is the cumulative stan-

dard normal distribution. The mean and variance associated with
this distribution are

E x(ω) = 1 + μ(ω) = 1 + I ′
s(ω),

var [x(ω)] = 1 + σ 2(ω) = 1 + 2I ′
s(ω). (19)

The PDF (18) will serve as the basis for the investigation of the
distribution of periodogram maxima which follows.

3 TH E D I S T R I BU T I O N O F T H E SI G NA L
P E R I O D O G R A M M A X I M U M

As pointed out above, for regularly spaced time points of obser-
vation, the signal spectrum I ′

s is effectively non-zero only over the
very narrow frequency range B = (ν∗ − 1/N, ν∗ + 1/N). This means
that

V = max
ω

I ′(ω) ≈ max
ω

[I ′
e(ω\B), I ′(B)]

≈ max
ω

[I ′
e(ω), I ′(B)]

= max(W,X), (20)

where ω\B is the set of all frequencies 0 < ω < π excluding those
in the interval B. The random variables W and X are, respectively,
the maxima of the noise and signal spectra. The distribution of W
was discussed extensively in Koen (2015). If the periodogram is
sampled only in the Fourier frequencies,

νj = j/N, j = 1, 2, . . . N/2, (21)
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Spectra of noise plus one sinusoid 1795

Figure 1. The means (solid dots) and standard deviations (open circles) of
periodogram maxima, within 100 frequency bins. The plotted information
is based on 30 000 simulated data sets with N = 20 000 and R = 5. Pe-
riodograms were only sampled in the Fourier frequencies (21). The lines
show the theoretical results (19).

then the cumulative distribution function (CDF) of W is

FW (w) = [1 − exp(−w)]N/2 → exp
{− exp

[−(w − log N/2)
]}

.

For noise spectra oversampled by a factor R,

νj = j/[N (R + 1)] j = 1, 2, . . . N (R + 1)/2, (22)

the distribution of the (scaled) periodogram maximum is of two-
parameter Gumbel form. If R � 10, then the limiting form

FW (w) ≈ exp

{
− exp

[
− (w − 1.05 log N )

1.04

]}
(23)

is reached.
It remains to find FX(x), the distribution of the periodogram max-

imum over all frequencies in set B, i.e. in the neighbourhood of
the signal frequency. Even in the absence of oversampling, two
Fourier frequencies will typically lie in set B. For finer frequency
sampling, the number of sampled values in B will increase, as
will the correlation between them. This complicates the deriva-
tion of theoretical distributional results. In order to make progress
with this challenging problem, we resort to a large simulation
experiment.

Various combinations of sample size (N = 10 000–100 000),
signal-to-noise ratio (3–7) and periodogram oversampling factor
(0 ≤ R ≤ 10) were selected, and typically 30 000 simulated data
sets per parameter combination were generated. For each simula-
tion random values of the frequency and phase in equation (2) were
generated, uniformly distributed over (0, 0.5) and [0, 2π], respec-
tively.

Results for the parameter combination N = 20 000, signal-to-
noise R = 5, and no oversampling, are plotted in Fig. 1. The
frequencies at which the signal periodogram maximum occurred
differ by at most 0.5/N from the true value ν∗. The range (ν∗ −
0.5/N, ν∗ + 0.5/N was therefore divided into 100 bins, and the
mean and standard deviation of the ∼300 periodogram peak values
in each bin calculated. The solid lines in Fig. 1 demonstrate that
results conform to those predicted by equation (19), except near
the extremes of |ν − ν∗|. This latter deviation can be explained
as follows: if the true frequency lies about mid-way between two

Figure 2. As for Fig. 1, but for periodograms oversampled by a factor
R = 4.

Fourier frequencies, then the position of the largest peak will be
determined by the relative values of the noise spectra at the two
Fourier frequencies. In other words, the periodogram peak value
will not reflect the mean noise level, but the larger of two values.
Clearly, on average, this will mean that peak values are inflated
near the frequency extremes in Fig. 1. Simulation with R = 3 con-
firm that the relative size of the effect increases with decreasing
signal-to-noise.

The situation is rather different if the periodogram is oversam-
pled. Since the frequency resolution is improved, the frequency
range over which periodogram peak values occur is reduced – to
be exact it becomes |ν − ν∗| ≤ 0.5/[N(R + 1)]. Fig. 2, for R = 4,
shows that the variance of the peak heights is still accurately given
by equation (19), whereas the simulated mean values are systemat-
ically slightly larger than those predicted by the equation. This can
again be ascribed to boosting by noise.

An important point made by Fig. 2 is that there is very little vari-
ation with frequency of the means and variances. This suggests that
the sampling distribution of the oversampled peaks may be largely
independent of frequency, at least for R ≥ 4 or so. Furthermore,
experimentation showed that

U = √
X − 1 − R (24)

is a useful transformation of X to work with. Figs 3 and 4 show
means and standard deviations of U calculated from periodogram
peak values from a large number of simulation experiments. Lines
connect results for fixed sample sizes N, and different lines are
for different values of the signal-to-noise ratio R. Lines lie in two
groups, one corresponding to R = 3, the other for all larger signal-
to-noise. This is shown in more detail in Figs 5 and 6. For R ≥ 10
andR ≥ 4 mean values of U are very close to zero, and values of σ U

cluster between 0.70 and 0.72. Kolmogorov–Smirnov goodness-of-
fit tests show that the null hypothesis that

U ∼ N (0, 0.7152) (25)

cannot be rejected for any of the parameter combinations tested
(selected values in the ranges 4 ≤ R ≤ 6, 10 000 ≤ N ≤ 100 000,
R = 10–20). The two smallest p-values found were 0.06 and 0.09,
amongst the 20 tests performed.
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1796 C. Koen

Figure 3. Mean values of the transformed maxima of signal spectra, from
simulations. Each point is the mean over typically 30 000 simulations,
for one combination of sample size, signal-to-noise ratio and periodogram
oversampling factor. Lines connect results for the same values of N. Note
the limiting behaviour as the oversampling factor is increased.

Figure 4. As for Fig. 3, but showing the standard deviations of the trans-
formed periodogram peak values.

Figure 5. Detail of Fig. 3, at large R. The top two lines are for signal-to-
noise ratios of 3; the collection of lower lines are for R = 4−6.

Figure 6. Detail of Fig. 4, at large R. The bottom two lines are for signal-
to-noise ratios of 3; the collection of upper lines are for R = 4−6.

Equations (24) and (25) imply that at high signal-to-noise ratios
the distribution of maxima of I ′

s is well described by the PDF,

fX(x) = 1

1.43
√

2π(x − 1)
exp

[
−1

2

(√
x − 1 − R

0.715

)]
x > 1.

(26)

For low values of R the signal spectrum is no longer dominant and
equation (26) no longer a good approximation.

Note that the transformation in equation (24) implies that U is a
scaled and shifted version of the standardized amplitude spectrum

S(ω) = 2
√

I (ω)/N.

Equation (25) implies that for oversampled amplitude spectra of
substantial signal-to-noise sinusoids, the spread of peak heights is
a constant, independent of parameters such as sample size.

4 T H E P RO BA B I L I T Y O F C O R R E C T LY
I D E N T I F Y I N G T H E S I G NA L F R E QU E N C Y

Clearly the probability of identifying the signal frequency is given
by the probability that the largest peak value associated with the
signal, is larger than the largest noise peak, i.e.

p = P (X > W ).

This probability is given by

p =
∫ ∞

0
fX(x)

∫ x

0
fW (w) dw dx

=
∫ ∞

0
fX(x)FW (x) dx. (27)

In the case of fully oversampled spectra, fX is given by equa-
tion (26) (at least for R > 3) and FW by equation (23) so that

p = 1

1.43
√

2π

∫ ∞

1
(x − 1)−1/2 exp

⎧⎨
⎩

[
−1

2

(√
x − 1 − R

0.715

)]

− exp

[
− (x − 1.05 log N )

1.04

] ⎫⎬
⎭ dx. (28)
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Spectra of noise plus one sinusoid 1797

Figure 7. The probability of correctly identifying the signal frequency, for
various signal-to-noise ratios R and data set sizes N, for fully oversampled
spectra. From top to bottom the curves are for N = 10 000, 50 000, 100 000,
250 000, 500 000 and 1000 000.

Values of p were simulated by generating 20 000–40 000 artificial
data sets with various combinations of 10 000 ≤ N ≤ 100 000,
3 ≤ R ≤ 6 and oversampling factors of R = 10, 20. Comparison
with the predictions of equation (28) gave a maximum difference
of |
p| = 0.008. This suggests that equation (28) can also be used
for R somewhat smaller than 4.

Perhaps more usefully, equation (28) can be used to ascertain, for
a given value of the sample size, the signal-to-noise ratio required
for secure signal frequency determinations – see Fig. 7.

5 A N ILLUSTRATIVE APPLICATION

The theory above is demonstrated by application to N = 40 000
Kepler brightness measurements of the star KIC 8008067, taken
during the tenth quarter of operation of the mission. The data were
obtained in short cadence mode, i.e. a measurement was made every
58.84 s. The series mean was subtracted, and missing observations
were replaced by zeros.

An amplitude spectrum of the data can be seen in the top panel
of Fig. 8. In addition to prominent peaks at a few isolated frequen-
cies this scaled version of the periodogram clearly shows a general
excess of power at the lowest frequencies, visible as a broad bump.
(Ordinary periodogram plots are dominated by the large peaks,
hence the low-frequency power excess is less obvious.) A possi-
ble origin for the broad power excess is correlated noise. This is
confirmed by autocorrelation and partial autocorrelation functions
plots, which suggest that the noise et may be an autoregressive type
of time series, of order 2,

et = α1et−1 + α2et−2 + εt ,

where α1 and α2 are constants, and εt is white noise. Regressing
yt on yt−1 and yt−2 gives the estimates α̂1 = 0.195 and α̂2 = 0.176,
both with standard errors of 0.0045.

The amplitude spectrum of the filtered series

rt = yt − α̂1yt−1 − α̂2

is plotted in the bottom panel of Fig. 8. The general low-frequency
power excess has clearly been efficiently whitened from the data.

We proceed to systematically pre-whiten frequencies from the
spectrum in the bottom panel of Fig. 8. This is done by (i) identifying

Figure 8. Amplitude spectra of 40 000 short cadence Kepler observations
of the star KIC 8008067, obtained during quarter 10. The top panel spectrum
is of the raw data; note the power excess over a wide low-frequency interval.
The lower panel spectrum follows after application of a linear filter to the
data.

Table 1. The results of successive pre-whitening of the filtered KIC
8008067 data. The columns headed ‘Maximum’ and ‘Mean’, respectively,
contain the height of the largest spectral ordinate, and the mean over
all spectral values. The estimated signal-to-noise ratio R for the largest
spectral peak is

√
π/2 times the ratio of peak height to the spectrum mean

– see the text for a full explanation. The last column is the probability
that the peak position corresponds to a true signal frequency. Note that
the removal of large spectral peaks has very little influence on the value
of the spectrum mean.

Frequency (d−1) Maximum Mean Estimated R p

1 680.7609 0.2392 0.0104 20.5795 1.000
2 680.7242 0.1746 0.0104 15.0194 1.000
3 716.3978 0.1739 0.0104 14.9612 1.000
4 391.5798 0.1503 0.0103 12.9308 1.000
5 680.8013 0.1285 0.0103 11.0521 1.000
6 680.8343 0.0698 0.0103 6.0054 1.000
7 440.5286 0.0670 0.0103 5.7683 1.000
8 680.6948 0.0531 0.0103 4.5660 0.959
9 32.1529 0.0459 0.0103 3.9511 0.821

the frequency ω at which the spectrum is at a maximum; (ii) fitting,
by least squares, a sinusoid with this frequency to the data; (iii)
subtracting the fitted sinusoid; (iv) calculating the spectrum of the
residuals, and repeating steps (i)–(iv).

The results are summarized in Table 1. Note that for the peri-
odogram

E
[
max

ω
I (ω)/I

]
= R2,

whereas for the amplitude spectrum

E
[
max

ω
S(ω)/S

]
= 2√

π
R = 1.128R

(where E is the expectation, i.e. ensemble average, operator). In
order to interpret the results in Table 1 it is therefore necessary to
read the probabilities in Fig. 7 which correspond to signal-to-noise
ratios 0.89 max(S)/S.

Inspection of the table shows that five of the eight reliable
frequency detections have very similar values near 680.7 d−1,
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Figure 9. Spectra of the residuals, after pre-whitening 7 (top panel) or 8
(bottom panel) frequencies from the filtered observations of KIC 8008067.

suggesting a strong feature in the data with somewhat variable am-
plitude, frequency, and/or phase. Baran (2013) has in fact identified
this frequency, as well as the other three ‘significant’ detections in
Table 1 as being due to Kepler artefacts. In this sense, the features
are truly present in the data. By contrast the spectrum in fig. 15 of
Baran (2013), which covers the relevant frequency interval, shows
no power excess at the last frequency in Table 1. Fig. 9 shows the
spectra in which frequencies 8 and 9 are, respectively, the most
prominent.

Note that in the above the influence of multiple tests on the overall
significance level was not taken into account, in order to keep the
discussion to the point and simple. In practice this issue should not
be ignored (although it usually is).

6 A C O N C L U D I N G R E M A R K

A look at Fig. 7 shows that the required signal-to-noise ratio for se-
cure signal frequency detection increases markedly with increasing
sample size. At first glance this is counter-intuitive, since it suggests
that fewer data may be better. However, it should be borne in mind
that the calculations above were done at fixed values of R. In prac-
tice, for fixed A/σ e,R increases with N as N1/2. Given that the mean
value of x associated with equation (26) is Ex = 1 + 0.7152 + R2,
this means that Ex is roughly proportional to N for even moderateR.
By contrast the mean of the maximal noise peak distribution (23) is
given by Ew = 1.05log N + 1.04γ (γ being Euler’s constant). The
rate of increase of Ew with increasing N is therefore considerably
slower than that of Ex.

Figure 10. PDFs for the heights of the largest noise-induced peaks (sharply
peaked blue curves) and signal peak maxima (broad red curves). In both
panels the ratio A/σ e = 0.05, but N = 20 000 in the top panel, N = 30 000
in the bottom panel.

The point is illustrated in Fig. 10, based on fixed A/σ e = 0.05.
In the top panel N = 20 000, giving R = 3.54, and leading to a
probability p = 0.70 that the frequency of the sinusoid will be
correctly identified in a spectrum. Increasing N to 30 000 (bottom
panel) increases R to 4.33, and p to 0.93.
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