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Probing reionization with LOFAR using 21-cm redshift space distortions
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ABSTRACT
One of the most promising ways to study the epoch of reionization (EoR) is through radio
observations of the redshifted 21-cm line emission from neutral hydrogen. These observations
are complicated by the fact that the mapping of redshifts to line-of-sight positions is distorted
by the peculiar velocities of the gas. Such distortions can be a source of error if they are not
properly understood, but they also encode information about cosmology and astrophysics.
We study the effects of redshift space distortions on the power spectrum of 21-cm radiation
from the EoR using large-scale N-body and radiative transfer simulations. We quantify the
anisotropy introduced in the 21-cm power spectrum by redshift space distortions and show
how it evolves as reionization progresses and how it relates to the underlying physics. We go
on to study the effects of redshift space distortions on LOFAR observations, taking instrument
noise and foreground subtraction into account. We find that LOFAR should be able to directly
observe the power spectrum anisotropy due to redshift space distortions at spatial scales around
k ∼ 0.1 Mpc−1 after �1000 h of integration time. At larger scales, sample errors become a
limiting factor, while at smaller scales detector noise and foregrounds make the extraction
of the signal problematic. Finally, we show how the astrophysical information contained in
the evolution of the anisotropy of the 21-cm power spectrum can be extracted from LOFAR
observations, and how it can be used to distinguish between different reionization scenarios.

Key words: instrumentation: interferometers – methods: numerical – dark ages, reionization,
first stars.
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1 IN T RO D U C T I O N

During the past century, ever deeper observations have been map-
ping out the structure and history of the Universe, all the way back to
the emission of the cosmic microwave background (CMB) radiation
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at the time of last scattering (e.g. Smoot et al. 1992; Percival et al.
2001; Abazajian et al. 2003). However, there is an important gap
in the observations, between the emission of the CMB at z ≈ 1100
and redshifts z ≈ 7. During this largely uncharted time period, the
Universe was transformed from a featureless expanse of neutral gas
into stars and galaxies surrounded by an ionized plasma.

Observing this time period, known as the epoch of reionization
(EoR), is one of the current frontiers in observational cosmology. In-
direct constraints can be obtained from observables such as quasar
spectra (Fan et al. 2006; Mortlock et al. 2011), the CMB polar-
ization (Komatsu et al. 2011; Larson et al. 2011) and temperature
measurements (Theuns et al. 2002; Raskutti et al. 2012). Mean-
while, space-based galaxy surveys are pushing the redshift limits
ever higher (e.g. Ellis et al. 2013). Still, however, the details about
the timing of the EoR and the sources that drove it are largely
unknown.

One of the most promising prospects for studying the process of
reionization in detail is observations of the highly redshifted 21-cm
emission originating from the neutral hydrogen in the intergalactic
medium (IGM) as it is being ionized by the first sources of light. A
number of radio interferometers – including LOFAR (van Haarlem
et al. 2013), PAPER (Parsons et al. 2010), 21CMA (Wang et al.
2013), GMRT (Ali, Bharadwaj & Chengalur 2008; Pen et al. 2008)
and MWA (Tingay et al. 2012) – are just beginning observations
hopefully leading up to the detection of the redshifted 21-cm ra-
diation from the EoR in the near future. In this paper, we focus
on LOFAR, which is a multipurpose radio interferometer operated
by a Dutch-led European collaboration, with one of its key science
projects being the EoR. In late 2012, the LOFAR EoR project started
observations of several fields, with the hope of making the first-ever
detection of the 21-cm signal from the EoR within the near future
(de Bruyn et al. 2011; Yatawatta et al. 2013).

It has been shown that after long observation times, instruments
such as LOFAR and MWA may be able to reach noise levels low
enough to directly image the largest structures during the EoR (Datta
et al. 2012a; Zaroubi et al. 2012; Chapman et al. 2013; Malloy &
Lidz 2013). However, for this first generation of telescopes, most
focus will be on statistics of the 21-cm signal – most notably the
power spectrum, which contains a wealth of information about the
physics of reionization (e.g. Pritchard & Loeb 2008).

Since the observable is an emission line, it is possible to trans-
late observations at a specific frequency to a redshift, which in
turn can be mapped to a position along the line of sight to pro-
duce three-dimensional data. However, the signal will be distorted
by the peculiar velocities of the gas. Since matter tends to move
towards higher density regions, peculiar velocities introduce non-
random distortions to the 21-cm signal, changing the amplitude of
the power spectrum and making it anisotropic (Bharadwaj & Ali
2004; Barkana & Loeb 2005; Lidz et al. 2007; Mao et al. 2008,
2012; Majumdar, Bharadwaj & Choudhury 2013). As was shown
by Mao et al. (2012), redshift space distortions can change the
spherically averaged 21-cm power spectrum by up to a factor of
around 5 at large spatial scales, meaning that fitting models to data
without taking this effect into account could result in significant
systematic errors. It is thus important to understand quantitatively
how strong these effects are at different scales and at different stages
of reionization.

Since redshift space distortions only affect the signal along the
line of sight, they introduce anisotropies in the otherwise isotropic
signal. If the signal-to-noise is sufficient, these anisotropies can be
used to remove the complicated astrophysical contribution to the
power spectrum and extract pure cosmological information from

21-cm observations (Barkana & Loeb 2005; Mao et al. 2012;
Shapiro et al. 2013). In situations where the noise level is too high
for this to be feasible, it may still be possible to extract the astrophys-
ical information contained in the anisotropies, which is interesting
in its own right.

The outline of the paper is as follows. In Section 2, we briefly
summarize the theory behind redshift space distortions and the ef-
fects of gas peculiar velocities on the 21-cm power spectrum. In
Section 3, we describe our simulations of the 21-cm signal in real-
and redshift-space, the instrument noise and the foregrounds. In
Section 4, we show the results from the simulations, demonstrating
both the effects of redshift space distortions on the actual 21-cm sig-
nal at different scales and global ionization fractions, and the extent
to which these effects will be visible in LOFAR observations. We
start with a simplified scenario including only instrument noise, and
then simulate a more realistic scenario taking into account a larger
number of complicating effects such as foreground subtraction. We
also discuss how the evolution of the power spectrum anisotropy can
be used to constrain the reionization history. Finally, in Section 5
we summarize and discuss our results.

For the simulations, we have assumed a flat �CDM model with
(�m, �b, h, n, σ 8) = (0.27, 0.044, 0.7, 0.96, 0.8), consistent with the
nine year Wilkinson Microwave Anisotropy Probe results (Hinshaw
et al. 2012).

2 TH E O RY

In this section, we go through some of the basic theory of the 21-cm
signal that LOFAR will observe. We describe the concept of redshift
space, and show how the 21-cm signal differs between real space
and redshift space. We also discuss the 21-cm power spectrum, and
show how this will be affected by redshift space distortions.

2.1 21-cm radiation

Instruments such as LOFAR will attempt to observe the 21-cm
emission from neutral hydrogen during the EoR. 21-cm photons are
emitted when the electrons of hydrogen atoms undergo a spin-flip,
and the intensity of the radiation depends on the density of neutral
hydrogen atoms and the ratio between the two spin populations.
This ratio is expressed through the spin temperature Ts:

n1

n0
≡ g1

g0
e−T�/Ts , (1)

where n0 and n1 are the number densities of atoms in the low- and
high-energy spin states, g0 = 1 and g1 = 3 are the statistical weights
and T� = 0.068 K is the temperature corresponding to the rest-frame
frequency of the transition.

The 21-cm radiation will be observed against the background
provided by the CMB. Depending on the temperature of the CMB
and the spin temperature, the 21-cm line can be visible either in
emission or in absorption. The actual observable quantity is the
differential brightness temperature, δTb. In its most general form,
δTb depends on the ratio between the spin temperature and the
CMB temperature as well as the velocity gradient along the line of
sight. Here, we will make two simplifying assumptions: that the line
is optically thin (which simplifies the dependence on the velocity
gradient, since we can ignore radiative transfer effects), and that
Ts � TCMB. The first of these assumptions is likely to be true in
all but the very earliest stages of reionization, and smallest spatial
scales (Mao et al. 2012). The assumption of high TS is somewhat
more uncertain in the early stages of reionization (e.g. Mesinger,
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Ferrara & Spiegel 2013). While full modelling of the TS fluctuations
is beyond the scope of this work, we discuss in Section 5 how our
results might change at the highest redshifts if this assumption is
not true.

With these approximations, we may write the brightness temper-
ature at a position r and redshift z simply as

δTb(r, z) = δ̂Tb(z)
[
1 + δρH I

(r)
]
, (2)

where δρH I
(r) is the fractional overdensity of neutral hydrogen and

δ̂Tb(z) is the mean brightness temperature at redshift z. For an in-
depth review of 21-cm physics, see e.g. Furlanetto, Oh & Briggs
(2006) or Pritchard & Loeb (2012).

2.2 Redshift space distortions

One interesting aspect of 21-cm observations is that they are effec-
tively three dimensional. Since the observable is a single emission
line, observations tuned to a specific frequency will observe only
radiation originating from a specific cosmological redshift (assum-
ing the redshift comes from the expansion of the Universe alone).
Mapping the redshift to a position along the line of sight makes
it possible to reconstruct the H I distribution in 3D, either to make
tomographic images (if the signal-to-noise is high), or to measure
statistics such as the power spectrum.

However, the mapping from redshift to line-of-sight position is
made imperfect by a number of factors – most importantly the fact
that the redshift of an emitter is not only caused by the expansion
of the Universe, but also by the emitter’s peculiar velocity. We
will use the term redshift space to denote the space that would
be reconstructed by an observer assuming that redshifts are caused
purely by Hubble expansion. Without a way of determining peculiar
velocities independently, the redshift space is the only space that is
observable. A redshift z is translated to a comoving redshift space
position s through the following mapping:

s(z) =
∫ z

0

c

H (z′)
dz′. (3)

If the redshift z is caused only by the Hubble expansion, then
the redshift space position s of some emitter will be the same as its
comoving real space position r . However, if there is also a peculiar
velocity v‖ along the line of sight, then an emitter at position r in
real space will be shifted to a position s in redshift space:

s = r + 1 + zobs

H (zobs)
v‖(t, r)r̂ , (4)

where 1 + zobs = (1 + zcos)(1 − v‖/c)−1, zobs is the observed
redshift, and zcos is the cosmological redshift (Mao et al. 2012).
In other words, an emitter with a peculiar velocity away from the
observer (i.e. v‖ > 0) will be more redshifted than one with no
velocity, and will thus appear to be farther away than is really the
case, and vice versa.

2.3 The 21-cm power spectrum in redshift space

The motions of gas parcels are not completely random: on average,
matter tends to flow towards high-density regions and away from
low-density voids. This means that emitters on the far side of a high-
density region will tend to appear blue-shifted, and thus closer than
they really are, while emitters on the near side will appear farther
away. The net effect is that, on the large scales that we are interested
in here, dense regions will appear compressed along the line of
sight, while low-density regions will look emptier than they really

Figure 1. Illustration of the Kaiser effect, showing how a real-space over-
density becomes exaggerated in redshift space. Emitters on the far side of
the high-density region will tend to move towards the observer and appear
blueshifted, while emitters on the near side will tend to appear redshifted,
resulting in dense regions appearing even denser along the line-of-sight. For
underdensities, the situation is reversed, as shown in the lower part of the
figure.

are. This effect – illustrated schematically in Fig. 1 – is called the
Kaiser effect (Kaiser 1987). It is most familiar from galaxy surveys,
but has recently been observed also for intergalactic gas (Rakic et al.
2012). While there are other effects that distort positions in redshift
space,1 from now on, for simplicity, we will use the term redshift
space distortions to mean the shifts in apparent position caused by
gas peculiar velocities. With the assumptions we are making here
(optically thin line, TS � TCMB), 21-cm redshift space distortions
are completely analogous to redshift space distortions in galaxy
surveys.

One of the most interesting statistical quantities for LOFAR – and
the one we are concerned with in this paper – is the power spectrum
of the 21-cm differential brightness temperature fluctuations, or
21-cm power spectrum for short. The power spectrum P21(k) is
defined as:〈
δ̃T ∗

b (k)δ̃Tb(k′)
〉

≡ (2π)3P21(k)δ3
D(k − k′), (5)

where δ̃Tb is the Fourier transform of δTb and δ3
D is the three-

dimensional Dirac delta function. It is often useful to work with the
dimensionless power spectrum, defined as

�2
21(k) = k3

2π2
P21(k), (6)

which for the case of the 21-cm power spectrum is in fact not
dimensionless, but has the units of mK2.

In real space, the cosmological 21-cm signal is isotropic, meaning
that P21(k) is expected to have the same value for all k with a fixed
magnitude k. However, in redshift space, this is no longer true – the
21-cm power spectrum will now depend on the direction of k. It
is convenient to work with the parameter μ, which is the cosine of
the angle between the direction in k space and the line of sight, or
μ ≡ k‖/|k|.

The 21-cm power spectrum in redshift space in a spherical shell
at a fixed value of k can be written as a fourth-order polynomial
in μ. Barkana & Loeb (2005) showed that in the limit of linear
fluctuations in density, velocity and ionized fraction, the moments
of this polynomial are power spectra of various underlying fields,
which are themselves independent of μ. Mao et al. (2012) extended
this to non-linear ionization fluctuations, but linear density and

1 For instance, using erroneous values for the cosmological parameters will
introduce a μ6 dependence to the power spectrum (the Alcock–Paczynski
effect; Alcock & Paczynski 1979; Nusser 2005). For this study, we assume
that the relevant cosmological parameters are known.
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velocity fluctuations. In this so-called quasi-linear approximation,
the power spectrum can be written as

P21(k, μ) = Pμ0 (k) + Pμ2 (k)μ2 + Pμ4 (k)μ4, (7)

where the moments are

Pμ0 = δ̂Tb
2
PδρH I

,δρH I
(k), (8)

Pμ2 = 2δ̂Tb
2
PδρH I

,δρH
(k), (9)

Pμ4 = δ̂Tb
2
PδρH ,δρH

(k). (10)

Here, δ̂Tb is the mean brightness temperature, and δx ≡ x/x̄ − 1
denotes the fractional overdensity of the quantity x. Note that the
zeroth moment is the power spectrum that would be observed if
there were no redshift space distortions in the signal, i.e. it is the
21-cm power spectrum in real space. δρH is the baryonic matter
overdensity. We assume that this is equivalent to the total matter
overdensity, which is reasonable on all but the smallest scales, where
baryons no longer trace the dark matter. The fourth moment is thus
the matter power spectrum familiar from cosmology.

The quasi-linear approximation ignores higher order terms that
become important at small spatial scales and late in the ionization
history (Shapiro et al. 2013). For the scales we are interested in
here, we have found that it provides an adequate approximation for
the early stages of reionization (〈x〉m � 0.3), while comparisons to
the quasi-linear approximation at later stages should be interpreted
more cautiously.

3 SI M U L ATI O N S

To simulate the 21-cm signal in redshift space, we used a three-
step process. First, an N-body simulation was performed to obtain
time-evolving density and velocity fields. Then, the reionization
of the IGM was simulated through a ray-tracing simulation to get
the 21-cm brightness temperature. Lastly, we combined the veloc-
ity information from the N-body simulations with the brightness
temperature to calculate the 21-cm signal in redshift space. We also
simulated the instrumental noise for LOFAR observations. To study
realistic observations, we simulated galactic and extragalactic fore-
grounds. The foregrounds are only applied in the later part of the
paper, in Section 4.4. Below, we describe each of these steps in
more detail.

3.1 Simulations of the 21-cm signal

3.1.1 N-body and radiative transfer simulations

The N-body simulations were done with CUBEP3M (Iliev et al. 2008;
Harnois-Deraps et al. 2012), which is built on the PMFAST code
(Merz, Pen & Trac 2005). CUBEP3M is a massively parallel hybrid
(MPI + OPENMP) particle–particle–particle-mesh code. Forces are
calculated on a particle–particle basis at short distances and on a
grid for long distances. For this simulation, 54883 particles with a
mass of 5 × 107 M� were used, with a grid size of 10 9763. The
simulation volume was (607 cMpc)3 (comoving Mpc). For each
output from the N-body simulations, haloes were identified using a
spherical overdensity method, resolving haloes down to ∼109 M�.
In addition to this, haloes down to 108 M� were added using a sub-
grid recipe calibrated to higher resolution simulations on a smaller
volume.

Each of the outputs from CUBEP3M was then post-processed using
the radiative transfer code C2-RAY (Mellema et al. 2006) on a grid
with 5043 cells (i.e. a cell size of 1.2 cMpc) to get the evolution
of the ionized fraction. C2-RAY uses short-characteristics ray-tracing
to simulate the ionization, given some source model. Here, the
production of ionizing photons, Ṅγ , for a halo of mass Mh was
assumed to be

Ṅγ = gγ

Mh�b

(10 Myr)�mmp
, (11)

where mp is the proton mass and gγ is a source efficiency coefficient,
effectively incorporating the star formation efficiency, the initial
mass function and the escape fraction. For this run gγ was taken to
be

gγ =
{

1.7 for Mh ≥ 109 M�
7.1 for Mh < 109 M�.

(12)

These values give a reionization history that is consistent with ex-
isting observational constraints (Iliev et al. 2012). Sources with
Mh < 109 M� were turned off when the local ionized fraction ex-
ceeded 10 per cent, motivated by the fact that these sources lack the
gravitational well to keep accreting material in an ionized environ-
ment (Iliev et al. 2007). The motivation for the higher efficiency of
these sources is that they are expected to be more metal poor than
high-mass sources, implying a more top-heavy initial mass func-
tion, and a more dust-free environment. The details of this particular
simulation will be further explained in Iliev et al. (in preparation).

The resulting reionization history reaches 〈x〉m = 0.1 (global
mass-averaged ionized fraction) around z = 9.7 and 〈x〉m = 0.9
around z = 6.7. For the remainder of the paper, we will generally
refer to the simulation outputs in terms of 〈x〉m rather than redshift,
since this makes the evolution of the various physical quantities
discussed here slightly less model dependent.

3.1.2 Simulating redshift space distortions

Since our simulations take place in real space, we need some method
to transform our data to redshift space. Mao et al. (2012) describe
a number of ways to calculate the redshift space signal from a real
space simulation volume with brightness temperature and veloc-
ity information. Here, we use a slightly different method which
splits each cell along the line of sight into n sub-cells, each with
a brightness temperature δT (r)/n. We then interpolate the velocity
and density fields on to the sub-cells, move them around according
to equation (4) and re-grid to the original resolution. This scheme is
valid only in the optically thin and high Ts case, when equation (2)
holds and it is possible to treat each parcel of gas as an independent
emitter of 21-cm radiation.

This method is similar to the MM-RRM scheme described in
Mao et al. (2012), but is simpler to implement and, arguably, more
intuitive. We have verified that our results are virtually identical to
the MM-RRM scheme for �20 sub-cells. For the remainder of the
paper, we use 50 sub-cells. As shown in Mao et al. (2012), this
method gives valid results at least up to one fourth of the Nyquist
wavenumber, kN. For our simulation volume and resolution, this
corresponds to k � kN/4 = π/4 × 504/(607 Mpc) = 0.65 Mpc−1.
Fig. 2 shows an example slice from our simulations with and with-
out peculiar velocity distortions applied. One can clearly see the
anisotropies in redshift space. Regions with a high density in real
space will appear to have an even higher density in redshift space,
and will look compressed along the line of sight.
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Figure 2. Visual illustration of the anisotropy and increased contrast induced by redshift space distortions. The top-left panel shows a slice through the
simulated brightness temperature cube in real space, at z = 9.5, where 〈x〉m ∼ 0.1. The top-right panel shows the same slice, but in redshift space, with the line
of sight along the y-axis. Both panels are 607 cMpc across, with the bottom-left corners zoomed in to better visualize the increased contrast along the line of
sight. The bottom panels show slices of the 3D power spectra of the data cubes. Here, the anisotropy in the redshift space signal is clearly visible.

3.2 Simulations of instrumental effects and foregrounds

3.2.1 Noise simulations

To simulate the detector noise contribution to the power spectrum,
we use the expression for the rms noise fluctuation per visibility of
an antenna pair, �V, found for instance in McQuinn et al. (2006):

�V =
√

2kBTsys

εAeff

√
�νt

, (13)

where Tsys is the system temperature, Aeff is the effective area of the
detectors, ε is the detector efficiency, �ν is the frequency channel
width and t is the observing time.

We then make a u, v-coverage grid based on the positions of the
LOFAR core stations (Yatawatta et al. 2013) and use equation (13)
to generate a large number of visibility noise realizations. Each of
these realizations is then Fourier transformed to image space, where
we apply the same power spectrum calculations as for the signal.
Finally, we calculate the standard deviation of the noise power
spectra in each k bin to get the noise uncertainty. This procedure is
the same as the one described in more detail in Datta et al. (2012a).

In Fig. 3, we show some examples of simulated noise power
spectrum errors for 1000 h integration time. The parameters used
for these calculations are listed in Table 1; see Labropoulos et al.
(2009) for details. The crosses and circles show the results of Monte

Figure 3. Simulated and analytically calculated noise power spectrum er-
ror, for 1000 h integration time. The simulations were carried out for the
realistic LOFAR core baseline distribution (blue crosses) and for a circu-
larly symmetric u, v-distribution (red circles). The error was calculated from
100 noise realizations with k bins of width �k = 0.19k. We also compare to
an analytical calculation (green curve). See the text for details, and Table 1
for a list of the parameters used.

Carlo simulations of the noise; each point shows the noise error, cal-
culated as the standard deviation of 100 noise realizations. We show
the results for the realistic distribution of the LOFAR core stations
(blue crosses) and using a circularly symmetric analytic expression
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Table 1. Noise simulation parameters for an observation with cen-
tral redshift zc = 9.5, as seen in Fig. 3.

System temperature 140 K + 60( νc
300 MHz )−2.55 K

Effective area 526( νc
150 MHz )−2 m2

Detector efficiency 1
Central frequency 134.8 MHz
Channel width 0.3 MHz
Frequency range 113.2 to 158.2 MHz
Number of stations 48
Station beam field of view 5◦ × 5◦
u, v coverage 12 h observation using LOFAR core

stations with source in the zenith

for the u, v-distribution (red circles). This analytic expression was
chosen to be similar to the realistic baseline distribution and consists
of the sum of two Gaussians. Since the realistic baseline distribu-
tion was calculated from a 12 h observation, it is very close to
circularly symmetric, and there is very little difference between the
two simulations. To demonstrate that the simulated noise errors are
reasonable, we also show the results from analytic calculations of
the noise error (green curve), using the expressions in McQuinn
et al. (2006). These were calculated for the same instrument param-
eters as the Monte Carlo simulations, using the double-Gaussian
expression for the u, v-coverage.

In general, these same parameters are used throughout the paper
unless stated otherwise (with the exception of the observing fre-
quency, which is being varied). We use Monte Carlo simulations of
the noise with u, v-coverage calculated from the realistic LOFAR
core station positions, with a tapering function that cuts off base-
lines with |u| > 600. With the tapering, the point-spread function
looks similar to a Gaussian with a width of ≈3 arcmin. The taper-
ing does not affect the noise power spectrum at the scales we are
interested in, but brings down the per-pixel noise which helps in the
foreground removal later on. This results in a noise rms of ≈48 mK
at 190 MHz and ≈180 mK at 115 MHz after 1000 h of integration.

3.2.2 Foreground simulations

LOFAR observations of the redshifted 21-cm line will be contami-
nated by foregrounds originating from a number of sources: local-
ized and diffuse Galactic synchrotron emission, Galactic free–free
emission and extragalactic sources such as radio galaxies and clus-
ters (Jelić et al. 2008). In Section 4.4, we study the effects of these
foregrounds on the observability of redshift space distortions.

The foregrounds were simulated using the models described in
Jelić et al. (2008, 2010). We do not consider the polarization of the
foregrounds, as recent observations indicate that it should not be a
serious contamination for the EoR (Bernardi et al. 2010). Further-
more, we assume that bright sources have been accurately removed,
for example using directional calibration (Kazemi et al. 2011). The
foregrounds simulated here can be up to five orders of magnitude
larger than the signal we hope to detect but since interferometers
such as LOFAR measure only fluctuations, foreground fluctuations
dominate by ‘only’ three orders of magnitude (e.g. Bernardi et al.
2009).

The contrast between the smooth spectral structure of the fore-
grounds and the spectral decoherence of the noise and 21-cm sig-
nal lends itself well to a foreground fitting method along the line
of sight. Though parametric methods such as polynomial fitting
have proved popular (e.g. Santos, Cooray & Knox 2005; Bowman,
Morales & Hewitt 2006; McQuinn et al. 2006; Wang et al. 2006;

Gleser, Nusser & Benson 2008; Jelić et al. 2008; Liu, Tegmark
& Zaldarriaga 2009a; Liu et al. 2009b; Petrovic & Oh 2011; Wang
et al. 2013), the non-parametric line-of-sight methods so far utilized
(Harker et al. 2009; Chapman et al. 2013, 2012; Paciga et al. 2013)
reduce the risk of foreground contamination due to an incomplete
model of the foregrounds.

Here, we choose to remove the foregrounds using a technique
called Generalized Morphological Component Analysis, or GMCA

(Bobin et al. 2007, 2008a,b; Bobin et al. 2013). Initially used for
CMB data analysis (Bobin et al. 2008a), GMCA has been shown to
recover simulated EoR power spectra to high accuracy across a
range of scales and frequencies (Chapman et al. 2013). Due to the
extremely low signal-to-noise of this problem, the 21-cm signal is
numerically ignored by the method and can be thought of as an
insignificant part of the noise. Instead, GMCA works by attempting
to describe the foregrounds as being made up of different sparse
sources by expanding them in a wavelet basis. GMCA aims to find a
basis set in which the sources to be found are sparsely represented,
i.e. a basis set where only a few of the coefficients would be non-
zero. With the sources being unlikely to have the same few non-zero
coefficients one can then use this sparsity to more easily separate
the mixture and remove the foregrounds from the signal.

The full details of the GMCA algorithm can be found in Chapman
et al. (2013) or, outside of the EoR data model, in Bobin et al. (2007,
2008a,b); Bobin et al. (2013).

4 R ESULTS

In this section, we present the results of our simulations. We begin
by quantifying how the 21-cm power spectrum will be distorted in
redshift space on various scales and at various stages of reionization.
We then investigate to what extent these distortions are visible in
LOFAR data, and show how redshift space distortions can be used
to constrain the reionization model.

4.1 Effects of redshift space distortions on the
21-cm power spectrum

Redshift space distortions modify the 21-cm brightness temperature
in two major ways, as is illustrated in Fig. 2. First, they increase
the contrast, which can either amplify or dampen the spherically
averaged power spectrum. Secondly, they introduce anisotropies
into the otherwise isotropic signal.

The effects of redshift space distortions on the spherically aver-
aged power spectrum were examined in detail by Mao et al. (2012).
By averaging equation (7) over a spherical shell, we get the quasi-
linear expectation for the spherically averaged power spectrum:

P
qlin
21 (k) = δ̂Tb

2

[
PδρH I

,δρH I
(k)

+ 2

3
PδρH ,δρH I

(k) + 1

5
PδρH ,δρH

(k)

]
. (14)

For comparison, the 21-cm power spectrum without redshift space
distortions taken into account is given by

P
Real space
21 (k) = δ̂Tb

2
PδρH I

,δρH I
(k). (15)

This means that in the earliest stages of reionization, when δρH I
≈

δρH , redshift space distortions amplify the power spectrum by ap-
proximately a factor of 1 + 2

3 + 1
5 = 1.87. Mao et al. (2012) showed

that the power spectrum is amplified by up to a factor of ∼5 in the
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Figure 4. Ratio between the spherically averaged power spectrum with the full non-linear redshift space distortions included, and without any redshift space
distortions. The left-hand panel shows the ratio for fixed global ionized fractions as a function of k. The right-hand panel shows the ratio for fixed k values as a
function of ionized fraction.

early stages of reionization, and later on suppressed. In Fig. 4,
we show the results from our simulations (including the full non-
linearities) for the spherically averaged power spectrum. Note that
the ratio stays at ∼1.87 before reionization starts (black curve), for
the large spatial scales plotted here. At smaller scales, the ratio will
deviate from this value due to a combination of non-linear effects
and the limited resolution of our simulations. For this paper, we are
focusing on scales of the order of k ∼ 0.1 Mpc−1, where the effects
of non-linearities are small.

To better understand the effects of redshift space distortions on
the power spectrum, both in terms of amplification/suppression and
in terms of anisotropies, it is illustrative to look at the three power
spectra that make up the moments in equation (7). Fig. 5 shows
the evolution of PδρH I

,δρH I
(k), PδρH ,δρH I

(k) and PδρH ,δρH
(k) calculated

from our simulated data for two fixed k modes as reionizationbrk

Figure 5. The three power spectra that affect the μ dependence of the
full brightness temperature power spectrum, as a function of global ionized
fraction for two different k modes. Where the H–H I cross-power spectrum
becomes negative, we show −PδρH I

,δρH
as a dot–dashed line. Note that

these are the power spectra of the density fluctuations, not the brightness
temperature.

progresses. Each of these power spectra determines one of the μ

terms in the polynomial in equation (7).

(i) The matter power spectrum, PδρH ,δρH
(k), is the most straight-

forward of the three, since it depends only on fundamental cos-
mology and not on the complicated astrophysics of reionization.
As overdense regions accrete matter over time, the matter power
spectrum grows monotonically.

(ii) The H I autopower spectrum, PδρH I
,δρH I

(k), initially follows
the matter power spectrum, since almost all hydrogen is neutral
early on. As the peaks in the density field become ionized, the H I

autopower starts to decline. At a global ionized fraction of around
20 per cent, there are almost no large-scale H I fluctuations left, and
PδρH I

,δρH I
is negligible compared to the matter power spectrum. After

this, the H I power spectrum turns around and becomes very strong
in amplitude. This turn-around occurs when the ionized regions
become large enough to provide large-scale fluctuations in H I. Since
δρH I

is defined as the overdensity compared to the mean H I density,
the power increases greatly in strength as the mean H I density
decreases.

(iii) The H–H I cross-power spectrum, PδρH ,δρH I
(k), also follows

the matter power spectrum initially. Like the H I autopower spec-
trum, it too decreases in strength when the dense peaks become
ionized. Since reionization proceeds inside-out in our model (i.e.
high-density regions tend to ionize before low-density regions), the
H and H I densities will become anticorrelated, and the cross-power
spectrum becomes negative (indicated by the dot–dashed lines in
Fig. 5).

Fig. 6 illustrates this in a slightly different way. The top panel
shows the ratio between the Pμ4 and Pμ0 terms from equation (7) for
different k values and global ionized fractions. In the early stages of
reionization, the ratio grows slowly as the H I autopower spectrum
– the Pμ0 term – decreases in strength, while the matter power
spectrum continues to grow. At a global ionized fraction of around
20 per cent, the ratio reaches its maximum for large spatial scales.
This corresponds to the minimum of the blue line in Fig. 5. After
this, the Pμ0 term grows rapidly and the ratio approaches zero.

The bottom panel shows the ratio between the Pμ2 and Pμ0 terms.
This ratio also starts off growing since the H–H I cross-power spec-
trum decreases more slowly than the H I auto-power spectrum. How-
ever, when the H I power spectrum turns around and the cross-power
spectrum becomes negative, the Pμ2/Pμ0 ratio rapidly changes sign.
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Figure 6. Evolution of the second and fourth moments of the 21-cm power
spectrum, relative to the zeroth moment, for different k modes as reionization
progresses. The relative strength of both of the anisotropy terms is highest
in the fairly early stages of reionization and at large spatial scales.

It is clear from Fig. 6, that the effects of redshift space distortions
are most dramatic at large spatial scales, k � 0.2 Mpc−1, and in
the rather early stages of reionization, at a global ionized fraction
of 10–30 per cent. This is due largely to the suppression of the Pμ0

term that results from the ionization of the highest density peaks,
i.e. the dip in the blue curve in Fig. 5.

4.2 Extraction from simplified mock observations

Having seen how redshift space distortions alter the 21-cm power
spectrum, we now investigate to what extent these effects will be
visible in upcoming LOFAR observations. The extraction of the
cosmological 21-cm signal from LOFAR measurements will face
many hurdles. The signal will be contaminated by factors such as
the ionosphere, thermal noise from the instrument and galactic and
extragalactic foregrounds. Furthermore, sample errors will limit the
interpretation of the largest spatial scales. At small spatial scales
and in the later stages of reionization, non-linearities in the density,
velocity and ionized fraction fields may spoil the extraction (Mao
et al. 2012; Shapiro et al. 2013). Here, we focus first on detector
noise and sample error. All the data in this section are calculated
from coeval cubes, meaning that we do not take into account any
evolution of the signal over the simulation volume – the so-called
light-cone effect. In Section 4.4, we study some further complicating
factors such as foregrounds. In that section, we also include the
light-cone effect.

4.2.1 Signal extraction from noisy data

Thermal noise from the instrument will add power to the observa-
tions on all scales; for LOFAR, the additional power from noise is
typically around a factor of 10 stronger than the power from the ac-
tual signal, for integration times around 500–1000 h. Two methods

have been proposed to extract the signal power spectrum from noisy
data (Harker et al. 2010).

The first method relies on knowing the shape of the noise power
spectrum, which is a reasonable assumption in a real-world scenario:
even if the noise power cannot be calculated theoretically to the
required accuracy, it should be possible to measure it empirically.
If the signal and noise in a measurement are uncorrelated, then the
power spectrum of the noisy signal can be written simply as the
sum of the signal power spectrum and noise power spectrum:

P signal+noise(k) = P signal(k) + P noise(k), (16)

and since Pnoise(k) is assumed to be known, it can simply be sub-
tracted from the measurements to recover the signal.

Of course, due to the nature of noise, we can never know its power
spectrum exactly, but only the expectation value. The expectation
value will always have an uncertainty, which we calculate here as the
standard deviation of a large number of simulated noise realizations.
This noise error, rather than the noise level, is the fundamental
limitation to extracting the signal power spectrum from noisy data
(although the actual noise level is important in other contexts, such
as foreground removal; see Section 4.4).

The second method does not assume any knowledge of the noise
power spectrum. It involves splitting the observing period into two
sub-epochs and cross-correlating these. If the signal plus noise in
Fourier space for sub-epoch i is mi(k) = s(k) + ni(k), then the
cross-power spectrum between two sub-epochs is

〈m1(k)m∗
2(k)〉 = 〈s(k)s∗(k)〉 + 〈s∗(k)n1(k)〉

〈s(k)n∗
2(k)〉 + 〈n1(k)n∗

2(k)〉 = 〈s(k)s∗(k)〉 ≡ P signal(k) (17)

since the two noise realizations will be uncorrelated, while the
signal is the same. The downside of this method is that foreground
subtraction must be carried out separately on the two sub-epochs in
order for the cross-terms to vanish (Harker et al. 2010). Since each
sub-epoch will have lower signal-to-noise than the full data set, this
may impact the quality of the foreground subtractions negatively.

To see how well the μ dependent power spectrum can be extracted
from noisy data, we compare in Fig. 7 our simulated signal to the
noise error. Each of the lines show the power spectrum of one of
our redshift space distorted brightness temperature cubes. For each
of the four panels, we have taken the power spectrum at a spherical
shell where |k| = k is fixed and binned it into bins of constant μ.
Note that if redshift space distortions were not taken into account,
there would be no dependence on μ, and all of these curves would
be flat.

In choosing the width of the bins one is inevitably making a trade-
off between an accurate representation of the signal and good noise
properties. Here, and for the rest of the paper, we use logarithmic
k bins of width �k = k. For μ, we use 10 linearly spaced bins.
We have found that we need such wide k bins in order to properly
reconstruct the signal at reasonable integration times. However, the
wide bins will introduce some averaging effects to our signal.

For each k value in Fig. 7, we show the simulated LOFAR
noise power spectrum error for a 1000 h observation, based on 100
noise realizations (black dotted lines). We also show the sample
errors of the signal as error bars. The sample error is calculated as
�2

21(k)
√

2/n, where n is the number of Fourier modes that go into
the calculation of �2

21 at k. The n here comes from our simulation
volume, which at z = 6.5 corresponds to approximately 4◦ × 4◦

on the sky. The LOFAR beam is similar in size, but will not have
full sensitivity over the entire field of view. On the other hand,
the planned LOFAR observations will eventually comprise several
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Figure 7. Power spectrum dependence on μ at various redshifts for different k modes. The error bars show sample error and the thick dotted lines show the
simulated LOFAR noise error at z = 7.2. All the power spectra were calculated from coeval simulation volumes, i.e. evolution effects across the volume are
not taken into account.

fields, which should bring the sample errors down to levels lower
than what we have assumed here.

From Fig. 7, we see that the noise error completely dominates
over the signal on small spatial scales, but goes down for larger
spatial scales. The sample error behaves in the opposite way: it is
negligible on the smallest spatial scales, but becomes dominant on
large scales. At k values somewhere between 0.1−1 and 0.2 Mpc−1

(corresponding roughly to angular scales of 10–50 arcmin at z = 8)
there is a sweet spot where both the noise and the sample errors are
low enough that the μ dependence of the power spectrum should
be observable with LOFAR, and as Fig. 6 shows, there are indeed
large anisotropies around these k values.

To test whether this extraction works, we generated 100 mock
observations with different noise realizations but with the same un-
derlying signal. For each such signal+noise cube, we calculated
the power spectrum and binned it in k and μ. We then subtracted
the expected noise power spectrum – calculated as the mean of
many noise realizations – to get the signal power spectrum, ac-
cording to equation (16). For each extracted signal power spec-
trum, we took a specific k bin and fit a fourth-degree polyno-
mial in μ using a standard least-squares fit with the ansatz that
Pk(μ) = Pμ0 + Pμ2μ2 + Pμ4μ4. Ideally, we would expect the terms
of this polynomial to correspond to the terms of equation (7).

In general, we find that for all but the lowest noise levels, it is
near-impossible to separate Pμ2 from Pμ4 , since the two terms tend
to leak into each other. This is demonstrated in Fig. 8, where we have
taken the μ-decomposed power spectra at a few different ionization
stages and scales, added Gaussian noise to get the specified signal-
to-noise ratios, and fitted polynomials as discussed above. We show
the individual terms of the fits along with the sum of the second
and fourth moments. It is clear that even at these very low noise

levels, the errors on the individual terms are very large (compare the
signal-to-noise here to the simulated LOFAR noise error of Fig. 7,
which is of the same order as the signal, i.e. about a factor of 5
worse than the worst case shown in Fig. 8). However, the sum of
the two terms is much more resilient to the noise, and follows the
quasi-linear expectation rather well. The leakage of the two terms
into each other is a direct consequence of the fact that μ2 and μ4

form a non-orthogonal basis.
Returning to the mock observations, we focus on the extracted

sum of the anisotropy terms rather than the individual terms them-
selves. This is shown in Fig. 9, where the histograms show the sum
of the extracted terms for all the mock observations. For compar-
ison, we also show the case where redshift space distortions are
not included, in which case we expect Pμ2 and Pμ4 to be zero.
At 500 h, the anisotropy does affect the signal, but the effect is
of a similar magnitude as the uncertainty due to the noise. After
1000 h, there is a fairly strong anisotropy at k = 0.21 Mpc−1, and
for k = 0.07 Mpc−1, virtually all mock observations show a positive
anisotropy. For 2000 h, it appears the anisotropy should be clearly
visible in the signal for both of the k values we consider here.

4.3 Redshift space distortions as a probe of reionization

In the previous section, we established that LOFAR should be able
to detect redshift space distortion anisotropies in the 21-cm power
spectrum after � 1000 h of observations. This fact in itself can be
useful as a sanity check for future observations – seeing anisotropy
in the signal will greatly increase the credibility of a claimed
21-cm detection. However, it is also interesting to explore whether
the anisotropies can be exploited by future observations to obtain
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Figure 8. Leakage of power between the μ2 and μ4 terms. The solid curves show extracted terms (Pμ2 , Pμ4 and Pμ2 + Pμ4 ) obtained by fitting polynomials
to the signal power spectrum with decreasing signal-to-noise (Gaussian noise added directly to the power spectrum). The top row shows the results for the pure
signal, where uncertainties come only from sample errors. The dashed lines show the expectation from the quasi-linear approximation. Notice how the errors
on the μ2 and μ4 terms are strongly anticorrelated, while the sum of the terms can be extracted much more reliably.

Figure 9. Extracted anisotropy terms for k = 0.07 Mpc−1 (upper row) and k = 0.21 Mpc−1 (lower row) after 100 mock observations at z = 9.5, where
〈x〉m = 0.1. For each mock observation, we extracted the signal by subtracting the expected noise power spectrum from the full power spectrum (see the text
for details). The red histograms show the distribution of the extracted anisotropy terms Pμ2 + Pμ4 for LOFAR observations of 500 (left), 1000 (middle) and
2000 h (right). As a comparison, we show the same thing for the signal with no redshift space distortions included (blue histograms). The dotted lines show the
expectation from the quasi-linear approximation. It appears that the anisotropy in the signal can be observed with LOFAR after �1000 h of observations.

additional information, as a complement to the spherically averaged
power spectrum.

It has been suggested that redshift space distortions can be used to
probe fundamental cosmological parameters by extracting the mat-
ter power spectrum, PδρH ,δρH

(k) (Barkana & Loeb 2005; McQuinn
et al. 2006). In principle, this is possible by fitting a polynomial
in μ to the power spectrum at a fixed k, like we did in Fig. 9, and
looking only for the μ4 term. In Shapiro et al. (2013), we explored
this extraction using the same N-body and reionization radiative
transfer simulations to produce our mock 21-cm signal data as used
here, but in the limit where sampling errors dominate over noise. In
practice, however, we find that for LOFAR observations, the noise
levels are far too high to reliably separate the μ2 and μ4 terms.

However, as we saw in Fig. 9, we can extract the sum of the two
anisotropy terms, Pμ2 + Pμ4 . This sum contains both cosmological
and astrophysical information (cf. equations 9 and 10), and is not
straightforward to interpret. Nevertheless, its evolution with redshift
may still tell us something about the history of reionization.

From Fig. 5, it is clear that the matter power spectrum – which
controls the μ4 term – evolves rather slowly and predictably with
time. This is to be expected, since it does not depend on the compli-
cated astrophysics of reionization, but only on the slow and steady
growth of matter overdensities. The H–H I cross-power spectrum,
on the other hand, evolves rapidly with time. We may therefore
expect that most of the change in Pμ2 + Pμ4 with redshift will be
due to the μ2 term.
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Figure 10. The evolution of the 21-cm power spectrum as a function of
μ at k = 0.21 Mpc−1 as reionization progresses. Initially, the μ2 and μ4

terms both contribute to give a strong positive dependence on |μ|, but as the
high-density regions ionize, the μ2 term becomes negative and the power
spectrum flattens, and eventually takes on a negative |μ| dependence.

The evolution of the μ-dependence of the 21-cm power spec-
trum at k = 0.21 Mpc−1 is shown in Fig. 10. In the early stages of
reionization, both Pμ2 and Pμ4 are positive, resulting in a strong
positive dependence on |μ|. As the densest areas ionize, Pμ2 drops
in strength and eventually becomes negative. At a global ionized
fraction of 〈x〉m ≈ 0.25, we have Pμ2 = −Pμ4 , and the power spec-
trum is almost independent of μ. After this, the negative Pμ2 starts
to dominate, and the power spectrum changes to a negative depen-
dence on |μ|. The general shape of the surface in Fig. 10 is the same
also for smaller values of k.

In Fig. 11, we show the results from many mock observations like
those in Fig. 9, for 2000 h observing time, where we extracted the
sum of the anisotropy terms for a number of global ionized fractions.
As the dotted line (expectation from the quasi-linear approximation)
shows, the sum of the terms is a good indicator of the curvature of
the power spectrum, shown in Fig. 10. We also see that LOFAR
observations should allow us to see the evolution of the curvature
with relatively strong certainty.

The exact shape of Figs 10 and 11 depends on the reionization
model, but some general conclusions can still be drawn. The fact

Figure 11. Reconstructed Pμ2 + Pμ4 at k = 0.21 Mpc−1 as a function of
ionized fraction with (red) and without (blue) redshift space distortions
included; error bars indicate the standard deviation from 100 noise real-
izations, calculated for 2000 h of observation per redshift. The dotted line
shows the expectation from the quasi-linear approximation.

Figure 12. Evolution of the anisotropy at k = 0.21 Mpc−1 for two toy
models representing the two most extreme cases of reionization topology
(see the text for details). We also show the results from the C2-RAY simu-
lations. While the inside-out model behaves similarly to the simulations,
the outside-in model is completely different and never obtains a negative
anisotropy.

that the sum of the anisotropy terms (the red triangles in Fig. 11)
go from positive to negative – and that the curve in Fig. 10 goes flat
and changes curvature – is a direct consequence of reionization
progressing inside-out, i.e. high-density regions ionizing before
low-density regions. Since the matter autopower spectrum grows
monotonically over time, the only way to get negative anisotropy
is if the H and H I densities are sufficiently spatially anti-correlated
so that Pμ2 < −Pμ4 . The redshift where the anisotropy changes
sign will be an indicator of how strongly inside-out reionization
is, i.e. how strong the anticorrelation between total and neutral
density is.

To further illustrate how the anisotropy evolution depends on
the reionization scenario, we show the results from two simple toy
models in Fig. 12. Both of these models were constructed from
the same, time-evolving, density field as the simulation discussed
above. For the first model, labelled ‘inside-out’, we assumed that
the ionized fraction xi was

xi =
{

1 where ρ > ρth,

0 elsewhere,
(18)

for some threshold density ρ th. The other model, labelled ‘outside-
in’ represents the other extreme. Here, we put xi = 1 for cells where
ρ < ρ th and 0 everywhere else, similar to what was proposed in
Miralda-Escudé, Haehnelt & Rees (2000). The threshold density
was set at each redshift so that both toy models would get the same
mass-averaged ionized fraction as the C2-RAY simulations.

As Fig. 12 shows, the two models give very different histories
for the anisotropy. For the outside-in model, the anisotropy stays
at a high level, and only decreases at the later stages because the
global δTb decreases. It never becomes negative. The inside-out
model, on the other hand, gives an anisotropy evolution that is very
similar to the simulations; in fact the anticorrelation appears less
extreme. While the inside-out toy model has perfect anticorrelation
between matter density and neutral fraction, the μ2 term is deter-
mined by the cross-power spectrum of the matter density and the
neutral density, and the anticorrelation between these two quanti-
ties is stronger in the simulated model. Comparing this to the errors
bars in Fig. 11, it appears to be well within the capabilities of
LOFAR to distinguish between an inside-out and an outside-in
model and to exclude at least the most extreme versions of outside-in
reionization.



21-cm redshift space distortions with LOFAR 471

Figure 13. Extracted terms from light-cone cubes with frequency-dependent noise. Each red point shows the extracted sum of anisotropy terms for slices
of 20 MHz depth. The extraction was done by cross-correlating two different noise realizations of 2000 h integration time each. The error bars show the 1σ

spread for 100 different noise realizations. For reference, we also show the same extraction without including redshift space distortions (blue points), as well
as the expectations from the quasi-linear model and the two toy models described in the text (dotted lines). The upper x-axis shows the observing frequency
corresponding to the global ionized fraction in the particular reionization model used in this paper.

4.4 Extraction from more realistic mock observations

In the previous sections, we have analysed the extraction of
anisotropies in a somewhat simplified manner. The data points in
Fig. 9, for example, all come from output cubes directly from our
simulations, with noise that was generated at a single observing
frequency. In real observations, a number of factors complicate
the extraction of the μ-dependent power spectrum, including the
following.

(i) The light-cone effect. Observations at different redshifts will
see the cosmological signal at different evolutionary stages, making
the signal at the low-frequency part of an observation different
from the high-frequency part (Datta et al. 2012b). This affects the
average power in a given k bin, but analysis has shown that the extra
anisotropy introduced by the light-cone effect is small (Datta et al.,
in preparation).

(ii) Frequency dependence of the noise. Since the effective area
and system temperature of the telescope depend on the observing
frequency, so does the noise level (see Table 1).

(iii) Resolution effects. The point spread function of the telescope
smooths the signal in the plane of the sky. This can introduce a
small μ dependence in the power spectrum at scales smaller than
the resolution. In general, the shape and size of the point spread
function are also frequency dependent.

(iv) Angular coordinates. By necessity, observations use angu-
lar coordinates on the sky, and frequency along the line of sight.
To reconstruct the power spectrum, we need to convert the signal
to physical coordinates, which will introduce some interpolation
effects.

(v) Foregrounds. The signal will be contaminated by several
sources of foregrounds. While sophisticated algorithms to remove
these exist, the signal will still be degraded somewhat.

In this section, we attempt to address these issues2 by generating
more realistic mock observations. For this, we created a light-cone

2 Further complicating factors, which we do not take into account here,
include distortions by the ionosphere and radio frequency interference
(Offringa et al. 2013). We also do not attempt to model the frequency
dependence of the point-spread function.

cuboid by taking the appropriate slices from our coeval simulation
cubes (i.e. cubes at a single instant in time) at 0.5 MHz intervals
and interpolating between these. See Datta et al. (2012b) for more
details on the method used. We then smoothed each frequency slice
of the light-cone cuboid with a 3 arcmin Gaussian to mimic the
LOFAR point spread function. Finally, we made 100 different noise
realizations with the frequency dependence detailed in Table 1.

To extract the signal power spectrum, we divided the cuboid into
slices of 20 MHz depth and for each slice we calculated the cross-
power spectrum between two different noise realizations, corre-
sponding to 2000 h each. This gives the signal autopower spectrum
according to equation (17). We then fitted polynomials to the ex-
tracted power spectra to get the sum of the anisotropy terms like
before. The results of this extraction are shown in Fig. 13, for two
different k modes. For reference, we show the same extraction when
not including redshift space distortions (blue points). We also show
the expected anisotropy from the quasi-linear approximation and
the two toy models from Fig. 12. There appears to be some bias
in the extraction of the anisotropy at k = 0.07 Mpc−1, causing it to
deviate from the quasi-linear expectation. This is most likely due
to the fact that each extracted power spectrum includes data from
a range of frequencies, which introduces some averaging effects,
particularly at large scales.

In Fig. 13, the effects of the frequency dependence of the noise
are obvious: the extraction is much more uncertain at low frequen-
cies. The details of this uncertainty are highly model dependent,
however. Along the upper x-axis, we show the observing frequency
corresponding to a given global ionized fraction in this particular
reionization simulation, but different source models may give sig-
nificantly later or earlier reionization histories (e.g. Iliev et al. 2012).
In general, a late reionization scenario will be easier to observe since
that will put the important changes in the signal at frequencies where
the noise is lower.

4.4.1 Foregrounds

To investigate the effects of foregrounds on the anisotropy extrac-
tion, we added simulated galactic and extragalactic foregrounds to
the light-cone cuboid, and used a wavelet method to remove them, as
described in Section 3.2.2. We show the errors due to foregrounds
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Figure 14. Fractional contribution to the error in the reconstructed
anisotropy terms due to foregrounds at 140 MHz (z ≈ 9). The errors were
calculated by extracting the signal power spectrum using cross-correlation
and fitting the μ polynomial before and after adding and subtracting fore-
grounds (see the text for details). Each point shows the fractional error for
one noise realization.

in Fig. 14. The errors were calculated by carrying out the same
anisotropy extraction as in Fig. 13 for a number of noise realiza-
tions before and after foreground subtraction and removal (only the
noise changes between the realizations, the foregrounds were kept
the same). The fractional error was then defined as the difference
between the extracted sum of terms with and without foregrounds
included, divided by the sum of terms without foregrounds included.

As Fig. 14 shows, it seems that foregrounds are manageable at
k = 0.21 Mpc−1 even after only ∼1000 h of observation, with no
realization adding a bigger error than around 10 per cent. For the
largest scale considered here, k = 0.07 Mpc−1, the situation looks
a bit worse, with some realizations giving errors up to several tens
of percent even at long observing times. This is in line with what
we expect: in general foreground subtraction will work best on
intermediate scales, since at large scales there will be some leakage
of foregrounds into the signal, while at small scales some noise will
leak into the signal (Chapman et al. 2012, 2013).

While noise is a fundamental limitation to the extraction of the
signal, the errors from the foregrounds depend on the method used
for foreground subtraction (and possibly also on the input parame-
ters for the method). Several subtraction algorithms exist (e.g. Jelić
et al. 2008; Harker et al. 2010; Liu & Tegmark 2011; Chapman et al.
2012, 2013), and it is not obvious that the one we have used here is
the optimal method for extracting anisotropies. We will investigate
the systematic effects of foregrounds on observing redshift space
distortions in a follow-up paper (Chapman et al., in preparation).
Meanwhile, Fig. 14 is a proof-of-concept that foregrounds can be
dealt with efficiently enough to observe the anisotropies, at least for
certain scales and frequency ranges.

5 SU M M A RY A N D D I S C U S S I O N

Observations of the 21-cm emission from the EoR will inevitably
be distorted by the peculiar velocities of the gas in the IGM. A
detailed understanding of how such redshift space distortions affect
the 21-cm signal will be crucial for interpreting future observations.
We have simulated the effects of redshift space distortions on the
21-cm power spectrum from the EoR, specifically focused on the
anisotropy introduced in the signal. As was already seen in Mao et al.
(2012), redshift space distortions strongly affect the 21-cm power
spectrum on large scales in the early stages of reionization (around
10–30 per cent global ionization fraction). Here, we have focused
specifically on the evolution of the anisotropy. We have shown how,
for our reionization model, the power spectrum becomes highly

anisotropic in the early stages of reionization, particularly at large
spatial scales (k ∼ 0.1 Mpc−1). Initially, the power spectrum has
a positive dependence on |μ| ≡ |k‖|/|k| for the small values of k
considered here. As reionization progresses, the increased anticor-
relation between the neutral and total matter densities causes the
power spectrum to flatten, and eventually depend negatively on |μ|.

We have also studied the observability of the anisotropies with
LOFAR. The range of scales around k ≈ 0.07–0.2 Mpc−1 (corre-
sponding roughly 10–50 arcmin on the sky) seems most promising
as both the instrument noise and the sample errors are low enough,
and foregrounds can be removed with decent accuracy. These scales
also happen to correspond to the region in k space with the strongest
anisotropies. A �1000 h observation with LOFAR should reveal
anisotropies in the power spectrum, unless the reionization history
is significantly different from the scenario in our simulations (for ex-
ample, a very early reionization would put most of the anisotropies
in a frequency range where the noise is higher than we have assumed
here).

The mere detection of anisotropies in the 21-cm power spectrum
would be useful as a check to make sure that the detected signal is
indeed the signal from the EoR. As can be seen in Fig. 9, it would be
highly unlikely to observe for 2000 h and not detect any anisotropy
in the power spectrum. This also shows that when fitting a model
to an observed 21-cm power spectrum, it is important to include
the effects of redshift space distortions in the model. As Fig. 4
indicates, failure to do so may result in systematic errors of several
hundred percent. Alternatively, one may use an extraction scheme,
such as the one shown in this paper, to remove the anisotropy terms
and obtain Pμ0 , which is just the power spectrum that would be
observed in the absence of redshift space distortions.

Going to longer observing times, it becomes possible to study
the evolution of the anisotropy more quantitatively. While isolating
the μ4 term – as was suggested by Barkana & Loeb (2005) – seems
unrealistic for the noise levels obtainable by LOFAR, the sum of
the anisotropy terms can be used to extract information about the
reionization history. We have shown that an inside-out reioniza-
tion scenario gives an anisotropy that is initially positive, and later
decreases and turns negative at around 20–30 per cent global ion-
ized fraction for the range of k modes considered here. While this
anisotropy evolution alone may not be enough to distinguish the
details of a particular reionization history, it provides an additional
observable that reionization models will have to reproduce and can
be used to exclude at least the more extreme outside-in models.

In conclusion, the subject of 21-cm redshift space distortions
seems to warrant further attention. Far from being just a nuisance
when interpreting observations, redshift space distortions are yet
another example of the wealth of astrophysical and cosmological
information that lies hidden in the 21-cm signal from the EoR.
Among the most pressing questions in a short time-perspective is
the universality of the anisotropy evolution that we have shown here.
While it seems clear that extreme models, such as our outside-in toy
model, can be excluded by LOFAR observations, it is not obvious
how more subtle changes in the model assumptions will affect the
anisotropy.

A related issue is our assumption that TS � TCMB. For this to be
true, the spin temperature must be coupled to the gas temperature,
and the IGM must be heated quickly by the first sources, before
reionization gets started. If the heating phase is more extended, and
overlaps with the reionization phase, the 21-cm signal will contain
additional power from TS fluctuations (Ciardi & Salvaterra 2007;
Thomas & Zaroubi 2011). Recently, Mesinger et al. (2013) showed
that in certain models, the spherically averaged 21-cm power
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spectrum can be enhanced by a factor of 10–100 by spin tempera-
ture fluctuations in the early stages of reionization. If so, the 21-cm
signal will be easier to detect, but since the TS fluctuations are likely
correlated with the xi fluctuations, the quasi-linear approximation
used here would no longer be valid, and the physical interpretation
of the redshift space distortions would be more complicated. How-
ever, it may be possible to determine from observations whether a
certain redshift lies in the high TS regime or not (Santos et al. 2008).

It is also possible that the anisotropy evolution can better be
extracted by assuming that the cosmological model is well known
(eliminating the uncertainties in the μ4 term), or by using a different
decomposition of the power spectrum. The μ decomposition used
here has the advantage of offering simple physical interpretations
of the different moments, but has the disadvantage of not forming
an orthogonal basis – hence our focus on the sum of the anisotropy
terms. Other decompositions, such as Legendre polynomials, avoid
these problems, but the results may be more difficult to interpret.

On longer time-scales, the Square Kilometre Array will deliver
observations with a signal-to-noise that will far exceed that of
LOFAR, which may facilitate the extraction of the pure cosmo-
logical information contained in the μ4 term. However, in this low-
noise regime, it becomes critical to understand the possible biases
introduced by the foreground removal, which we have only touched
upon in this paper.
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