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Abstract 

For an epidemic model of the type mentioned, we prove a theorem on almost sure 

exponential stability of the disease-free equilibrium. For small values of the diffusion 

parameter, σ , we describe the stability of the disease free equilibrium point in terms of 

an appropriate analogue, Rσ , of the basic reproduction number R0 of the deterministic 

special case. Whenever σ > 0 then Rσ < R0 . For small values of σ , the stability theorem 

guarantees almost sure exponential stability whenever Rσ < 1. We also discuss the effect 

of increasing σ . 

1. Introduction

The SIR model of disease dynamics considers the population in question as being 

divided into three compartments, see for instance the books [1] of Anderson and May 

or [2] of Brauer et al. Such a model can be modified to accommodate special features 

of the disease, conditions in the population or interventions on the epidemic. A 

combination of such interventions has been studied in the paper [3] of Meng and 

Chen, for instance. SIR models efficiently handle cases for which the disease takes 

effect relatively quickly in a newly infected individual. In cases where there are 

significant periods of incubation of the pathogen in a newly found host, it becomes 

necessary to accommodate this period of incubation when modeling, possibly by 

means of a delay or by introduction of another class (usually denoted by E for exposed) 

to capture newly infected individuals in the latent or incubation phase. SEIR models 

have been studied very extensively. Tuberculosis and HIV are examples of infections 

that are commonly modeled by including such a latent class. Among others, the paper 

[4] of Guo and Li presents a model which provides for several levels of intensity of 

infection. There are also models with multiple stages for other diseases, such as for 

instance the HIV model in Ref. [5] of Bhunu et al. 

Another addition in the modeling of population dynamics of diseases is the 

introduction of stochasticity into models. This can bring to light new insights. Many 

systems in nature reveal stochasticity in itself or are subjected to stochastic 

perturbations. The need may arise from time to time, to accommodate such random 

phenomena into the modeling. Various approaches have been taken towards 
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incorporating random phenomena of nature into epidemiological models. One such 

approach is to utilize stochastic differential equations, and in the paper [6] of Gray 

et al. such models are referred to as sde models. Also, many different disease types 

have been modeled using sde’s. Modeling of HIV through sde’s appears, for instance, 

in the papers [7] by Dalal et al., [8] by Ding et al., [9] by Yang et al. and [10] by 

Mukandavire et al. The papers [11] by Tornatore et al. and [12] of Jovanović and 

Krstić present sde models of vector-borne diseases. 

 

An important aspect that is investigated for a disease is the long term prevalence of 

the disease or whether it will ultimately vanish from the population. In fact, these 

stability studies may well be the most active research theme in epidemiological 

modeling. There are various notions of stability for systems of sde’s, see the book [13] 

of Mao. Stochastic perturbation is capable of improving stability, or to stabilize an 

otherwise unstable equilibrium solution of a system. This point is discussed in Ref. 

[13] for instance. It is also illustrated in the paper [6] for the case of disease-free 

equilibrium of an SIS model and in Ref. [14]. 

 

In this paper we study an sde model with independent perturbations for a disease of 

the SEIR type. This means that starting with a certain deterministic compartmental 

model, the differential equations are perturbed by mutually independent white noise 

terms. In particular, for this type of model, the total population size itself is perturbed 

directly by white noise. Examples of such models can be found in the works 

[15,16,10,17–19] for instance. An sde model of an SEIR disease is studied in the paper 

[17] of Yang et al. The papers [19] of Yuan et al. and [18] of Yang and Mao study 

stability of sde multi-group SEIR models. The model used in this paper can be 

obtained as special cases of models in Refs. [17,18]. We prove a theorem on almost 

sure exponential stability, which shows that the stochastic perturbation enhances 

stability of the disease-free equilibrium. Sample simulations are presented to 

illustrate the main theorem. 

 

2. Preliminaries 

We assume throughout the paper that we have a filtered probability space    

 , which is complete and right continuous. 

 

Let us consider a k-dimensional Wiener process B(t) defined on this filtered 

probability space. Suppose that we have a k-dimensional stochastic differential 

equation with initial value as below. 
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The solution is denoted by x(t, x0 ). Let us suppose that f (t, 0) = g(t, 0) = 0 for all t  ≥ 

0, so that the zero of Rk  is an equilibrium point of Eq. (2.1). 

There are different variations of the notion of stability for equilibrium points of sde’s. 

We shall focus on one of them. 

 

Definition 2.1 ([13]). The equilibrium x = 0 of the system (2.1) is said to be almost 

surely exponentially stable on a subset ∆ of Rk if for all x0  ∈ ∆, 

 

 
 

The differential for a function V (t, x) ∈ C 1,2 (R×Rk) by the formula 

 

 
 

where Trc means trace and trp denotes the transpose of a matrix. 

We require the following elementary inequality in the proof of the main result. 

Lemma 2.2. For any real numbers a1 , a2 , . . . , ak  we have: 

 

 
 

 
 

The lemma follows readily.      

 

The following lemma on sequences of positive real numbers is quoted from Ref. [14] 

where it was proved and applied. It fulfils a similar role in this paper. 

 

Lemma 2.3 ([14, Lemma 2.2]). For k ∈ N, let X(t) = (X1 (t), X2 (t), . . . , Xk(t)) be a 

bounded Rk-valued function. Let (t0,n) be any increasing unbounded sequence of 

positive real numbers. Then there is a family of sequences (tl,n) such that for each l  ∈ 

{1, 2,. . . , k}, (tl,n) is a subsequence of (tl−1,n) and the sequence Xl(tl,n) converges to 

the largest limit point of the sequence Xl(tl−1,n). 
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3. The SEIR model 

When introducing stochastic perturbations into a compartmental model, one may wish 

to perturb a specific parameter, or some or all of the variables. So for example the 

model of Ref. [7, p. 39] has only two of the four state variables carrying stochastic 

perturbations while in the model of Ref. [17] every variable is perturbed. There are 

models in which the transmission rate from susceptible to infected is perturbed such 

as in the Refs. [6,16,20] and others. We propose a model in which stochasticity is 

directly imposed on all the classes other than the class of susceptibles. This could be 

motivated by the uncertainty and behavioral change of individuals subsequent to 

infection. The model we present is a special case of models in Refs. [17,18]. 

 

The symbols S (susceptible), E (exposed), I (infectious) and R (removed) denote the 

number of individuals in the different compartments. The total population size at time t 

is N(t). Therefore N(t) = S(t) + E(t) + I(t) + R(t). The mortality rates for the different 

classes are µ0 , µ1 , µ2 and µ3 . The S-class experiences an inflow at a constant rate µ0 K 

. The effective rate of contact between infectives and susceptibles is β. The symbol u 

denotes the transmission rate from the latent class to the class of infectives and v is the 

recovery rate. The model parameters are all assumed to be positive constants. The 

dynamics of the disease in the population is given by the following system of sde’s. The 

symbol W(t) = (W1 (t), W2 (t), W3 (t)) denotes a 3-dimensional Wiener process. The non-

negative constants σ1 , σ2 and σ3 denote the intensities of the stochastic perturbations. 

 

3.1.  The sde system 

 

 
 

3.2. An analogue of the basic reproduction number 

The following invariant R(σ,−) fulfils a central role in the main theorem on stability, 

similar to the role of the basic reproduction number in a deterministic m                               

nt to introduce a new parameter, a constant c, which is not a model parameter. Thus, 

for 0 < c ≤ 1, the number is defined as: 
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We note that in the deterministic case of the model system (3.1), i.e., when σ1 = σ2 = 

σ3 = 0, then the aforementioned invariant coincides with the basic reproduction 

number R0 of the disease, as calculated in Ref. [4]. We shall write R(σ,1) simply as 

Rσ . 

 

3.3. Positivity of solutions 

In order for our model to be realistic, solutions will have to be non-negative. In our 

quest for feasible solutions we shall refer to the set ∆, which is defined as follows. 

 

 
 

The existence of positive solutions can be deduced from Ref. [17, Theorem 3.1] or 

Ref. [18, Theorem 3.1]. Thus, for each (S0 , E0 , I0 , R0 ) ∈ ∆, sde system 3.1 admits a 

unique solution (S(t), E(t), I(t), R(t)) on t ≥ 0, and this solution remains in ∆ almost 

surely. 

 

In the models of Refs. [17,18], the non-zero values for the diffusion parameters 

associated with the S-classes, complicate the convergence possibilities. Since in our 

model we have no perturbation to S, convergence of S becomes much more tractable. 

The following subset Ω1 of sample paths will be of interest. 

 

 
 

Ref. [18] it follows that P(Ω \ Ω1 ) = 0. In the remainder of this paper we assume that 

sample paths are restricted to Ω1 . 

 

Proposition 3.4. If (S0 , E0 , I0 , R0 ) ∈ ∆, then almost surely, S(t) ≤ K for all t > 0. 

Proof. Given any path (in Ω1 ), then 

 

 
 

Therefore S(0) < K implies that S(t) < K for all t > 0.      

 

In the following remarks we present some notation and observations that are 

important for the proof of the main theorem. 
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Remark 3.5. Let us fix any positive real numbers a0 , a1 , a2 , a3 . We define the 

following stochastic processes: 

 

 

 
 

 
 

Remark 3.6. The following stochastic processes will be encountered in the proof of 

the main theorem. Let 

 

 
 

4. Stability theorems 

Stability results of sde models for bigger values as well as smaller values of the perturbation 

parameters appear, for instance, in Ref. [20, Theorem 5], Ref. [7, p. 52] and in Ref. [14]. In the 

main theorem, Theorem 4.1, we investigate stability for mainly the smaller values of the 

perturbation parameters. Recall that σ = min{σj  | j = 1, 2, 3}. 
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Theorem 4.1. Suppose that c is a constant with 0 < c ≤ 1 and such that the 

following inequality holds: 

 

cσ 2 ≤ µ0 .                                                                                                                  (4.1) 

If  Rσ,c  < 1, then the disease-free equilibrium is almost surely exponentially stable. 

 

Proof. Let us assume the conditions of the theorem to hold. The condition Rσ c< 1 is 

equivalent to the following inequality: 

 

 
 

We can choose a number a0  > 0 sufficiently small in order that the following 

inequality holds: 

 

 
 

Now we fix the following numbers. Let 

 

 
 

We can choose a positive number a3 sufficiently small, such as to satisfy the inequality: 

 

 
 

Let us write (S(t), E(t), I(t), R(t)) = X(t). With the numbers ai as declared above, we 

define a stochastic process z(X(t)) as in remark 3.5. Since z(X(t)) > 0 for all t  > 0 

(recall that we assume the sample paths to be in Ω1 ), we can also define X(t)). 

 

z(X(t)) = a0 (K − S(t)) + a1 E(t) + a2 I(t) + a3 R(t), V (X(t)) = ln z(X(t)). 

 

In order to prove our theorem it suffices to prove that z(X(t)) converges exponentially 

to zero (a.s.). Using Itô’s formula (see Ref. [13] for instance) we can express the 

stochastic process V (X(t)) as: 
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with M(t) as in Remark 3.6, where we noted that 

 

 
 

Therefore 

 

 
 

and it follows that we only need to prove that 

 

 
 

We write down the expression for LV(X(t)), given the system of stochastic differential 

equations of the SEIR model. 

 

 
 

For every sample path w of the 3-dimensional Wiener process W(t), there exists an 

unbounded increasing sequence of positive time values for which 

 

 
 

Fix such a sequence. Then by Lemma 2.3 there exists a subsequence for which the 

following limit exists (see notation in Remark 3.6): 
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This enables us to define the following limits (and now we suppress the path w in the 

notation): 

 

 
 

From the identity (3.2) it follows that 

 

a0 q + a1 f + a2 i + a3 r = 1.                                                                                                                                

(4.4) 

 

Let us write 

 

 
 

In the sequence of inequalities which follows below, we use the fact that c ≤ 1 implies 

−σ 2 ≤ −(cσ)2 . At some point we e identity a1 f + a2 i + a3 r  = 1 − a0 q and the 

inequality a1 f + a2 i + a3 r  ≤ 1, both of which follows from the identity (4.4). 

 

 
 

Therefore we obtain the following inequality: 

 

Λ ≤ −a0 µ0 q + a0 βsi + a1 (βsi − (u + µ1 )f ) + a2 (uf  − (v + µ2 )i) 

+ a3 (vi − µ3 r) − cσ 2 (a1 f  + a2 i) + cσ 2 a0 q.                                                                     (4.6) 

 

From Proposition 3.4 it follows that s ≤ K . Furthermore we observe that 
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−a1 (u + µ1 + cσ 2 )f + a2 uf = −a0 f . 

 

This yields 

 

Λ ≤ i [(a0 + a1 )βK − (v + µ2 ) + a3 v] − a0 µ0 q − a0 f − a3 µ3 r − cσ 2 a2 i + cσ 2 a0 q. 

 

Therefore we obtain an inequality 

 

Λ ≤ A0 q + A1 f + A2 i + A3 r 

 

with 

 

 
 

From the inequality (4.2) it follows that A2 < 0. The coefficient A0 is negative due to 

the condition (4.1). Therefore all the coefficients A0 , A1 , A2 and A3 are negative. 

Furthermore, a0 i + a1 q + a2 r + a3 f = 1 and thus the limits i, q, r, f cannot all be zero. 

Therefore Λ < 0, and the proof is complete.     

 

Remark 4.2. The role of the constant c in Theorem 4.1 is as follows. If the 

requirements of Theorem 4.1 are fulfilled for a given value σ ∗ of σ , then by increasing 

the value of σ we will still have the disease-free equilibrium to be almost surely 

exponentially stable. 

 

Theorem 4.3. If R0  < 1 then the model is almost surely exponentially stable. 
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Proof. The proof follows very much along the argument of the proof of Theorem 4.1, 

but is much simpler in that we completely ignore the diffusion parameters. We 

choose a1 = (u + a0 )(µ1 + u)−1 and the Eq. (4.5) is simplified to get the inequality: 

 

Λ ≤ −a0 µ0 q + a0 βsi + a1 (βsi − (u + µ1 )f ) + a2 (uf  − (v + µ2 )i) + a3 (vi − µ3 r) . 

 

The proof follows similarly as for Theorem 4.1.      

 

5. Numerical examples 

The graphs in Figs. 1–3 were simulated with the model parameters as follows: 

 

K = 10 million,     β = 0.024,     u = 0.05,     v = 0.15, 

µ0  = 0.017,     µ1  = 0.0172,     µ2  = 0.0185,     µ3  = 0.0172, 

 

and initial conditions (in units of millions) 

 

S0  = 6,     E0  = 1,     I0  = 2.8,     R0  = 0.2. 

 

The simulations run over different time horizons as indicated on the graphs. Now we 

note that these parameters give in the deterministic case (i.e., with σ = 0), a value of R0  

= 1.0598 to the basic reproduction number. Consequently the system eventually 

approaches an endemic equilibrium point with coordinates: 

http://repository.uwc.ac.za
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The numerical values are: 

 

S∗ = 9.4360,    E∗ = 0.1427,    I∗ = 0.0423,    R∗ = 0.3692. 

 

The graphs show only the curves S and I, and we note (from the system of sde’s) that 

S′(t) is continuous. 

 

For the simulation of Fig. 1, we choose σ = 0.02. Then we obtain R(σ,1) = 1.0510. A 

different value of c will not decrease the value of R(σ,c). Therefore Theorem 4.1 does not 

guarantee almost sure exponential stability in this case. 

 

In Fig. 2 we use σ = 0.1 and then we have R(σ,1)=0.8708< 1. With the requirements of 

Theorem 4.1 fulfilled, in this case the theorem asserts that the disease-free equilibrium 

is almost surely exponentially stable. 
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Having fulfilled the conditions of Theorem 4.1 with our previous choice of parameters and led 

by Remark 4.2, we choose σ = 0.25, and we expect the disease-free equilibrium to have 

almost sure exponential stability. In fact in this case, convergence to the disease-free 

equilibrium is expected to happen faster. Fig. 3 shows a simulation of the solution paths. 

 

Finally, we show that the condition R(σ,c) < 1 is not sufficient to guarantee almost sure 

exponential stability of the disease- free equilibrium. In Fig. 4 we show a simulation with all the 

deterministic parameter values as before except that β is chosen at a higher value; β = 0.04. 

Taking σ = 0.25 gives R(σ,1) = 0.6675 < 1 (deterministic, R0 = 1.7662). For all the model 

parameters as chosen now, it is impossible to find a positive number c to fulfil the condition 

cσ 2 ≤ µ0 of Theorem 4.1. Consequently the theorem does not guarantee the disease-free 
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equilibrium to be almost surely exponentially stable. Indeed, the graph in Fig. 4 does not show 

any tendency towards the disease-free equilibrium. 

 

6. Conclusion 

There are only a few research publications on sde modeling of SEIR dynamics. The paper [18] 

presents results on long time behavior of the system and in particular on convergence of S to 

its disease-free equilibrium value. It includes a study of the asymptotic probability 

distribution of the variables Sk . In the paper [17] is proved a theorem on the asymptotic value 

of the time average of the deviation from the disease-free equilibrium, subject to certain upper 

bounds on the perturbation parameters and with R0 assumed to not exceed unity. The same 

paper gives results on limits of time averages, in particular, m value. Also, for the special case of 

S being unperturbed (as in our model), in Ref. [17] the system is shown to be stochastically 

stable in the large, see Ref. [17, Remark 3.1]. 

 

 
 

In relation to the theme of this paper, we particularly want to note the paper [6] which 

proves a stability result allowing for R0 to exceed the value 1. The current paper makes 

a useful contribution to understanding the disease-free equilibrium of the given sde 

model of an SEIR disease. Our main result has an uncomplicated formulation and 

guarantees almost sure exponential stability of the disease-free equilibrium value for 

Rσ  < 1. This implies an improvement on the condition R0 < 1 required for local 

asymptotic stability in the deterministic case. 
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