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Abstract 

In this paper we present a robust numerical method to solve several types of European style 

option pricing problems. The governing equations are described by variants of Black-

Scholes partial differential equations (BS-PDEs) of the reaction-diffusion-advection type. To 

discretise these BS-PDEs numerically, we use the spectral methods in the asset (spatial) 

direction and couple them with a third-order implicit-explicit predictor-corrector (IMEX-PC) 

method for the discretisation in the time direction. The use of this high-order time integration 

scheme sustains the better accuracy of the spectral methods for which they are well-known. 

Our spectral method consists of a pseudospectral formulation of the BS-PDEs by means of an 

improved Lagrange formula. On the other hand, in the IMEX-PC methods, we integrate the 

diffusion terms implicitly whereas the reaction and advection terms are integrated explicitly. 

Using this combined approach, we first solve the equations for standard European options 

and then extend this approach to digital options, butterfly spread options, and European calls 

in the Heston model. Numerical experiments illustrate that our approach is highly accurate 

and very efficient for pricing financial options such as those described above. 

 

1. Introduction.  

In this paper we consider a class of European style options described by Black-Scholes 

equations [7]. In general, closed-form analytical solutions of some of these Black-Scholes 

PDEs do not exist and therefore one has to resort to numerical methods in order to solve 

them. In the literature, the following four main families of methods have been developed and 

extensively used for Black-Scholes PDEs: lattice methods [10, 21, 32], Monte Carlo 

simulations [5, 13, 41, 45], finite difference (FD) methods [11, 42, 59], and analytical 

approximations [20, 27, 35]. The first two are classified as stochastic simulation methods 

since they approximate the underlying process directly. The other two methods are usually 

performed on the Black-Scholes PDEs with appropriate approximate boundary conditions. 

Popular techniques such as lattice methods can be very efficient for valuing simple calls 

and puts, however, they become less efficient when valuing more complicated options. FD 

methods are more desirable over binomial (or trinomial) trees because the transition from a 

differential equation to a difference equation is easier when the grid/mesh is simple and 

regular. This offers more flexibility as compared to the lattice methods. However, it is well 
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known that the kink at the strike price in the payoff function causes lower-order convergence 

when higher-order FD schemes are applied to solve these option pricing PDEs.  

 

Numerous ideas have been proposed to enhance the convergence of FD methods. Clarke and 

Parrott [19] used a coordinate transformation, stretched the region around the strike price 

where there is a discontinuity in the first derivative of the final condition, and found that 

the accuracy of their implicit FD method was improved. Another way of obtaining more 

grid points around the discontinuity is to use adaptive grid points as in Persson and von 

Sydow [44].  Recently, Oosterlee et al. [43] obtained a fourth-order accurate solution for 

European options using the grid stretching transformation [52] in combination with the 

fourth-order spatial discretisation based on a five-point stencil and the fourth-order backward 

differencing formula (BDF4) for time discretisation. More recently, Tangman et al. [50] 

considered the higher-order compact (HOC) schemes and used a grid stretching that 

concentrates the grid nodes at the strike price for the European options. 

 

In this paper we will explore spectral methods to discretise the option pricing problems in 

the asset (spatial) direction. Spectral methods are a class of approximation methods that are 

well known for the task of solving partial differential equations [17]. For smooth enough 

solutions, they  are  exponentially   convergent   in   the   number   of   degrees   of   freedom 

[16, 24, 49]. Although widely used in fields such as fluid mechanics, their use in option 

pricing have been rare. The main drawback for their direct application to option pricing is 

that the payoff functions for typical options or the initial conditions in the governing PDEs 

are nonsmooth. Thus, the collocation approximations are reduced to low-order accuracy, 

making them not competitive with existing finite difference methods. The literature is rich 

in ideas for overcoming this problem. One approach is to regularise the initial condition as 

proposed by Greenberg [28]. Suh [47, 48] used the Broadie-Detemple [12] approach and 

obtained a significant improvement of the pseudospectral method over the finite difference 

methods (FDM) while solving PDEs and PIDEs (partial integro-differential equations) in 

finance. Tangman et al. [51] presented a new approach which consists in dividing the set of 

Chebyshev points into two at the strike price E. To this end, the new set of points will cluster 

the grid nodes not only at the boundaries but also at the singularity located at the strike price 

for a European option. Using such a strategy, the Chebyshev collocation method achieved 

fourth-order accuracy. Zhu [60] proposed a spectral element method based on the 

regularisation approach of Greenberg [28] to price European options with and without jumps 

in one and two dimensions. He successfully recovered the exponential accuracy of spectral 

methods. 

 

To discretise the problem in time direction, we use a class of implicit-explicit (IMEX) 

methods. These methods have been used in conjunction with spectral methods [16] to solve 

problems involving different types of PDEs. Ascher et al. [4] constructed families of first-, 

second-, third-, and fourth-order IMEX multistep methods to solve convection-diffusion 

equations. Ruuth [46] used IMEX multistep methods and efficiently solved reaction-

diffusion problems in pattern formation. Recently, Hundsdorfer and Ruuth [34] extended 

the construction of IMEX multistep methods with general monotonicity and boundedness 
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properties to hyperbolic systems with stiff source or relaxation terms. IMEX multistep 

methods also appear in the field of option pricing. In particular, for jump-diffusion PIDE, 

Almendral and Oostelee [2] proposed a second-order backward differentiation formula 

(BDF). Feng and Linetsky [22] proposed an extrapolation approach in combination with the 

first-order accurate IMEX-Euler scheme. Their experiments show that the extrapolation 

method improved significantly over the first-order IMEX-Euler scheme in solving the jump-

diffusion PIDE. Another family of IMEX schemes is based on Runge-Kutta methods. Ascher 

et al. [3] constructed IMEX Runge-Kutta methods for solving convection-diffusion-reaction 

problems. De Frutos [25, 26] introduced IMEX-RK methods as an alternative to other existing 

time integration methods for pricing options. We refer the interested readers to [3, 8, 14, 15, 

25, 36] for recent developments on IMEX-RK methods. 

 

The class of IMEX methods that we will be using belongs to the family of IMEX-PC 

schemes. These are successfully applied to solve stiff PDEs. The main idea is to split the 

basic multistep IMEX into predictor-corrector (PC) schemes. Cash [18] used this idea to 

construct a new class of multistep methods. By splitting the BDF, he obtained a new BDF 

which has considerably better stability than the standard BDF while maintaining the same 

accuracy.  Voss and Casper [55] used a split version of the Adams-Moulton formulae as a 

novel family of PC schemes for stiff ODEs. Voss and Khaliq [56] considered the θ-methods in 

a linearly implicit form as the predictor and derived an implicit second-order PC scheme for 

reaction-diffusion problems.  Recently, Li et al. [40] adopted the strategy found in [4] to 

construct a family of higher-order IMEX-PC schemes for nonlinear parabolic differential 

equations. Their numerical results show that these IMEX-PC methods have a significant 

better stability than those found in [4]. More recently, Grooms and Julien [29] derived a 

fourth-order IMEX-PC scheme. Their method used the fourth-order total variation IMEX 

scheme found in [34] as a predictor and the fourth-order BDF scheme as a corrector. To the 

best of our knowledge, IMEX-PC methods have not been used to price financing options, 

except in [37] where a second-order IMEX-PC scheme is used to price American options. 

 

In this paper we present a spectral method based on the improved Lagrange formula to 

compute European, digital, and butterfly spread options. Our method is coupled with a 

third-order IMEX-PC for time integration. The reason for using higher-order IMEX-PC is 

that we expect our spectral method to provide exponential accuracy, which is usually affected 

by lower-order temporal schemes. We then extend this approach to solve a two-dimensional 

option pricing problem described by the Heston model. 

 

The rest of this paper is organised as follows: in Section 2, we describe the formulation of the 

option pricing problem in the Black-Scholes framework. In Section 3, the spatial 

approximations of the pricing equations using spectral methods are considered. In Section 4, 

we review the IMEX-PC methods for solving the semi-discrete system resulting from the 

spatial discretisation. The overall method is analysed in Section 5. Numerical experiments 

are conducted in Section 6. The extension of the proposed approach to a two-dimensional 

case is given in Section 7. Finally, in Section 8 we present some concluding remarks and 

scope for future research. 
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2 .  The mathematical model.  

Consider the financial market model given by the following tuple   
 

where Ω is the set of all possible outcomes of the experiment known as the sample space, F is 

the set of all events, i.e., permissible combinations of outcomes, P is a map F → [0, 1] which 

assigns a probability to each event, Fτ is a natural filtration, and Sτ  is a risky underlying 

asset price process. The triplet (Ω, F, P) is defined as a probability space. Let Zτ be a P-

Brownian motion, σ > 0 the volatility of the underlying asset, µ > 0 the expected rate of 

return, r > 0 the interest rate, and δ > 0 the continuous dividend yield. Without loss of 

generality, µ, σ, r, and δ are assumed to be constant. Then under the equivalent martingale 

measure Q, the stochastic process of the asset price Sτ is assumed to follow the geometric 

Brownian motion 

 

 
 

Now, consider a portfolio that involves short selling of one unit of a European call option and 

long holding of ∆τ units of the underlying asset. The portfolio value Π(Sτ , τ) at time τ is 

then given by 

 

 
 

where V  = V (ST, T) denotes the value of the option. The jump in the value of the portfolio in 

one time step is 

 

 
 

Note that ∆τ changes with time τ , reflecting the dynamic nature of hedging. Since V is a 

stochastic function of Sτ , we apply Ito’s lemma to compute its differential, which gives 

 

 
 

Substituting (2.1) and (2.3) into (2.2) and simplifying, we obtain 

 

 
 

The cumulative financial gain on the portfolio at time τ is given by 
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The stochastic component of the portfolio gain stems from the second term of (2.4). 

 

Suppose we adopt the dynamic hedging strategy by choosing  at all ∂Su 

times u < τ .  Then the financial gain becomes deterministic at all times.  By virtue of no 

arbitrage, the financial gain should be the same as the gain from investing on the risk free 

asset with a dynamic position whose value equals  The deterministic gain from 

this dynamic position of the riskless asset is given by 

 

 
 

By equating these two deterministic gains   and , we have 

 

 
 

which is satisfied for any asset price S if V (S, τ) satisfies the equation 

 

 
 

The above partial differential equation is called the Black-Scholes equation [7]. 

 

Now, by a change of variables t = T − τ (T is the time of expiration), we can rewrite the 

above equation as 

 

 
 

The boundary and the final conditions make the difference between American and 

European style options as well as between puts and calls and other types of options. In this 

article, we consider European vanilla, binary, and spread options, whose final and 

boundary conditions are given in Section 6, where we provide numerical results. We then, in 

Section 7, extend this approach to solve a two-dimensional option pricing problem 

described by the Heston model. 
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3. Spectral method for the discretisation in space.  

In our spectral discretisation in space, we will be using a class of Lagrange interpolation 

formulae. This interpolation is theoretically very powerful and deplored mainly for 

numerical practice as reported in many textbooks of numerical analysis [1]. With slight 

modifications, the Lagrange formula is indeed of great practical use. This has been noted by 

several authors, including Henrici [30] and Werner [58]. Berrut and Trefethen [6] modified 

the Lagrange polynomial through the formula of barycentric interpolation and proposed an 

improved Lagrange formula. In this section, we review the improved Lagrange formula and 

propose a spatial dicretisation of the option pricing problems discussed in earlier sections. 

 

3.1 Lagrange interpolation.  

We would like to find the polynomial pN (x) from the vector space of all polynomials of 

degree at most N that interpolates the data fj at distinct interpolation points xj , j = 0, . . . , N 

, i.e., 

 

 
 

Recall that the Lagrange form of pN(x) is ([39]) 

 

 
 

where the Lagrange polynomial ℓj corresponding to the node xj has the property 

 

 
 

The drawbacks of the Lagrange formula (3.1) are 

1. It takes O(N 2) additions and multiplications for each evaluation of pN (x). 

2. A new computation from scratch has to be performed if we add a new pair of 

data (xN +1, fN +1). 

3. Instability may be present in numerical computation. 

It would be advantageous to modify the formula (3.1) in order to overcome the above short- 

comings. 

 

3.2. A modified Lagrange formula. Following [6], the Lagrange formula (3.1) can be 

rewritten in such a way that pN (x) is computed in O(N ) operations. We define ℓ(x), the 

numerator of ℓj in (3.1), as 
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In addition, if we define the barycentric weight by 

 

 
 

Consequently, the Lagrange formula (3.1) becomes 

 

 
 

3.3. Barycentric formula. The formula (3.2) can be written in a more elegant way. If we 

represent the constant function f (x) = 1, we obtain 

 

 
 

Dividing (3.2) by (3.3), we get the barycentric formula for pN 

 

 
 

This is the most used form of Lagrange interpolation in practice. We see that the formula (3.4) 

is special case of (3.2). 

 

A significant advantage of the spectral collocation method based on the modified barycentric 

Lagrange interpolation is that after the transformation, the derivatives in the underlying 

differential equation do not have to be transformed correspondingly as it is usual in other 

spectral collocation methods. More details regarding the convergence and stability properties 

of the modified Lagrange formula are extensively discussed in [6, 33, 57]. 

 

3.4. Calculation of the component matrices. Suppose that the solution u of the semi-

discrete version of the PDE (2.5) is represented in the Lagrange form 
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Then the first and the second derivatives of (3.8) yield the following equations 

 

 
And 

 

 
 

To find the entries of the first and second differentiation matrices, we solve (3.9) and (3.10) at 

x = xi. This gives 
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The above can be used for the entries of the first- and second-order differentiation matrices 

D(1) and D(2) which are given by 

 

 
 

3.5. Chebyshev grid transformations.  

Spectral methods are exponentially accurate for smooth problems but in option pricing 

problems the initial condition is typically not differentiable and may be discontinuous. It is 

known (see, e.g., [53]) that local grid refinements may improve the accuracy near a region of 

singularity and hence improve the overall accuracy of the numerical method. Therefore, a 

local grid refinement near the non-differentiable or discontinuous payoff condition seems to 

be a logical choice to retain a satisfactory accuracy. In this paper we use an analytic 

coordinate transformation to stretch grids around strike prices. Following [53], we use the 

transformation 

 

 
 

where α is the point of singularity in the Chebyshev domain [−1, 1], β is a parameter that 

determines the stretching rate around α, and zk = cos(πk/N ) are the Chebyshev-Gauss- 

Lobatto (CGL) collocation points. 

 

In the case of multiple regions of singularity, it is possible to combine maps with a single point 

of singularity in order to concentrate points around these regions. Suppose that we have a 

collection of maps hk(z), k = 1, . . . , n, which cluster points around regions of rapid change δk 

with distribution parameters βk. We define such maps by 

 

 
 

In the case of butterfly spread options, we have three singularities and therefore we will have 

 

 
 

Maps such as (3.12) are nonlinear and have to be solved numerically using generic nonlinear 

equation solvers. 
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3.6. Application to the Black-Scholes PDE.  

The Black-Scholes PDE (2.5) is discretized in the asset (space) direction by means of a 

modified barycentric Lagrange collocation (BLC) approach.  Let x = g(zj ) be the 

transformed Chebyshev points.  Then the first step is to transform x ∈ [−1, 1] into S ∈ [Sm, 

SM] that better suits the option at hand. We do this through x = (2S − (SM − Sm))/(SM + 

Sm) where Sm and SM are the minimal and the maximal values of the underlying asset. 

Now writing V (S, t) = u(x, t), the PDE (2.5) together with its initial and boundary conditions 

yield 

 

 
 

Substituting (3.5) and (3.6) yields the following system of nonlinear ODEs 

 

 
 

In order to write (3.14) in matrix form, we introduce the following matrix and vector notation 

 

 
 

moreover I denotes an (N − 1) × (N − 1) identity matrix. P and Q are diagonal matrices 

whose entries are p(xi) and q(xi), i = 1, 2, . . . , N − 1, respectively. Consequently, (3.14) can 

be expressed as an initial value problem of the form 
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4. Implicit-explicit predictor-corrector method for the discretisation in time.  

The system of ODEs (3.15) can be solved by means of standard ODE time integrators. The 

main challenge when dealing with this type of problems is that explicit time integrators are 

inadequate because the diffusion term is typically stiff and necessitates excessively small 

time steps. On the other hand, the use of stiffly accurate implicit time integrators which are 

unconditionally stable is practically time consuming. In order to avoid these problems, it 

could be interesting to separate non-stiff and stiff terms. The non-stiff term has to be solved 

explicitly whereas the stiff term has to be integrated implicitly. Such time integrators are 

known as implicit-explicit (IMEX) time integrators and have been used for the time 

integration of spatially discretised PDEs of reaction-diffusion type [46]. In this article, we use 

IMEX-PC methods to integrate the system of ODEs obtained after a spatial discretisation of 

the PDE (2.5) mentioned above. 

 

Let us consider the system of ODEs (3.15) 

 

 
 

and let k be the time step-size and un the approximation of the solution at tn = kn. Following 

the strategy of [4], we may write the general s-step IMEX method when applied to the system 

of ODEs (3.15) as 

 

 
 

where as ≠ 0. Following [40], the split form of (4.1) yields the following IMEX-PC 

 

 
 

The above IMEX-PC uses the IMEX of [4] as the predictor and implicit schemes as the 

corrector. Only the non-stiff term is corrected; the corrector treats the stiff term implicitly. 

This significantly reduces the computational cost compared with general implicit methods. 

As compared to the PC used in [37, 55], the present strategy does not require the use of 

iterative solvers such as Newton’s method. 
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We denote by IMEX-PC(s, m) the s-step implicit-explicit predictor-corrector of order m. 

IMEX-PC(1, m): the IMEX-PC(1, m) is a family of 1-step, one-parameter (γ) IMEX-PC 

schemes of order m and can be written as follows: 

 

 
 

where the parameter 0 ≤ γ ≤ 1 prevents large truncation errors. The choice γ = 1 yields an 

IMEX-PC(1,1) scheme. 

 

IMEX-PC(2, m):  the IMEX-PC(2, m) is a family of 2-step, two-parameter (γ and c) IMEX-

PC schemes of order m and can be written as follows: 

 

 
 

Choosing (γ, c) = (0, 1) we obtain an IMEX-PC(2,2) scheme. 

 

IMEX-PC(3,m): the IMEX-PC(3,m) is a family of 3-step, three-parameter (γ, θ, and c) IMEX-

PC schemes of order m and can be written as follows: 
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The choice (γ, θ, c) = (1, 0, 0) yields an IMEX-PC(3,3) scheme. 

 

5. Analysis of the method.   

In [40], Li et al. gave stability and convergence results for IMEX-PC methods for solving 

stiff problems.  We briefly recall some of them and associate these with our option pricing 

problems.  Then we compare the stability regions of these IMEX-PC methods to those of the 

existing IMEX methods [4]. The order of accuracy of the present IMEX-PC is given by the 

following theorem. 

 

THEOREM 5.1 ([40]). Let us suppose that the s-step IMEX predictor schemes (4.2) are of 

order p and that the corrector schemes (4.3) have order q. Then the resulting IMEX-PC is of 

order min{p + 1, q}. 

 

We would like to analyse the stability of the IMEX-PC schemes (4.2) and (4.3) when 

applied to the PDE problem (2.5). It is beneficial to transform this PDE into one with constant 

coefficients by considering the transformation x = log(S/E), where E is the strike price. 

Therefore the problem (2.5) becomes 

 

 
 

Where  denotes the value of the European options, 

t = T − τ is the time to expiry, and T is the expiration (maturity) time. 

 

The first step is to find a spectral representation of this problem. To this end, we consider the 

following change of variables 

 

 
 

The substitution of (5.2) into (5.1) yields the scalar test equation 
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Where   By applying the IMEX-PC methods (4.2) and (4.3) 

to the scalar test equation (5.3) with step size k, we obtain 

 

 
 

Substituting the variables into the Equations 

(5.4) and (5.5) and plugging in (5.4) into (5.5) yields the following characteristic equation 

 

 
 

Note that the IMEX-PC is linearly stable when all the roots of the characteristic polynomial 

(5.6) have modulus less than or equal to one. In other words, let Ri(z,w) be the roots of the 

characteristic polynomial for i = 1, 2, . . . , s. Then we define the stability region S of the 

method as 

 

 
 

The root of the characteristic polynomial of the IMEX-PC(1,2) method is given by 

 

 
 

For higher-order PC methods we do not provide general explicit expressions of their 

characteristic polynomials. We rather confine our study to special cases. The choice (γ, c) = 

(1, 0) gives the following characteristic polynomial 

 

 
 

whereas the root of the characteristic polynomial of the second-order IMEX method [4] is 

given by 
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Similarly, the choice (γ, θ, c) = (1, 0, 0) for the 3-step PC gives 

 

 
 

whereas the root of the characteristic polynomial of the third-order IMEX method [4] is 

given by 

 

 
 

Figure 5.1 shows the stability region of the IMEX scheme (4.1) and the IMEX-PC schemes 

(4.2) and (4.3) in the (z,w)-plane. Figure 5.1 (top) represents the region of stability of the 

IMEX(1,2) and IMEX-PC(1,2) schemes with γ = ½ . Figure 5.1 (left bottom) shows the 

stability region of the IMEX(2,2) and IMEX-PC(2,2) methods with (γ, c) = (1, 0), and Figure 

5.1 (right bottom) shows the stability region of the IMEX(3,3) and IMEX-PC(3,3) methods 

with (γ, c, θ) = (1, 0, 0). Clearly, we observe that in all cases the stability region of the IMEX 

scheme [4] is included in the stability region of the proposed IMEX-PC scheme. This show 

that the proposed IMEX-PC methods have larger stability regions and therefore are more 

stable than the IMEX methods suggested in [4]. 

 

6. Numerical experiments.  

In this section, we present some numerical results that we obtained using the proposed 

approach.  We consider European call, put, digital call, and butterfly spread options. 

Further extensions will be discussed in Section 7. 

 

6.1 European call options. A European call option gives the holder the right to 

exercise the option at maturity time T. To buy the underlying asset at maturity time T makes 

sense if the asset price is higher than the exercise price (S > E) because one can buy the 

asset for E and sell it immediately on the market for S. If this is not the case, then the option 

is worthless. The value of a European call option can be determined by solving equation (2.5) 

subject to the initial condition 
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where E is the strike price of the option V . The boundary conditions are 

 

 
 

The analytic solution of the Black-Scholes equation (2.5) for European call options is known 

[7, 59] and expressed as 

 

 
 

And N(・) is the cumulative probability distribution function for a standardised normal 

variable 

 
 

Numerical results are obtained with T = 0.5, 1, and 2 years as maturity times with Smin = 0 

and Smax = 200 with strike price E = 45. The number of space mesh points is N = 80, and 

the other parameters are as indicated in the Tables 6.1–6.5. The accuracy of the present 

method was measured by means of the maximum error 
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and the root mean square error 

 

 
 

where N is the number of points used in the discretisation in one particular direction, Vi 

is the exact solution of the Black-Scholes equation given by (6.3), and ui is the numerical 

approximation to the exact solution of the Black-Scholes equation. For comparison purposes, 

we present the absolute, maximum, and root mean square errors. However, we also add 

the relative errors to get a better idea of the performance of our method. We evaluate the 

value of a European option by finite differences (FD) using uniform grids, and barycentric 

Lagrange collocation (BLC) using the Chebyshev-Gauss-Lobatto (CGL) points for various 

option parameters. The results are displayed in Table 6.1. 

 

Although in theory and for a range of practical problems, the higher accuracy of general 

spectral methods over finite difference methods [9, 23, 24] has been shown and 

demonstrated, one can observe from Table 6.1 that the BLC has a moderately smaller error 

than that of the FD. Numerically, higher-order methods, in particular spectral methods, have 

difficulties in accurately approximating the solution in the region of singularity, i.e., the 

http://repository.uwc.ac.za



18 
 

region of dramatic change. In fact, spectral collocation methods are adequate for problems 

involving 

 

 
 

smooth initial conditions. In the present case, the first derivative of the initial condition is 

discontinuous at the strike price E. As a result, the BLC method cannot be significantly 

superior to FD as far as the accuracy is concerned. 

 

In order to improve the accuracy of the BLC method, we use resolution grids in the region 

of dramatic change. We utilise the transformation (3.11) to increase the number of points in 

the region around the strike price S = E. Therefore, from Table 6.2, we observe a significant 

improvement of the BLC method when concentrating more grid points near the strike price, 

while with the FD method the improvement is moderate. This is because high resolution 

grids in the region of singularity at E allow the BLC to capture the rapid change in the option 

price, while in the region of low change, the BLC method gives very accurate results with a 

small number of grid points. 

 

In Figure 6.1, we illustrate the trade-off between computational time and the accuracy as the 

time step is refined for the IMEX-PC(1,1) and IMEX(1,1) methods with the choice γ = 1, for 

the IMEX-PC(2,2) and IMEX(2,2) methods with the choice (γ, c) = (1, 0), and for the IMEX-

PC(3,3) and IMEX(3,3) methods with the choice (γ, θ, c) = (1, 0, 0) at time T = 0.5. 
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The following parameters are used: Smin = 0, Smax = 200, r = 0.2, σ = 0.3, δ = 0.0, E = 45, 

N = 100, and β = 0.5 × 10−4. In all cases for two methods of the same order, the IMEX-PC 

schemes show better results as compared to the IMEX schemes. One observes that IMEX-

PC(3,3) has the best convergence compared to other methods. Therefore in the remainder of 

this paper, we use IMEX-PC(3,3) as time integrating method. 

 

 
 

Figure 6.2 illustrates the convergence of the mapped BLC method for different values of β. It 

can be observed that the mapped BLC converges much better than the FD method. Different 

values of the parameter β leads to different accuracy. The choice β = 0.5 × 10−1 shows the 

worst accuracy but is still very satisfactory compared to the FD method.  The smaller the 

value of β, the better is the accuracy because then more points are clustered near the 

strike price E. However, we find that β = 0.5 × 10−4 gives better accuracy than β = 0.5 × 

10−5. The main reason is that there are not enough points left away from the region of 

regularity and therefore β = 0.5 × 10−4 seems to be the optimal choice for valuing European 

call and put options. In the experiments below, we therefore chose β = 0.5 × 10−4. 

 

In addition, we investigate the trade off between computational time and the accuracy as the 

asset grid space is refined. Clearly the BLC method is faster than the FD method and achieves 

spectral convergence as expected. 
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Figure 6.3 represents the numerical solution for a European call option together with its 

Delta (∆), Gamma (Γ), and the numerical error.  All these results are very satisfactory and 

free of oscillations. 

 

 
 

6.2. European put options.  

Given the value of a call option, it is possible to compute the value of the corresponding put 

option via the put-call-parity [38]. However, puts and calls do not always share the same 

properties. Therefore, we also evaluate European put options by our approach. 

 

The value of a European put can be computed numerically by solving the PDE (2.5) subject 

to the initial condition 

 

 
 

and the boundary conditions 

 

 
 

The benchmark used to validate our numerical scheme is the analytic solution of the Black- 
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Scholes equation (2.5) given by 

 

 
 

where d1, d2 are defined in (6.4) and N is the cumulative normal distribution defined in (6.5). 

 

We use the same set of parameters as in the valuation of European call options. The results 

are presented in Table 6.3. It can be seen that the conclusions are similar to those for the 

European call options. Therefore, our approach is consistent. Hence, the approach using the 

grid refinement at the strike price is found to perform significantly better than the FD method 

in terms of accuracy for valuating European option pricing problems. 
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Now, we investigate the utility of our approach to price two types of exotic options, namely 

European digital call options and butterfly spread options. 

 

6.3. European digital call options.  

Another type of option that we are dealing within this paper is the digital call option. This 

option belongs to the class of exotic options. Such contracts are traded between a financial 

institution (e.g., a bank) and a customer and not at exchanges. A digital call option, also 

known as cash-or-nothing call or binary option, is an option with payoff zero before the 

strike price and one (or any fixed amount) after the strike price. As an example of these 

options, we solve the Black-Scholes PDE model (2.5) with the payoff function given by 
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with the following boundary conditions 

 

 
 

The analytic solution for the digital option is 

 

 
 

where d2 is in defined in (6.4). The discontinuous initial conditions for digital options are 

susceptible to cause numerical oscillations of the Greeks when time integrators such as the 

Crank-Nicolson method are used. However, our approach produces a non-oscillatory 

behaviour of the Greeks. Figure 6.4 represents the numerical solution for the digital call 

option together with its Delta (∆), Gamma (Γ), and the numerical error. All these results 

are very satisfactory and free of oscillations. We also investigate the maximum error and the 

root mean square error for different maturity times and different parameters as chosen in 

the previous experiments. The results are presented in Table 6.4. Our approach (BLC) using 

the grid refinement at strike price is found to perform significantly better than the FD method 

in terms of accuracy for valuating European digital call option pricing problems, although the 

results are less accurate than in the case of European calls and puts. The main reason resides 

in the smoothness of the initial conditions. While the European call and put has a 

discontinuity in the first derivative of the payoff, the digital options have discontinuities in 

the payoff itself, i.e., the digital options, which are less smooth than the European vanilla 

options, produce less accurate results compared to those of the European vanilla options for 

the same grid stretching parameter. This is consistent with the convergence of spectral 

methods, which relies on the smoothness of the initial conditions. 

 

6.4. Butterfly spread options.  

The butterfly spread is a combination of four options. Two long position calls with exercise 

price E1 and E3 and two short position calls with exercise price E  = (E + E )/2. The value 

of a European butterfly spread call option can be determined by solving Equation (2.5) 

subject to the initial condition 

 

 
 

and the boundary conditions 
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In this particular case, we need to stretch the grid points at three different strike prices in 

order to improve the accuracy of the BLC method. The suitable map is chosen from (3.13) 

with a1 = a2 = a3 = 1/3, and the grid stretching parameters are β1 = β2 = β3 = 0.5×10−3. 

 

Figure 6.5 displays the numerical values of the butterfly spread option together with its ∆, 

Γ, and its error with N = 80, Smin = 0, Smax = 200, r = 0.1, σ = 0.2, δ = 0.0, E1 = 45, E3 = 

80 at T = 0.5. To ensure that the error is dominated by the spatial discretisation, we choose 

the time step k = 0.001. All the results are satisfactory and free of oscillations. To further 

investigate the accuracy of the mapped BLC method for pricing butterfly spread options, we 

compare the results with those obtained by using the FD method. The results are presented in 

Table 6.5. We observe that the results obtained with the mapped BLC method are more 

accurate than those of the FD method. Very accurate results are obtained for different values 

of option parameters for different expiry times. 

 

7. Extension of the proposed approach to solve the Heston model.  

The stochastic volatility model of Heston [31] is one of the most popular equity option pricing 

models. This model is an extension of the Black-Scholes PDE to two-dimensional form. Before 

we explain the extension of the proposed approach, we describe this model. 

 

Let V (S, ν, t) denotes the value of the option if at time T − t the underlying asset price equals S 

and its variance equals ν. Heston’s stochastic volatility model [31] implies that V satisfies the 

two-dimensional parabolic PDE 
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for 0 ≤ t ≤ T , S > 0, ν > 0. The parameter κ > 0 is the volatility mean-reversion rate, η > 

0 is the long-term mean, σ is the volatility of the variance, ρ ∈ [−1, 1] is the correlation 

between the underlying asset and the variance, and r is the interest rate. 

 

The initial condition for a call option is 

 

 
 

where E is the strike price of the option. Boundary conditions are given by 

 

 
 

Let V (S, ν, T ) = Y (S, t) + C(S, ν, t), where Y satisfies the Black-Scholes equation (2.5) for a call 

option (6.1)–(6.2). Then the Heston model can be written in terms of C 

 

 
 

Where 

 

 
 

The change of variables 

 

 
 

yields the Heston PDE of the form 

 

 
 

The initial condition is 
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Boundary conditions are given by 

 

 
 

In order to discretise the two-dimensional problem (7.2)–(7.4), we introduce the two-

dimensional version of the approximation (3.4), viz., 

 

 
 

where wj , for j = 0, . . . ,Nx, and wk, for k = 0, . . . ,N!, are the barycentric weights defined 

by   

 

 
 

In this article, our extension of the BLC to two dimensions depends on the utilisation of the 

Kronecker product for matrices denoted by “⊗”. We explain the notation as per below. 

 

Let A be an m × n matrix and B a p × q matrix. The Kronecker or tensor product of A and B 

is the matrix 
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The interested reader can find a review of the properties of the Kronecker product in [54]. 

 

We utilise the Kronecker product notation because it provides for a clear separation of 

operators in multiple dimensions. For instance, we consider the discretisation of the first- and 

second-order derivative operators in two dimensions as follows 

 

 
 

Where  and  are the identity matrices in x and ω directions, respectively, and  

and  are the first- and second-order differentiation matrices in x and ω directions, 

respectively. Denoting 

  

 diag  

 

 
 

and substituting (7.5) into (7.2) yields 
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Equation (7.6) can be written in the form of a global matrix as 

 

 
 

Where 

 

 
 

is the stiff part of the PDE (7.2) and 

 

 
 

is the non-stiff part. We next apply the IMEX-PC(3,3) defined in Section 4 to solve the system of 

ODEs (7.7). 

 

We compare the performance of the BLC method against that of the FD method to compute 

the European call option prices under the Heston model. The parameter values used in the 

simulation are E = 100, T = 0.5, κ = 2, η = 0.01, ρ = 0.5, r = 0.1, L1 = ln(2), and ln(8). 

Figure 7.1 represents the value of the option plotted at the final time T = 0.5 using the BLC 

method coupled with IMEX-PC(3,3) with time step k = 0.001. Here a non-uniform grid is 

applied in both directions S and ν such that many points lie in the neighbourhood of S = 

K and ν  = 0, respectively. This is motivated by the fact that the initial condition (7.1) 

possesses a discontinuity in its first derivative at S = E and that for ν ≈ 0, the Heston PDE 

is advection-dominated. The results obtained here are in good agreement with the analytical 

solution proposed in [31]. In Figure 7.2 (left), we plot the relative error against the number of 

spatial grids in the asset direction. In Figure 7.2 (right), the relative error is plotted against 

the computational time. For this problem, the BLC method is faster than the FD method and 

achieves a spectral convergence as expected. 

 

8. Concluding remarks and scope for future research.  

In this paper, we have considered a spectral approach based on a barycentric Lagrange 

discretisation in space and combined it with a third-order IMEX-PC time marching method 

for pricing European vanilla, digital, and butterfly spread options. The method was first 

designed for one-dimensional problems and then extended to two-dimensional problems. 

The proposed method is also analysed for stability. Extensive comparisons are carried out 

and presented in form of tables and figures. It can be seen from these comparative results that 

we achieve high-order accuracy using coordinate transformations that stretch the points 
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around the strike price. These results show that our method is very accurate and reliable in 

pricing the class of options indicated in this paper. Currently, we are exploring the utility of 

this approach to solve other classes of option pricing problems. 
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