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We propose a stochastic compartmental model for the population dynamics of tuberculosis. The model is applicable to crowded
environments such as for people in high density camps or in prisons. We start off with a known ordinary differential equation
model, and we impose stochastic perturbation. We prove the existence and uniqueness of positive solutions of a stochastic model.
We introduce an invariant generalizing the basic reproductionnumber andprove the stability of the disease-free equilibriumwhen it
is below unity or slightly higher than unity and the perturbation is small. Ourmain theorem implies that the stochastic perturbation
enhances stability of the disease-free equilibrium of the underlying deterministic model. Finally, we perform some simulations to
illustrate the analytical findings and the utility of the model.

1. Introduction

Tuberculosis (TB) continues to be a major global health
problem that is responsible for 1.5 million deaths worldwide
each year [1]. TB is most prevalent in communities with
socioeconomical problems but is not confined to such. The
authors in [2, 3] associate TB infection with poverty and
underdevelopment of some countries. It has been observed
globally that one of the major factors driving TB infection
is overcrowding. TB mostly occurs in poorest countries that
are not developed and particularly where a population is
overcrowded and in countries that are influenced by war.
Conflict is the most common cause of large population
displacement, which often results in relocation to temporary
settlements such as camps. Factors including malnutrition
and overcrowding in camp settings further increase the expo-
sure to TB infection in these populations. Following up on a
paper of Ssematimba et al. [3] regarding internally displaced
people’s camps in Uganda, Buonomo and Lacitignola [2]
proposed a model that considers the dynamics of TB in
concentration camps with a case study in Uganda. Another
type of crowded environment which provides favourable
conditions for TB to flourish is prisons and more so if the
prison is full beyond its capacity. There are more than 10
million inmates in prisons all over the world. The United
States of America is in the top rank with about 2.2 million

inmates while South Africa is in rank 11 [4]. South African
prison has approximately 160000 inmates in custody, of
which 120000 are sentenced individuals while the rest are
awaiting trial. This means that a large number of inmates
are kept in remand population and some of them might not
be found guilty at the end of the process, after having been
exposed to high risk of TB infection.

Mathematical models have been used to model TB by
considering the size of the area andhow size and density affect
the extent to which TB can invade a certain population [2, 3,
5–7]. Quite obviously, considering the manner in which TB
is aerially transmitted from one person to another, the prison
situation provides favourable conditions for TB to flourish.
TB is an infectious disease caused by bacillusMycobacterium
tuberculosis thatmost often affects the lungs (pulmonary TB)
and can affect other parts as well such as brain, kidneys,
and spine (extrapulmonary TB) [8, 9]. The TB infection can
take place when an infected individual releases some droplet
nuclei which can remain airborne in any indoor area for up
to four hours. The tubercle bacillus can persist in a dark area
for several hours but it is exceptionally sensitive to sunshine.
The risk of infection increases as the length of prison stay
increases and the sentenced offenders are more likely to get
TB infection as compared to the awaiting trial inmates.

Against this background the paper [10] offers a model for
the population dynamics of TB in a prison or prison system.
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In particular, it computes the parameters relevant to South
Africa for the given model, using publicly available data. The
current paper considers a stochastic form of the model in
[10]. It is well understood that stochastic differential equation
(sde) attempts to reflect the effect of random disturbances
in or on a system. A second reason for studying sde models
is that it is good to know that a given model carries some
resilience against small disturbances. In this case we consider
the transmission parameters to be stochastically perturbed,
similarly to [11]. Stochastic pertubation has been studied
by Yang and Mao [12]; they considered a multigroup SEIR
epidemic model. In most cases, it has been observed in
[12, 13] that introducing a stochastic perturbation into an
unstable disease-free equilibrium model system of ordinary
differential equation may lead to a system being stable in sde.
Stochastic differential equation models for various diseases
have been studied and similar work has been done in [11, 12,
14–16].

Our paper focuses on the analysis of TB in prisons
as prisons have been recognized as institutions with very
high TB burden as compared to a general population
[17]. For a deterministic model of similar type, in [10]
we computed parameter values pertaining to South Africa.
For the stochastic model in this paper the focus is on
mathematical analysis. In Section 2, the model is introduced,
based on the paper of Buonomo and Lacitignola [2]. The
existence and uniqueness of the solution to the stochas-
tic models is investigated by using the Lyapunov method
in Section 3. Stability of the disease-free equilibrium for
stochastic models is shown in Section 4. We show our
results by means of numerical simulations and conclude in
Section 5.

2. The Model

We introduce a stochastic compartmental model which is
based on the deterministic model in the paper of Buonomo
and Lacitignola [2].We divide the population, which is of size𝑁(𝑡) at time 𝑡, into four compartments, namely, the class 𝑆(𝑡)
of susceptible individuals 𝑆(𝑡), the class 𝐸(𝑡) of individuals
infected with TB who are not infectious, the class 𝐼(𝑡) of
individuals infected with active TB who are infectious, and
the class 𝑇(𝑡) of individuals under treatment. It is important
to note that in general populations removal of individuals
out of the system is only by death. In this model, as in [10],
the removal is by death or by discharge from prison, and
the discharge is the dominant factor. This rate of removal is
denoted by 𝜇. The disease induced mortality rate is denoted
by 𝛿. Individuals are recruited into the susceptible class 𝑆(𝑡) at
a constant rate 𝜇𝐴. Susceptible individuals get infected with
active TB at a rate 𝑐1𝑆𝐼, where 𝑐1 is the effective contact rate
between the infectious and susceptible individuals. Individ-
uals leave the exposed class 𝐸(𝑡) for infectious class 𝐼(𝑡) at
rate 𝑘𝐸. Exposed individuals who are infectious move to the
infectious class 𝐼(𝑡) at a rate 𝑐3𝐸𝐼, where 𝑐3 is the effective
contact rate between the exposed and infectious individuals.
Successfully treated individuals who were infectious move to
exposed class at a rate 𝑐2𝑇𝐼, where 𝑐2 is the effective contact
rate between the treated and infectious individuals. Exposed

and infectious individuals move into class 𝑇(𝑡) at the rates 𝑟1
and 𝑟2, respectively.

Let us assume (Ω,F, {F𝑡}𝑡≥𝑡0 ,P) to be a complete prob-
ability space with a filtration {F𝑡}𝑡≥𝑡0 which is right con-
tinuous. Let 𝑊𝑖(𝑡) (𝑖 = 1, 2) be two mutually independent
Brownianmotions. Let us fix a nonnegative number 𝜎, which
shall serve as the intensity of the perturbation.We also fix two
other positive numbers𝑝 and 𝑞with𝑝+𝑞 = 1 thatwill balance
the perturbation. The stochastic perturbations are similar to
those in the model of [11].

Model System (1)

𝑑𝑆 = [𝑓𝑆𝜇𝐴 − 𝑐1𝑆𝐼 − 𝜇𝑆] 𝑑𝑡
− 𝜎 (𝑝𝐸𝑆𝑑𝑊1 (𝑡) + 𝑞𝐼𝑆𝑑𝑊2 (𝑡)) ,

𝑑𝐸 = [𝑓𝐸𝜇𝐴 + 𝑐1𝑆𝐼 + 𝑐2𝑇𝐼 − 𝑐3𝐸𝐼 − (𝜇 + 𝑟1 + 𝑘) 𝐸] 𝑑𝑡
+ 𝜎𝑝𝐸𝑆𝑑𝑊1 (𝑡) ,

𝑑𝐼 = [𝑓𝐼𝜇𝐴 + 𝑘𝐸 − (𝜇 + 𝑟2 + 𝛿) 𝐼 + 𝑐3𝐸𝐼] 𝑑𝑡
+ 𝜎𝑞𝐼𝑆𝑑𝑊2 (𝑡) ,

𝑑𝑇 = [𝑟1𝐸 + 𝑟2𝐼 − 𝑐2𝑇𝐼 − 𝜇𝑇] 𝑑𝑡.

(1)

It is noticed that if 𝑓𝐸 + 𝑓𝐼 > 0 then system (1) does not have
a disease-free equilibrium.We will first investigate the model
without the inflow of infected cases, i.e., when 𝑓𝐸 = 𝑓𝐼 = 0.
In this case the disease-free state

𝐸0 = (𝑆0, 𝐸0, 𝐼0, 𝑇0) = (𝐴, 0, 0, 0) (2)

is an equilibrium point. The underlying deterministic model
of (1) is the model given by the same system of equations in
the special case 𝜎 = 0, i.e., without stochastic perturbation
as in [10]. The underlying deterministic model coincides
with the model of Buonomo and Lacitignola [2]. The basic
reproduction number of the underlying deterministic model
has already been computed in paper [2] and is given by the
following formula:

𝑅0 = 𝑘𝑐1𝐴𝜇1𝜇2 , (3)

where 𝜇1 = 𝜇 + 𝑟1 + 𝑘 and 𝜇2 = 𝜇 + 𝑟2 + 𝛿.
We now present the following set:

Δ𝐴 = {𝑥 ∈ R
4 : 𝑥1, 𝑥2, 𝑥3, 𝑥4 > 0 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

≤ 𝐴} . (4)

Remark 1. For the rest of the paper we will assume that the
sample paths are restricted toΩ0, which is defined as follows:

Ω0 = {𝑤 ∈ Ω | (𝑆 (𝑡, 𝑤) , 𝐸 (𝑡, 𝑤) , 𝐼 (𝑡, 𝑤) , 𝑇 (𝑡, 𝑤))
∈ Δ𝐴 for all 𝑡 ≥ 0} . (5)

Lemma 2 (see [13]). For 𝑘 ∈ N, let 𝑋(𝑡) = (𝑋1(𝑡), 𝑋2(𝑡), . . . ,𝑋𝑘(𝑡)) be a bounded R𝑘-valued function and let (𝑡0,𝑛) be
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any increasing unbounded sequence of positive real numbers.
Then there is family of sequences (𝑡𝑙,𝑛) such that for each 𝑙 ∈1, 2, . . . , 𝑘, (𝑡𝑙,𝑛) is a subsequence of (𝑡𝑙−1,𝑛) and the sequence𝑋𝑙(𝑡𝑙,𝑛) converges to a chosen limit point of the sequence𝑋𝑙(𝑡𝑙−1,𝑛).
3. Existence and Uniqueness of Positive
Global Solutions

Proposition 3. Suppose that we have a solution

𝑋 (𝑡) = (𝑆 (𝑡) , 𝐸 (𝑡) , 𝐼 (𝑡) , 𝑇 (𝑡)) (6)

of system (1) over an interval 𝑡 ∈ [0, 𝜏) with 𝑆(0) + 𝐸(0) +𝐼(0) + 𝑇(0) < 𝐴 and with 𝑋(𝑡) ∈ R4++ for all 0 ≤ 𝑡 ≤ 𝜏, a.s.,
then 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑇(𝑡) ≤ 𝐴.
Proof. Given any solution in𝑋(𝑡) satisfying the conditions of
Proposition 3, then we have the total population in system (1)
obeying the following ordinary differential equation:

𝑑 (𝑁 − 𝐴)𝑑𝑡 = −𝜇 (𝑁 − 𝐴) − 𝛿𝐼 ≤ −𝜇 (𝑁 − 𝐴) a.s. (7)

Therefore, similarly to [11], for instance, 𝑁(0) < 𝐴 implies
that𝑁(𝑡) < 𝐴 for all 𝑡 ∈ [0, 𝜏).

In this section, we investigate the existence and unique-
ness of global positive solutions of stochastic models by using
the Lyapunov method. This method is popularly applied for
such problems; see [23, 24], for instance.

Theorem4. There is a unique solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑇(𝑡)) ∈
R4+ to system (1) on 𝑡 ≥ 0 for any given initial value(𝑆(0), 𝐸(0), 𝐼(0), 𝑇(0)) ∈ R4+, and the solution will remain in
R4+ with probability one; namely, (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑇(𝑡)) ∈ R4+
for all 𝑡 ≥ 0 almost surely.

Sketch of the proof. Since the coefficients in (1) satisfy
the Lipschitz condition locally, for any given initial value(𝑆(0), 𝐸(0), 𝐼(0), 𝑇(0)), there is a unique local solution(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑇(𝑡)) on 𝑡 ∈ [0, 𝜏e𝑛), where 𝜏e𝑛 is the explosion
time. Our a im is to show that this solution is global and
positive almost surely; i.e., 𝜏e𝑛 = ∞ a.s.

Let 𝑟0 > 0 such that 𝑆(0), 𝐸(0), 𝐼(0), 𝑇(0) > 𝑟0. For each
integer 𝑟 ≤ 𝑟0, we define the stopping times

𝜏𝑟 = inf {𝑡 ∈ [0, 𝜏𝑒𝑛] : 𝑆 (𝑡) ≤ 𝑟 or 𝐸 (𝑡) ≤ 𝑟 or 𝐼 (𝑡)
≤ 𝑟 or 𝑇 (𝑡) ≤ 𝑟} . (8)

Let

𝜏 = lim
𝑟→0

𝜏𝑟 = inf {𝑡 ∈ [0, 𝜏𝑒𝑛) : 𝑆 (𝑡) ≤ 0 or 𝐸 (𝑡)
≤ 0 or 𝐼 (𝑡) ≤ 0 or 𝑇 (𝑡) ≤ 0} . (9)

For this purpose we introduce a function 𝑉 as follows:

𝑉 = ln 𝐴𝑆 + ln 𝐴𝐸 + ln 𝐴𝐼 + ln 𝐴𝑇 . (10)

We note that, by Proposition 3, each of the terms

ln 𝐴𝑆 ,
ln 𝐴𝐸 ,
ln 𝐴𝐼 ,
ln 𝐴𝑇

(11)

is positive, and

lim
𝑢→0+

𝐴𝑢 = +∞. (12)

By Itô’s formula, for all 𝑡 ≥ 0, 𝑠 ∈ [0, 𝑡 ∧ 𝜏𝑟], we have
𝑑𝑉 (𝑋 (𝑠)) = − 1𝑆 (𝑠) (𝑓𝑆𝜇𝐴 − 𝑐1𝑆 (𝑠) 𝐼 (𝑠) − 𝜇𝑆 (𝑠)

+ (𝜎𝑝𝐸 (𝑠))2
2 + (𝜎𝑞𝐼 (𝑠))2

2 )𝑑𝑠 − 1𝐸 (𝑠) (𝑓𝐸𝜇𝐴
+ 𝑐1𝑆 (𝑠) 𝐼 (𝑠) + 𝑐2𝑇 (𝑠) 𝐼 (𝑠) − 𝑐3𝐸 (𝑠) 𝐼 (𝑠)
− (𝜇 + 𝑟1 + 𝑘) 𝐸 (𝑠) + (𝜎𝑝𝑆 (𝑠))2

2 )𝑑𝑠

− 1𝐼 (𝑠) (𝑓𝐼𝜇𝐴 + 𝑘𝐸 (𝑠) − (𝜇 + 𝑟2 + 𝛿) 𝐼 (𝑠)

+ 𝑐3𝐸 (𝑠) 𝐼 (𝑠) + (𝜎𝑞𝑆 (𝑠))2
2 )𝑑𝑠 − 1𝑇 (𝑠) (𝑟1𝐸 (𝑠)

+ 𝑟2𝐼 (𝑠) − 𝑐2𝑇 (𝑠) 𝐼 (𝑠) − 𝜇𝑇 (𝑠)) 𝑑𝑠 + 𝜎𝑝 (𝐸 (𝑠)
− 𝑆 (𝑠)) 𝑑𝑊1 (𝑠) + 𝜎𝑞 (𝐼 (𝑠)
− 𝑆 (𝑠)) 𝑑𝑊2 (𝑠) .

(13)

After eliminating some negative terms we have the following
inequality:

𝑑𝑉 (𝑋 (𝑠)) ≤ 𝑀1𝑑𝑠 + 𝑑𝑀2 (𝑠) , (14)

where

𝑀1 = 4𝜇 + 𝑟1 + 𝑟2 + 𝑘 + 𝑑 + 𝐼 (𝑐1 + 𝑐2) + 𝑐3 (𝐸 + 𝐼)
+ 𝜎22 (𝑝2𝐸2 + 𝑞2𝐼2) + 12 (𝜎 (𝑝 + 𝑞) 𝑆)2 , (15)

and

𝑑𝑀2 (𝑠) = 𝜎𝑝 (𝐸 − 𝑆) 𝑑𝑊1 (𝑠) + 𝜎𝑞 (𝐼 − 𝑆) 𝑑𝑊2 (𝑠) . (16)

Taking the integral in (14) from 0 to 𝑡 ∧ 𝜏𝑟0, we have
∫𝑡∧𝜏𝑟
0

𝑑𝑉 (𝑋 (𝑠)) ≤ ∫𝑡∧𝜏𝑟
0

𝑀1𝑑𝑠 + ∫𝑡∧𝜏𝑟
0

𝑑𝑀2 (𝑠) . (17)
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By taking expectations, the latter inequality yields

E [𝑉 (𝑆 (𝑡 ∧ 𝜏𝑟) , 𝐸 (𝑡 ∧ 𝜏𝑟) , 𝐼 (𝑡 ∧ 𝜏𝑟) , 𝑇 (𝑡 ∧ 𝜏𝑟))]
≤ 𝑉 (𝑋 (0)) + 𝑀1𝑡. (18)

Now we note that

E𝑉 [𝑆 (𝑡 ∧ 𝜏𝑟) , 𝐸 (𝑡 ∧ 𝜏𝑟) , 𝐼 (𝑡 ∧ 𝜏𝑟) , 𝑇 (𝑡 ∧ 𝜏𝑟)]
= E [Ψ(𝜏𝑟≤𝑡)𝑉 (𝑆 (𝑡 ∧ 𝜏𝑟) , 𝐸 (𝑡 ∧ 𝜏𝑟) , 𝐼 (𝑡 ∧ 𝜏𝑟) ,
𝑇 (𝑡 ∧ 𝜏𝑟))] + E [Ψ(𝜏𝑟>𝑡)𝑉 (𝑆 (𝑡 ∧ 𝜏𝑟) , 𝐸 (𝑡 ∧ 𝜏𝑟) ,
𝐼 (𝑡 ∧ 𝜏𝑟) , 𝑇 (𝑡 ∧ 𝜏𝑟))] ≥ E [Ψ(𝜏𝑟≤𝑡)𝑉 (𝑆 (𝜏𝑟) , 𝐸 (𝜏𝑟) ,
𝐼 (𝜏𝑟) , 𝑇 (𝜏𝑟))] ,

(19)

where Ψ(⋅) is the indicator function. If 𝜏𝑟 < ∞, then there are
some components of 𝑆(𝜏𝑟), 𝐸(𝜏𝑟), 𝐼(𝜏𝑟), 𝑇(𝜏𝑟) equal to 𝑟, and
therefore (𝑆(𝜏𝑟), 𝐸(𝜏𝑟), 𝐼(𝜏𝑟), 𝑇(𝜏𝑟)) ≥ ln(𝐴/𝑟).

Thus we have

E [𝑉 (𝑆 (𝑡 ∧ 𝜏𝑟) , 𝐸 (𝑡 ∧ 𝜏𝑟) , 𝐼 (𝑡 ∧ 𝜏𝑟) , 𝑇 (𝑡 ∧ 𝜏𝑟))]
≥ ln(𝐴𝑟 )P (𝜏𝑟 ≤ 𝑡) . (20)

Combining (14) and (18) gives, for all 𝑡 ≥ 0,
P (𝜏 ≤ 𝑡) ≤ 𝑉 (𝑋 (0)) + 𝑀1𝑡

ln (𝐴/𝑟) (21)

Letting 𝑟 → 0, we obtain, for all 𝑡 ≥ 0, P(𝜏 ≤ 𝑡) = 0. Hence
P(𝜏 = ∞) = 1. As 𝜏𝑒𝑛 = 𝜏 = ∞ a.s. Therefore, the solution
of model (1) will not explode at a finite time with probability
one. This completes the proof.

4. Stability of Disease-Free Equilibrium

Let us choose a positive number 𝑎3 and two nonnegative
numbers 𝑎1 and 𝑎2. Specific values will be assigned to these
numbers in different analyses.

Let us assume that

𝑎3 ≥ 𝑘𝜇1 . (22)

Now we define a stochastic process 𝑍(𝑋(𝑡))
𝑍 (𝑋 (𝑡)) = 𝑎1 (𝐴 − 𝑆 (𝑡)) + 𝑎2𝑇 (𝑡) + 𝑎3𝐸 (𝑡) + 𝐼 (𝑡) (23)

and a process

𝑉 (𝑋 (𝑡)) = ln𝑍 (𝑋 (𝑡)) . (24)

For 𝑤 ∈ Ω0, we note that 𝑍(𝑋(𝑡)) > 0 and therefore 𝑉(𝑋(𝑡))
are defined for all𝑤 ∈ Ω0. For convenience, we introduce the
variables:

𝑄𝑍 = 𝐴 − 𝑆𝑍 ,
𝑇𝑍 = 𝑇𝑍,
𝐸𝑍 = 𝐸𝑍,
𝐼𝑍 = 𝐼𝑍

(25)

and for a stochastic process 𝑥(𝑡) we shall write
⟨𝑥⟩𝑠 = 1𝑠 ∫𝑠

0

𝑥 (𝑢) 𝑑𝑢. (26)

4.1. On the Lyapunov Exponent of𝑍. TheLyapunov exponent
of a quantity 𝑞(𝑡), 𝑡 ≥ 0 is defined as

lim sup
𝑡→∞

1𝑡 ln 𝑞 (𝑡) . (27)

The infinitesimal generator L of system (1) (see Øksendal
[25]) will play an important role in the sequel. Now we can
calculate L𝑉 and express it as a function of 𝑋(𝑡). From
Lemma 2 it follows that for each𝑤 ∈ Ω0 there is an increasing
sequence (𝑡𝑤𝑛 ) with the following properties (but we shall
suppress 𝑤 and write (𝑡𝑛)):

For every 𝑤 ∈ Ω,

lim
𝑛→∞

⟨L𝑉 (𝑋)⟩𝑡𝑛 = lim sup
𝑡→∞

⟨L𝑉 (𝑋)⟩𝑡 (28)

and the limits below, which shall be denoted by 𝑞, 𝜏, 𝑗, 𝑖, do
exist:

𝑞 = lim
𝑛→∞

⟨𝑄𝑍⟩𝑡𝑛 ,
𝜏 = lim
𝑛→∞

⟨𝑇𝑍⟩𝑡𝑛 ,
𝑗 = lim
𝑛→∞

⟨𝐸𝑍⟩𝑡𝑛 ,
𝑖 = lim
𝑛→∞

⟨𝐼𝑍⟩𝑡𝑛 .
(29)

We write

Λ = lim sup
𝑡→∞

⟨L𝑉 (𝑋)⟩𝑡. (30)

Let

𝑐∗ = max {𝑐1, 𝑐2, 𝑐3 (𝜇𝑘 − 1)} . (31)

We can write

∫𝑡
0

𝑑𝑉 = ∫𝑡
0

L𝑉𝑑𝑡 + 𝑀 (𝑡) , (32)
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where

𝑀(𝑡) = ∫𝑡
0

1𝑍𝜎𝑝 (𝐸 − 𝑆) 𝑑𝑊1 + ∫𝑡
0

1𝑍𝜎𝑞 (𝐼 − 𝑆) 𝑑𝑊2, (33)

and we note that by the strong law of large numbers [16],

lim
𝑛→∞

1𝑡𝑀 (𝑡) = 0 a.s. (34)

Therefore

lim sup
𝑡→∞

1𝑡 𝑉 (𝑋 (𝑡))
= lim sup
𝑡→∞

1𝑡 ∫𝑡
0

L𝑉 (𝑋 (𝑠)) 𝑑𝑠 (a.s.)
= lim
𝑛→∞

1𝑡𝑛 ∫
𝑡𝑛

0

L𝑉 (𝑋 (𝑠)) 𝑑𝑠 (a.s.) .
(35)

Now we expandL𝑉:
L𝑉 = −𝑎1𝑍 [𝜇𝐴 − 𝑐1𝑆𝐼 − 𝜇𝑆]

− 𝑎21𝜎22𝑍2 (𝑝2𝐸2𝑆2 + 𝑞2𝐼2𝑆2)
+ 𝑎2𝑍 [𝑟1𝐸 + 𝑟2𝐼 − 𝑐2𝑇𝐼 − 𝜇𝑇]
+ 𝑎3𝑍 [𝑐1𝑆𝐼 + 𝑐2𝑇𝐼 − 𝑐3𝐸𝐼 − (𝜇 + 𝑟1 + 𝑘) 𝐸]
− 𝑎232𝑍2 𝜎2 (𝑝2𝐸2𝑆2)
+ 1𝑍 [𝑘𝐸 − (𝜇 + 𝑟2 + 𝛿) 𝐼 + 𝑐3𝐸𝐼]
− 12𝑍2 (𝜎2𝑞2𝐼2𝑆2) − 𝑎1𝑎3 (𝜎𝑝𝐸𝑆)2
− 𝑎1 (𝜎𝑞𝐼𝑆)2 .

(36)

With regard to the calculation ofL𝑉 we note the following:

𝑎3𝐼𝑍 {𝑐1𝑆 + 𝑐2𝑇 − 𝑐3𝐸} + 𝑐3𝐼𝑍𝐸
= 𝑎3𝐼𝑍 {𝑐1𝑆 + 𝑐2𝑇 + 𝑐3 ( 1𝑎3 − 1)𝐸}
≤ 𝑎3𝐼𝑍𝑐∗ (𝑆 + 𝑇 + 𝐸) ≤ 𝑎3𝐼𝑍𝑐∗𝐴.

(37)

Therefore,
L𝑉 ≤ 𝑎3𝐼𝑍𝑐∗𝐴 − 𝐼𝑍 (𝜇2 − 𝑎2𝑟2)

+ 𝐸𝑍 (𝑎2𝑟1 − 𝑎3𝜇1 + 𝑘) − 𝑎2𝜇𝑇𝑍
+ 𝐼𝑍 (𝑎1𝑐1𝑆 − 𝑎2𝑐2𝑇) − 𝑎1𝜇𝑄 + 𝐵,

(38)

where

𝐵 = −(𝑎1𝜎)22 [(𝑝𝐸𝑍𝑆)2 + (𝑞𝐼𝑍𝑆)2] − 𝑎232 [(𝜎𝑝𝐸𝑍𝑆)2]
− 12 [(𝜎𝑞𝐼𝑍𝑆)2] − 𝑎1𝑎3 (𝜎𝑝𝐸𝑍𝑆)2 − 𝑎1 (𝜎𝑞𝐼𝑍𝑆)2 .

(39)

This yields the inequality:

L𝑉 ≤ 𝐼𝑍 ((𝑎1𝑐1 + 𝑎3𝑐∗) 𝐴 − 𝜇2 + 𝑎2𝑟2)
+ 𝐸𝑍 (𝑘 − 𝑎3𝜇1 + 𝑎2𝑟1) − 𝑎2𝜇2𝑇𝑍 − 𝑎1𝜇𝑄𝑍
+ 𝐵.

(40)

In the expression for 𝐵, if we ignore the multiples of 𝑎1 (they
are negative), then we obtain an inequality:

𝐵 ≤ −(𝜎𝑆)22 {(𝑝𝑎3𝐸𝑍)2 + (𝑞𝐼𝑍)2} . (41)

4.2. Stability Theorems. We now introduce another invariant𝑅𝜎, which enables us to formulate stability theorems for the
stochastic model (1). As a corollary of the main theorem
we can deduce a global stability theorem for disease-free
equilibrium. Let

𝑅𝜎 = 𝑘𝑐∗𝐴𝜇1𝜇2 . (42)

In the model of Buonomo and Lacitignola [2], we have
backward bifurcation at 𝑅0 = 1. Therefore, the condition𝑅0 < 1 does not imply global stability of the underlying
deterministic model. As a corollary to the main theorem,
Theorem 6, will follow the fact that for the model in [2]
the disease-free equilibrium is globally asymptotically stable
when 𝑅𝜎 < 1. In preparation for our main theorem we
introduce a function ℎ(𝑥) as follows:

ℎ (𝑥) = 𝑝2 (1 − 𝑥)2 + 𝑞2𝑥2𝑥 ; 𝑥 > 0. (43)

Then

lim
𝑥→∞

ℎ (𝑥) = ∞ and if 𝑞 ̸= 0, then lim
𝑥→0+

ℎ (𝑥) = ∞. (44)

Also we note that

ℎ󸀠 (𝑥) = 1𝑥2 [−𝑝2 + 𝑥2] . (45)

Therefore ℎ󸀠(𝑥) = 0 ⇔ 𝑥 = 𝑝 and we know that 𝑝 ≤ 1. Sinceℎ has only one critical value on the interval (0,∞), in view of
(44), it follows that the critical point is an absolute minimum
of ℎ on the interval (0,∞).

Therefore the minimum value ℎmin of ℎ over [0, 1] is
ℎmin = 𝑝2 (1 − 𝑝) + 𝑞2𝑝

𝑝 = 𝑝 (1 − 𝑝) + (1 − 𝑝2)
= (1 − 𝑝) (𝑝 + 1 + 𝑝) = (1 − 𝑝) (1 + 2𝑝) .

(46)

Proposition 5. If

𝑅𝜎 − (𝜎𝐴)2 ℎmin2𝜇2 < 1, (47)

then (𝐼, 𝐸) converges exponentially to zero almost surely.
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Proof. We introduce the function𝑉 of (24), with 𝑎1 = 𝑎2 = 0.
Now note that (47) is equivalent to

𝑘𝑐∗𝐴𝜇1 − (𝜎𝐴)2 ℎmin2 − 𝜇2 < 0. (48)

We choose a number 𝜖 > 0 sufficiently small such that

𝑘 + 𝜖𝜇1 𝑐∗𝐴 − 𝜇2 − (𝜎𝐴)22 ℎmin < 0. (49)

Now we choose

𝑎3 = 𝑘 + 𝜖𝜇1 . (50)

From inequality (40) it follows that

L𝑉 ≤ [𝑎3𝑐∗𝐴 − 𝜇2] 𝐼𝑍 + [𝑘 − 𝑎3𝜇1] 𝐸𝑍 − 𝐵1, (51)

where

𝐵1 = (𝜎𝐴)22 {𝑝2 (𝑎3𝐸𝑍)2 + (𝑞𝐼𝑍)2} . (52)

Now note that we can express 𝐵1 as follows:
𝐵1 = (𝜎𝐴)22 {𝑝2 (1 − 𝐼𝑍)2 + (𝑞𝐼𝑍)2}

= (𝜎𝐴)22 𝐼𝑍ℎ (𝐼𝑍) .
(53)

Therefore, we have

𝐵1 ≥ (𝜎𝐴)22 𝐼𝑍ℎmin, (54)

and, consequently,

L𝑉 ≤ [𝑎3𝑐∗𝐴 − 𝜇2 − (𝜎𝐴)22 ℎmin] 𝐼𝑍
+ [𝑘 − 𝑎3𝜇1] 𝐸𝑍.

(55)

Therefore

Λ ≤ [𝑎3𝑐∗𝐴 − 𝜇2 − (𝜎𝐴)22 ℎmin] 𝑖 + 𝜖𝑗 (56)

and since 𝑖 and 𝑗 cannot both be zero, it follows that Λ < 0.
This completes the proof.

Theorem 6. (a) If (𝐸(𝑡), 𝐼(𝑡)) almost surely converges expo-
nentially to 0, then

lim
𝑡→∞

𝑆 (𝑡) = 𝐴 (a.s.) and lim
𝑡→∞

𝑇 (𝑡) = 0 (a.s.) . (57)

(b) If

𝑅𝜎 − (𝜎𝐴)2 ℎmin2𝜇2 < 1, (58)

then disease-free equilibrium is almost surely exponentially
stable.
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Figure 1: 𝑅0 = 1.3917, 𝑅𝜎 = 1.1653, 𝑐1 = 0.000065, and 𝜎 = 0.04.

Proof. (a) Suppose to the contrary that we have

lim
𝑡→∞

(𝐴 − 𝑆 (𝑡)) + 𝑇 (𝑡) > 0 (a.s.) . (59)

Let𝑍 be the same as that in (23), with 𝑎1 = 𝑎2 = 𝑎3 = 1. Since(𝐸(𝑡), 𝐼(𝑡)) almost surely converges exponentially to 0 while
lim
𝑡→∞

(𝐴 − 𝑆 (𝑡)) + 𝑇 (𝑡) > 0 (a.s.) , (60)

it follows that 𝑗 = 0 and 𝑖 = 0 (a.s.).Thus from inequality (40)
it follows that

Λ ≤ −𝜇2𝑇𝑍 − 𝜇𝑄𝑍 (a.s.) . (61)

Therefore Λ < 0. This implies that 𝑍 converges to 0, and thus
lim
𝑡→∞

(𝐴 − 𝑆 (𝑡)) + 𝑇 (𝑡) = 0 (a.s.) , (62)

which is a contradiction. This completes the proof of (a).
(b) This follows from Proposition 5 and Theorem 6(a).

5. Numerical Simulation

The simulations presented here illustrate the analytical results
of our model in (1). The parameter values have already been
calculated in the paper [10], by using real data, mostly from
[18, 20, 21]. We will now use those parameter values, listed in
Table 1, and vary the value of 𝑐1 and 𝜎 in order for us to be
able to find different values of 𝑅0 and 𝑅𝜎. We first consider a
model without the inflow of infective cases and then with the
inflow of infective cases.

We give some numerical simulations to show differ-
ent dynamic outcomes of the deterministic model and its
stochastic version. We illustrate by means of simulations the
possible disease eradication in the absence of the inflow of
infective cases.This will be shown in Figures 1, 2, and 3. Over
these three cases we vary the value of 𝑐1 and 𝜎 so as to obtain
different values of 𝑅0 and 𝑅𝜎.

In Figure 1, we present a case in which we take 𝑐1 =0.000065, 𝜎 = 0.04 and then we obtain 𝑅0 = 1.3917 and𝑅𝜎 = 1.1653. This situation does not satisfy the conditions
of Theorem 6, and indeed the I-class does not appear to
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Table 1: Model parameters and initial conditions.

Parameter Estimated value Source
𝜇 0.18192 [10], data from [18, 19]𝑑 0.01876 [10], data from [18, 20]
𝑐1 0.00007893 [10], see also [21]𝑐2 20/𝐴 [10, 22]𝑐3 𝑘(2𝐴) Estimated from [10]
𝑟1 0.30 [2]𝑟2 0.50 [2]𝑘 0.05 [2, 21]
𝐴 160000 [18]𝑓𝑆, 𝑓𝐸, 𝑓𝐼 0.2, 0.74, 0.06 [18]𝑆𝑡15 32000 [10], data from [18]
𝐸𝑡15 107000 [10], data from [18]
𝐼𝑡15 3500 [10], data from [18]
𝑇𝑡15 17100 [10], data from [18]
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Figure 2: 𝑅0 = 1.3275, 𝑅𝜎 = 0.9737, and 𝑐1 = 0.000062, 𝜎 = 0.05.
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Figure 3: 𝑅0 = 1.1562, 𝑅𝜎 = 0.0.9298, and 𝑐1 = 0.000054, 𝜎 = 0.04.

converge to zero. This means that the disease will persist in
our prison population.

In Figure 2, we notice that when the perturbation is
sufficiently big, then the disease will possibly be eliminated
for a stochastic model even if for the deterministic model it
does not seem be the case.We have chosen 𝑐1 = 0.000062, 𝜎 =0.05 and then we calculate 𝑅0 = 1.3275 and 𝑅𝜎 = 0.9737.
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Figure 4: 𝑅0 = 1.6900, 𝑅𝜎 = 1.4635, and 𝑐1 = 0.00007893, 𝜎 = 0.04
with 𝑓𝑆 = 0.2, 𝑓𝐸 = 0.74, and 𝑓𝐼 = 0.06.

In Figure 3, a choice of 𝑐1 = 0.000054 and 𝜎 = 0.04
yields 𝑅0 = 1.1562 and 𝑅𝜎 = 0.9298. This choice of
parameters satisfies the conditions in Theorem 6, and surely
the infectious class seems to converge to zero.

We now study model (1) with the inflow of infectives and
present a sample computation. We choose 𝑐1 = 0.00007893
as in Table 1 and 𝜎 = 0.04. Then the values of 𝑅0 and 𝑅𝜎
can be calculated as 𝑅0 = 1.6900, 𝑅𝜎 = 1.4635. In Figure 4,
it is observed that when the basic reproduction number for
the underlying deterministic model is above unity, then the
disease will persist into our prison system. It is also seen that
the inflow of infective cases play a part in influencing the
number of TB infected cases in the prison system.

6. Conclusion

A stochastic SEIT model was presented and analysed to
assess the impact of active TB on a crowded environment,
specifically in prisons.We started off by verifying that there is
a unique global positive solution for the system of stochastic
differential equation in (1). It was noted that whenever
the basic reproduction number is significantly greater than
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unity then the disease will persist in the prison population
through our simulations in Figures 1 and 2. It has also been
observed for a stochastic model that when the perturbation
is sufficiently big then the disease tends to vanish and this
can be seen in Figure 2. It is more important to study smaller
perturbation. It has been observed that whenever 𝑅𝜎 < 1,
then 𝐼 and 𝐸 almost surely converge exponentially to zero in
step withTheorem 6, in the absence of the inflow of infective.
These results can also be seen in Figure 3. By introducing
the inflow of infective cases into the prison system, TB
remains endemic, as can be seen in Figure 4. By screening
the inflow on admission and providing for them a separate
accommodation, TB infection in a prison system can be
greatly reduced.

Data Availability

All the data used in this research are publicly available and
are cited in the article. No new data were generated for this
article.

Disclosure

This research did not require or request any funding, and no
funding was received.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] May 2017, http://www.who.int/tb/publications/global-report/
gtbr2016-executive-summary.pdf.

[2] B. Buonomo and D. Lacitignola, “Analysis of a tuberculosis
model with a case study in Uganda,” Journal of Biological
Dynamics, vol. 4, no. 6, pp. 571–593, 2010.

[3] A. Ssematimba, J. Y.Mugisha, and L. S. Luboobi, “Mathematical
models for the dynamics of tuberculosis in density-dependent
populations: the case of internally displaced peoples’ camps
(IDPCs) in Uganda,” Journal of Mathematics and Statistics, vol.
1, no. 3, pp. 217–224, 2005.

[4] May 2017, http://www.prisonstudies.org/highest-to-lowest/pris-
on-population-total?field-region-taxonomy-tid=All.

[5] C. Castillo-Chavez andZ. Feng, “To treat or not to treat: the case
of tuberculosis,” Journal of Mathematical Biology, vol. 35, no. 6,
pp. 629–656, 1997.

[6] J. P. Aparicio, A. F. Capurro, and C. Castillo-Chavez, “Transmis-
sion and dynamics of tuberculosis on generalized households,”
Journal of Theoretical Biology, vol. 206, no. 3, pp. 327–341, 2000.
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