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Abstract. In this paper, we extend a system of coupled first order non-linear

system of delay differential equations (DDEs) arising in modeling of stoichiom-

etry of tumour dynamics, to a system of diffusion-reaction system of partial
delay differential equations (PDDEs). Since tumor cells is further modified by

blood supply through the vascularization process, thus we determine the local

uniform steady states of the homogeneous tumour growth model with respect
to the vascularization process. We show that the steady states are globally sta-

ble, determine the existence of Hopf bifurcation of the homogeneous tumour

growth model with respect to the vascularization process. We derive, analyse
and implement a fitted operator finite difference method (FOFDM) to solve

the extended model. This FOFDM is analyzed for convergence and it is seen
that it has second-order accuracy. Some numerical results confirming theoret-

ical observations are also presented. These results are comparable with those

obtained in the literature.

1. Introduction. When a body develops a disease, the situation can be thought
similar to that of predator and prey in ecology. However some diseases are very
much complex in their formation and the manner they reinforce their presence in
a body as compare to a situation in a physical environment. Such diseases are for
example HIV and cancer. In this paper we focus on a tumour. Therefore when a
host is affected by a tumour, the system requires interaction with its environment.
Therefore, it is not strange for the ecological system of cancer cells to interacts with
surrounding cells, both healthy and malignant. This means cancer and healthy cells
should compete for resources, and these are oxygen, nutrient and space. Thus cancer
cells compete against each others and against the healthy cells throughout the body
for the same resources. It is this competition that necessitates the consideration of
the effects of biological stoichiometry to supplement the first principles of malignant
tumours’ cells [7]. Similar considerations of of biological stoichiometry can be found
in [4, 5, 23]. In this paper, we consider the biological stoichiometry derived in [7].

In [7], it is established that the qualitative dynamics of the models are essentially
unchanged whether phosphorus limits blood vessel construction or not. Thus, Elser
et al. [7] claimed that varying the supply of phosphorus continuously seems to
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create no new dynamical behavior. Therefore, this motivated us to investigate the
extended homogeneous tumour growth model directly.

This implies that, our first aim in this paper is to investigate the qualitative
features of the model with regard to blood vessel construction and determine the
possibility of the time delay τ on the dynamics of the homogeneous tumour growth
model. By applying the Poincaré normal form and center manifold theorem [8, 24],
we determine conditions on the functions and derive formulas which determine
the properties of Hopf bifurcation [19] such as the direction of bifurcation, the
period of periodic solutions and the stability of solutions. More specifically, we
show that the positive equilibrium point losses its stability and the system exhibits
Hopf bifurcation under certain conditions.

Our second aim is to solve the extended model. Thus, we develop an efficient
numerical method for solving the extended model with respect to the qualitative
features of the extended model. To this end we highlight our motivation for our
numerical method. The deficiencies of the standard finite difference methods in
solving the problems like the one in equation (2) are well-known. While explicit
methods can solve such differential equations with low computational cost, they
have the drawback that their stability regions are very small. This implies severe
restrictions on the time and space step-sizes will be required in order to achieve
satisfactorily converging results. On the other hand, an implicit schemes do have
wider stability regions but the associated computational complexity is very high
and they cannot achieve more than one order as compared to explicit methods that
use the same number of stages [3].

When a single solid tumour is growing within an organ Elser et al. [7] mentioned
that the initial mass starts near some genetically determined carrying capacity
(kh) and its vascularization process takes place at approximately 0.01kg. Since the
parenchyma cells may contain distinct cell types that differ in their nutrient use
and growth rates, then Elser et al. [7] developed the heterogeneous tumor model
with dietary regulation as

dx
dt = x

(
amin

(
1, Pe

fnkh

)
− dx − (a− dx) x+y1+y2+z

kh

)
,

dy1

dt = y1

(
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fmkh
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i=1mi(bi − di)

)
,

L = g z−α(y1+y2)
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,

Pe ≡ P (t)− nx−m1y1 −m2y2 − nz,



(1)

where x, yi (i = 1, 2 in this case), z, f , β, Pe, P , L, n and mi denote mass
of healthy cells, tumour mass contributed by the ith parenchyma cell type, mass
of tumour micro-vessels, fraction of the total fluid within an organ, therapeutic
intervention, extracellular phosphorus within the organ, the homeostatic regulation
of the total amount of phosphorus, maximum proliferation rate of tumour cells, the
mean amount of phosphorus in healthy cells and mean amount of phosphorus in
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parenchyma cells in that order. The cells proliferation and death at maximum per
capita rates are denoted by a, bi and dx, di, respectively, whereas α and g denote
mass of cancer cells of which one unit of blood vessels can barely maintain and
measurements of sensitivity of tumour tissue due to lack blood.

The model in equation (1) is a system of first order delay differential equations
(DDEs), therefore initial values are required by the system. Elser et al. [7] provided
the initial conditions as (x(0), y1(0), y2(0), z(0)) = (9.00, 0.01, 0.01, 0.001), and did
not give the initial condition for P (0).

When a tumour has only one parenchyma cell type then the system of first
order delay differential equations in equations (DDEs) (1) is known as homogeneous
tumour growth model and heterogeneous tumour growth model when a tumour has
more than one parenchyma cell type.

As we see, all of the above models did not take spatial effects into account.
In fact, cells can move around subject to many factors including diffusion. Thus,
instead of depicting the models with purely time dependent ordinary differential
equations (ODEs) with delay, it is more realistic to introduce the diffusion of the
cells into the system, and the simplest way to reach this goal is to use the concept
of reaction-diffusion equations [10, 11]. Elser et al., [7] showed that at a steady
state, tumor growth is no longer limited by its blood vessel infrastructure. For that
reason, they also found out that when the tumor is viewed as a single entity, the
homogeneous and heterogeneous models essentially generate the same dynamics.
Thus, in this paper we consider the homogeneous tumor growth model. Therefore,
incorporating spatial effects into equation (1), the homogeneous tumour growth
model in (1) becomes

∂X
∂t
−Dx∆X = X

(
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fnkh

)
− dx − (a− dx) X+Y1+Z
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)
,

∂Y1
∂t
−Dy1∆Y1 = Y1

(
b1 min

(
1, β Pe

fmkh

)
min (1, L)− d1 − (b1 − d1) Y1+Z

kt

)
,

∂Z
∂t
−Dz∆Z = cmin

(
1, Pe

fnkh
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,

Pe ≡ P − nX −m1Y1 − nZ, on (x, t) ∈ Ω× (0,∞),

∂X
∂ν

(0, t) = ∂Y1
∂ν

(0, t) = ∂Z
∂ν

(0, t) = 0, on (x, t) ∈ Ω× (0,∞),

∂X
∂ν

(xf , t) = ∂Y1
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(xf , t) = ∂Z
∂ν

(xf , t) = 0, on (x, t) ∈ Ω× (0,∞),

Xj(x, 0) = ηj(x), on (x, t) ∈ Ω̄× [−τ, 0], j = 1, 2, 3.



(2)

where ∆ denotes the Laplace operator, Xj(x, t) = [X,Y1, Z], Ω ∈ R3 denotes a
bounded domain with smooth boundary ∂Ω and ν denotes the outward unit normal
on ∂Ω. The initial function ηj(x, t) is Holder continuous on [−τ, 0] [18]. We imposed
the no flux-boundary conditions in order to ensure that we exclude the external
effects.

The rest of the paper is as follows, Section 2 we analyse the steady state and
existence of Hopf bifurcation analysis for two possible blood limiting cases. We
derive, analyse our numerical method in Section 3 and present our numerical results
in Section 4 and conclude the paper with Section 5.

2. Mathematical analysis of the homogeneous tumour growth model. To
proceed, we recall from Elser et al. in [7], that in a phosphorus-rich environment,
healthy cells and tumor cells can proliferate, however, if the extracellular phosphorus
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concentration drops below a threshold value, then the growth rates of both healthy
and tumor cells are impaired. Therefore, in such case we let

ϕPx := min

(
1,

Pe
fnkh

)
, ϕPy1

:= min

(
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fm1kh

)
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)
, (3)

to denote such possibilities of limitations. Since maximum proliferation rate of

tumour cells is dictated by the value of min
(

1, gZ−αY1

Y1

)
[7], then, at the steady

state, the homogeneous tumour growth model in equation (2) becomes
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(
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which gives the trivial equilibrium point (0, 0, 0), and the system
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where the determinant of the numerator in equation (9) is
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provided that
kh(aϕPx−dx)
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. For Y ∗1 , we then have from equations in
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0
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)
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which requires b1 > d1 and b1ϕPy1
> d1, as anticipated. Therefore, we have two

positive equilibrium points and they are

E1 :=

 kh
aϕPx−dx
(a−dx)
0
0

 and E2 :=


kh(aϕPx−dx)
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This gives us the following results.

Theorem 2.1. When min
(

1, gZ−αY1

Y1

)
= 1 and the following conditions

(i) a > dx,
(ii) aϕPx

> dx,

(iii)
kh(aϕPx−dx)

(a−dx) >
kt(b1ϕPy1

−d1)

(b1−d1)
,

(iv) b1ϕPy1
> d1,

the homogeneous tumour growth model in equation (2) possess the unique semi-

trivial non-negative constant solution (X∗, Y ∗1 , Z
∗) = (kh

aϕPx−dx
(a−dx) , 0, 0) and a unique

positive constant solution

(X∗, Y ∗1 , Z
∗) =


kh(aϕPx−dx)

(a−dx) − kt(b1ϕPy1
−d1)

(b1−d1)
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(b1−d1)(dz+cϕPz )
cktϕPz (b1ϕPy1

−d1)

(b1−d1)(dz+cϕPz )

 . (12)

Therefore, when the maximum proliferation rate of tumor cells greater than unity,
then the steady states are positive as long as the genetically determined, carrying
capacity for healthy cells is bigger than that of the tumour cells.
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2.2. Local stability for min
(

1, gZ−αY1

Y1

)
6= 1. From equation (6) we have a sys-

tem of non-linear equations as

(a−dx)
kh

(X + Y1 + Z) = aϕPx
− dx,

b1ϕPy1
gZ − (gα− d1)Y1 − (b1 − d1)

Y 2
1 +Y1Z
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= 0
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From the last equation in (13), we have Z =
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dz
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dz
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the first and second equation in (13), we obtain

(a−dx)
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X + ( (a−dx)
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+
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)Y1 = aϕPx

− dx,(
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)
Y1 − (b1 − d1)
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dzkt

Y 2
1 = 0,
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from which we obtain Y ∗1 = 0 and Y ∗1 =
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)
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obtain a trivial steady state solution (X∗, Y ∗1 , Z
∗) = (0, 0, 0). However, for non-zero

Y ∗1 , we find

X∗ =
kh(aϕPx−dx)

(a−dx) − (1 +
cϕPz

dz
)
(b1ϕPy1

g
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dz
−(gα−d1))
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)

dzkt

,

Z∗ =
cϕPz

dz
Y ∗1 .

 (15)

Thus, we see that if b1ϕPy1
g
cϕPz

dz
> (gα − d1) then Y ∗1 is positive as b1 > d1. This

implies that Z∗ =
cϕPz

dz
Y ∗1 is positive too. We also see that X∗ > 0 whenever

kh(aϕPx−dx)
(a−dx) > (1 +

cϕPz

dz
)
(b1ϕPy1

g
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dz
−(gα−d1))

(b1−d1)
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)
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. Hence the following results.

Theorem 2.2. When min
(

1, gZ−αY1

Y1

)
6= 1 and the following conditions hold.

(i) a > dx,
(ii) b1 > d1,
(ii) b1ϕPy1

g
cϕPz

dz
> (gα− d1),

(iv)
kh(aϕPx−dx)

(a−dx) > (1 +
cϕPz

dz
)
(b1ϕPy1

g
cϕPz
dz
−(gα−d1))

(b1−d1)
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)

dzkt

,

then the homogeneous tumor growth model has a unique positive constant solution

(X∗, Y ∗1 , Z
∗) =


kh(aϕPx−dx)

(a−dx) − (1 +
cϕPz

dz
)
(b1ϕPy1

g
cϕPz
dz
−(α−d1))

(b1−d1)
(1+cϕPz

)

dzkt
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g

cϕPz
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)

dzktcϕPz

dz
Y ∗1

 . (16)

Similarly, when the maximum proliferation rate of tumor cells drops below unity,
then the steady states are positive as long as the genetically determined, carrying
capacity for healthy cells is bigger than that of the tumour cells.

2.3. Global stability of the uniform steady states. In this section we show
that the uniform positive steady states are globally uniform. Since the homogeneous
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tumour growth model is of quasi-Lotka-Vorterra type [6], we let V : R3
≥0 → R

defined by

V (X,Y1, Z) =

(
X −X∗ −X∗ log

(
X

X∗

))
+

(
Y1 − Y ∗1 − Y ∗1 log

(
Y1
Y ∗1

))
+

(
Z − Z∗ − Z∗ log

(
Z

Z∗

))
,

then we see that V (X∗, Y ∗1 , Z
∗) = 0 and V (X,Y1, Z) > 0 for all (X,Y1, Z) 6=

(X∗, Y ∗1 , Z
∗). Moreover, on R3

≥0, we have

dV (X,Y1, Z)

dt
= VxẊ + Vy1

Ẏ1 + VzŻ

=

(
1− X∗

X

)
X

(
aϕPx

− dx − (a− dx)
X + Y1 + Z
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)
(17)

+

(
1− Y ∗1

Y1

)
Y1

(
b1ϕPy1
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)
− d1 − (b1 − d1)

Y1 + Z
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)
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(
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Z

)
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Y1 − dzZ,

= (X −X∗)
(
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)
+ (Y1 − Y ∗1 )

(
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(
1, g
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Y1

)
− d1 − (b1 − d1)

Y1 + Z
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)
+ (Z − Z∗) (cϕPzY1 − dz (Z − Z∗)) , (18)

upon multiplying the last equation with Z. When min
(

1, gZ−αY1

Y1

)
≡ 1, then

equation in (17) becomes

dV (X,Y1, Z)

dt
= (X −X∗)

(
− (a− dx)

(X −X∗) + (Y1 − Y ∗1 ) + (Z − Z∗)
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)
+ (Y1 − Y ∗1 )

(
− (b1 − d1)

(Y1 − Y ∗1 ) + (Z − Z∗)
kt

)
+ (Z − Z∗) (cϕPz

(Y1 − Y ∗1 )− dz (Z − Z∗)) . (19)

Let X̄ = X −X∗, Ȳ1 = Y1 − Y ∗1 , Z̄ = Z − Z∗, then the equation in (19) becomes

dV (X,Y1, Z)

dt
= − (a− dx)X

(
X + Y1 + Z

kh

)
− (b1 − d1)Y1

(
Y1 + Z

kt

)
+ Z (cϕPzY − dzZ) ≤ 0, (20)

after dropping the bar signs. Similarly, min
(

1, gZ−αY1

Y1

)
6= 1, then equation in (17)

becomes

dV (X,Y1, Z)

dt
= − (a− dx) (X −X∗)

(
X + Y1 + Z

kh

)
− (b1 − d1)

kt
(Y1 − Y ∗1 )

(
(Y1 − Y ∗1 ) + (b1ϕPy1

g − 1)(Z − Z∗)
)

+ (Z − Z∗) (cϕPzY1 − dz (Z − Z∗)) ≤ 0. (21)

Thus, we have the following results.
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Theorem 2.3. The postive steady states in equation (12) and (16) are globally
stable.

Thus, in this section we determine the positive solutions of both cases and found
out that similar conditions hold for the survival of tumour cells which play an
integral part in this stoichometric dynamics.

In the next sections we consider the existence of Hopf bifurcation.

2.4. Stability of uniform equilibrium points and the existence of Hopf

bifurcation for min
(

1, gZ−αY1

Y1

)
= 1 and min

(
1, gZ−αY1

Y1

)
6= 1. In this section,

we concentrate on the dynamical behavior of equation (2). Our goal is to inves-
tigate the stability of the equilibrium points of (2) and also the existence of Hopf
bifurcation. This is achieved by taking the delay time τ as a bifurcation parameter.
Thus, we study effects of the time delay on the dynamics of (2) as follows.

2.4.1. Stability of positive equilibrium points and the existence of Hopf bifurcation

for min
(

1, gZ−αY1

Y1

)
= 1. Let (X∗, Y ∗1 , Z

∗) be an equilibrium point for the system

in equation (2) and

(X̄, Ȳ1, Z̄) = (X −X∗, Y1 − Y ∗1 , Z − Z∗).

Linearizing the system in equation (2) around (X∗, Y ∗1 , Z
∗), and drop bars again,

we obtain

Xt −Dx∆X =
(
aϕPx

− dx − (a− dx)
2X∗+Y ∗

1 +Z∗

kh

)
X − (a− dx) X

∗

kh
Y1

− (a− dx) X
∗

kh
Z,

(Y1)t −Dy1∆Y1 =
(
ϕPy1

− d1 − (b1 − d1)
2Y ∗

1 +Z∗

kt

)
Y1 − Y ∗

1 (b1−d1)
kt

Z,

Zt −Dz∆Z = cϕPz
Y1(t− τ)− dzZ,

∂X
∂ν = ∂Y1

∂ν = ∂Y2

∂ν = ∂Z
∂ν = 0, on (x, t) ∈ ∂Ω× (0,∞),

Xj(x, t) = ηj(x, t) ≥ 0(x, t) ∈ Ω× (0,∞),

Xj(x, t) = ηj(x, t)−X ∗j , (x, t) ∈ Ω̄× [−τ, 0], j = 1, 2, 3.



(22)

Let 0 = µ0 < µ1 < · · · be the eigenvalues of the operator ∆ on Ω with the
homogeneous Neumann boundary condition, then the characteristic equation for
equation in (22) is given by

λ+Dxµk + aϕPx
− dx − (a−dx)

kh
(2X∗ + Y ∗ + Z∗) = 0,

λ2kt +K1λ+ Y ∗1 c (b1 − d1) ςPz
exp(−λτ) +K2 = 0,

}
(23)

where

K1 = kt(Dz +Dy1
)µk + (ϕPy1

− (d1 + dz))kt − (2Y ∗1 + Z∗)( d1 − b1),

K2 = Dy1
Dzktµk2 + kt(ϕPy1

Dz −Dy1
dz)µk +Dz(( d1 − b1)(2Y ∗1 + Z∗)− d1kt))µk
+dz(2Y

∗
1 + Z∗)(b1 − d1) + kt(d1 − ϕPy1

)dz.

Negative real parts for the first equation in (23) requires that

khdx > −(a− dx), (24)
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whereas in the second equation in (23), when τ = 0, Routh-Hurwitz criteria requires
that

(ϕPy1
− (d1 + dz))kt > (2Y ∗1 + Z∗)(d1 − b1), ϕPy1

Dz > Dy1
dz, d1 > ϕPy1

. (25)

Therefore, we have the following result.

Lemma 2.4. Assume that the conditions in equation (24)-(25) holds. Then the
positive constant solution (X∗, Y ∗1 , Z

∗) of system in (2) is locally asymptotically
stable when τ = 0.

Next, we examine when equation in (23) has pure imaginary roots λ = ±iω with
ω real number and ω > 0. This is given by the following lemma.

Lemma 2.5. The characteristic equation associated to equation in (23) has pure
imaginary roots.

Proof. If λ = iω be a root of the characteristic equation (23) where ω > 0, then we
have

−ω2kt +K1iω + Y ∗1 c (b1 − d1) ςPz (cos(ωτ) + i sin(ωτ)) +K2 = 0. (26)

Separating real and imaginary parts, we have the following two equations

−ω2kt + Y ∗1 c (b1 − d1) ςPz
cos(ωτ) +K2 = 0,

K1ω + Y ∗1 c (b1 − d1) ςPz
sin(ωτ)) = 0. (27)

Equations in (27) give possible values of τ and ω for which the characteristic equa-
tion in (23) can have pure imaginary roots. To see it we square each equation and
we obtain

(Y ∗1 c(b1 − d1)ςPz
)2 cos2(ωτ) = (ω2kt −K2)2,

(Y ∗1 c (b1 − d1) ςPz
)2 sin2(ωτ)) = (K1ω)2. (28)

Adding the two equations, we obtain

2(Y ∗1 c(b1 − d1)ςPz )2 = (ω2kt −K2)2 + (K1ω)2, (29)

which implies that

ω4 +
(K2

1 − 2ktK2)

kt
ω2 +

K2
2 − 2(Y ∗1 c(b1 − d1)ςPz

)2

kt
= 0. (30)

Hence,

ω2 =
− (K2

1−2ktK2)
kt

±
√(

(K2
1−2ktK2)
kt

)2
− 4

K2
2−2(Y ∗

1 c(b1−d1)ςPz )
2

kt

2
(31)

Thus, in view of the first equation in (27) and the first equation in (28), we obtain

τ∗j =
1

ω
cos−1

((
(ω2kt −K2)

Y ∗1 c (b1 − d1) ςPz

)
+ 2jπ

)
, (32)

as the critical values of τ , for j = 0, 1, 2, . . . , and this complete the proves. This
gives us the following lemma.

Lemma 2.6. Assume that the conditions in equation (24) and (25) hold. Then for
j ∈ N0 the following statements are true.

(i) Equation in (28) has a pair of purely imaginary roots ±iω when τ = τ∗j and
there are no other roots of equation in (28) with zero real parts.
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(ii) All the roots of equation in (28) have negative real parts when τ ∈ [0, τ∗),
where τ∗ = τ∗0 .

We have verified the hypotheses for Hopf bifurcation to occur at τ∗ = τ∗0 except
for the transversality condition. Differentiate the second equation in (23) with
respect to τ , we have

Re

(
∂λ2

2kt +K1λ2 + Y ∗1 c (b1 − d1) ςPz
exp(−λ2τ) +K2

∂τ

) ∣∣∣∣∣
λ=iω,τ=τ∗

0

(33)

= Re (ωY ∗1 c (b1 − d1) ςPz sin(ωτ∗0 )) > 0. (34)

Thus, the following results.

Lemma 2.7. The transversality condition

Re

(
∂λ2

2kt +K1λ2 + Y ∗1 c (b1 − d1) ςPz exp(−λ2τ) +K2

∂τ

) ∣∣∣∣∣
λ=iω,τ=τ∗

0

> 0,

is satisfied.

2.4.2. Stability of positive equilibrium points and the existence of Hopf bifurcation

for min
(

1, gZ−αY1

Y1

)
6= 1. Similarly, after linearizing the system in equation (2)

around (X∗, Y ∗1 , Z
∗), we obtain the characteristic equation as

λ+Dxµk + aϕPx − dx −
(a−dx)
kh

(2X∗ + Y ∗ + Z∗) = 0,

λ2kt +K1λ+ cDz(b1 − d1)Y ∗1 exp(−λτ) +K2 = 0,

}
(35)

where

K1 = (ϕPy1
− dz − d1)kt + (d1 − b1)(Z∗ + 2Y ∗1 ) + kt(Dy1 +Dz)µk,

K2 = dz((d1 − ϕPy1
)kt + (b1 − d1)(2Y ∗1 + Z∗)) + ktDy1µk

2Dz
+kt(ϕPy1

Dz −DY1dz − d1Dz)µk) +Dz(d1 − b1)(2Y ∗1 + Z∗)µk.

Negative real parts for the first equation in (35) requires that

khdx > −(a− dx), (36)

whereas in the second equation in (35), when τ = 0, Routh-Hurwitz criteria requires
that

(ϕPy1
− (d1 + dz))kt > (2Y ∗1 + Z∗)(d1 − b1), ϕPy1

Dz > Dy1dz + d1Dz, d1 > ϕPy1
. (37)

Therefore, we have the following result.

Lemma 2.8. Assume that the conditions in equation (36)-(37) holds. Then the
positive constant solution (X∗, Y ∗1 , Z

∗) of system (2) is locally asymptotically stable
when τ = 0.

Next, we examine when equation in (35) has pure imaginary roots λ = ±iω with
ω real number and ω > 0. This is given by the following lemma.

Lemma 2.9. The characteristic equation associated to equation in (35) has pure
imaginary roots.

Proof. If λ = iω be a root of the characteristic equation (35) where ω > 0, then we
have

−ω2kt +K1iω + Y ∗1 c (b1 − d1)Dz(cos(ωτ) + i sin(ωτ)) +K2 = 0. (38)
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Separating real and imaginary parts, we have the following two equations

−ω2kt + Y ∗1 c (b1 − d1)Dz cos(ωτ) +K2 = 0,

K1ω + Y ∗1 c (b1 − d1)Dz sin(ωτ)) = 0. (39)

Equations in (39) give possible values of τ and ω for which the characteristic equa-
tion in (35) can have pure imaginary roots. To see it we square each equation and
we obtain

(Y ∗1 c(b1 − d1)Dz)2 cos2(ωτ) = (ω2kt −K2)2,

(Y ∗1 c (b1 − d1)Dz)2 sin2(ωτ)) = (K1ω)2. (40)

Adding the two equations, we obtain

2(Y ∗1 c(b1 − d1)Dz)2 = (ω2kt −K2)2 + (K1ω)2, (41)

which implies that

ω4 +
(K2

1 − 2ktK2)

kt
ω2 +

K2
2 − 2(Y ∗1 c(b1 − d1)Dz)2

kt
= 0. (42)

Hence,

ω2 =
− (K2

1−2ktK2)
kt

±
√(

(K2
1−2ktK2)
kt

)2
− 4

K2
2−2(Y ∗

1 c(b1−d1)Dz)2

kt

2
(43)

Thus, in view of the first equation in (40) and equation in (43), we obtain

τ∗j =
1

ω
cos−1

((
(ω2kt −K2)

Y ∗1 c (b1 − d1)Dz

)
+ 2jπ

)
, (44)

are the critical values of τ , for j = 0, 1, 2, . . . , and this complete the proves. This
gives us the following lemma.

Lemma 2.10. Assume that the conditions in equation (36) and (37) hold. Then
for j ∈ N0 the following statements are true.

(i) Equation in (35) has a pair of purely imaginary roots ±iω when τ = τ∗j and
there are no other roots of equation in (35) with zero real parts.

(ii) All the roots of equation in (35) have negative real parts when τ ∈ [0, τ∗),
where τ∗ = τ∗0 .

We have verified the hypotheses for Hopf bifurcation to occur at τ∗ = τ∗0 except
for the transversality condition. Differentiate the second equation in (35) with
respect to τ , we have

Re

(
∂λ2

2kt +K1λ2 + Y ∗1 c (b1 − d1)Dz exp(−λ2τ) +K2

∂τ

) ∣∣∣∣∣
λ=iω,τ=τ∗

0

(45)

= Re (ωY ∗1 c (b1 − d1)Dz sin(ωτ∗0 )) > 0. (46)

Thus, the following results.

Lemma 2.11. The transversality condition

Re

(
∂λ2

2kt +K1λ2 + Y ∗1 c (b1 − d1) ςPz
exp(−λ2τ) +K2

∂τ

) ∣∣∣∣∣
λ=iω,τ=τ∗

0

> 0,

is satisfied.

In the next section we derive our efficient numerical method.
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3. Derivation of the numerical method. In this section, we describe the deriva-
tion of the fitted numerical method for solving the system in equation (2). We
determine an approximation to the derivatives of the functions X(t, x), Y1(x, t) and
Z(t, x) with respect to the spatial variable x.

Let Nx be a positive integer. Discretize the interval [0, xf ] through the points

0 = x0 < x1 < x2 < · · · < xNx
= xf ,

where the step-size ∆x = xj+1 − xj = xf/Nx, j = 0, 1, . . . , Nx. Let Xj(t), (Y1)j(t),
Zj(t) denote the numerical approximations of X(t, j), Y1(t, j), Z(t, j), then we ap-
proximate the second order spatial derivatives by

∆X(t, xj) ≈ Xj+1 − 2Xj + Xj−1
(φX)2

, ∆Y1(t, xj) ≈
(Y1)j+1 − 2(Y1)j + (Y1)j−1

(φY1
)2

,

∆Z(t, xj) ≈ Zj+1 − 2Zj + Zj−1
(φZ)2

, (47)

where

(φX)2 =
4

(σX)
sin2

(
(σX)j∆x

4

)
, (φY1

)2 =
(1− exp ((σY1

)∆x)

(σY1)
,

(φZ)2 =
(1− exp ((σZ)∆x)

(σZ)
,

and

(σX) =

√
(dx − aϕPx

)

Dx
, (σY1

) =

√
d1
Dy1

, (σZ) =

√
dz
Dz

. (48)

It is obvious that all the φ→ ∆x as ∆x→ 0.
Let Nt be a positive integer and ∆t = T/Nt where 0 < t < T . Discretizing the

time interval [0, T ] through the points

0 = t0 < t1 < · · · < tNt = T,

where

tn+1 − tn = ∆t, n = 0, 1, . . . , (Nt − 1).

We approximate the time derivatives at tn by

dXj(tn)

dt
≈
Xn+1
j −Xnj
ψX

,
d(Y1)j(tn)

dt
≈

(Y1)n+1
j − (Y1)nj

ψY1

,
dZj(tn)

dt
≈
Zn+1
j −Znj
ψZ

, (49)

where

ψX = (exp((dx − aϕPx
)∆t)− 1)/(dx − aϕPx

), ψY1
= (1− exp(−d1∆t))/d1,

ψZ = (1− exp(−dz∆t))/dz, (50)

where we see that all the ψ → ∆t as ∆t→ 0.
The denominator functions in (47) and (49) are used explicitly to remove the

inherent stiffness in the central finite derivatives parts and are derived by using the
theory of nonstandard finite difference methods, see, e.g., [9, 16, 17] and references
therein.
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Combining the equation (47) for the spatial derivatives with equation (49) for
time derivatives, we obtain

Xn+1
j −Xn

j

ψX
= Dx

Xn+1
j+1 −2X

n+1
j +Xn+1

j−1

(φX)2

+Xnj
(
aϕPx − dx − (a− dx)

Xn
j +(Y1)

n
j +Z

n
j

kh

)
,

(Y1)
n+1
j −(Y1)

n
j

ψY1
= Dy1

(Y1)
n+1
j+1−2(Y1)

n+1
j +(Y1)

n+1
j−1

(φY1
)2

+(Y1)n1

(
b1ϕPy1

min
(

1, g
Zn

j −α(Y1)
n
j

(Y1)nj

)
− d1 − (b1 − d1)

(Y1)
n
j +Z

n
j

kt

)
,

Zn+1
j −Zn

j

ψZ
= Dz

Zn+1
j+1 −2Z

n+1
j +Zn+1

j−1

(φZ)2 + cϕPz
(HY1

)nj − dzZnj ,

Xn1 = Xn−1, (Y1)n1 = (Y1)n−1, Zn1 = Zn−1

XnNx
= XnNx−1, (Y1)nNx

= (Y1)nNx−1, Z
n
Nx

= ZnNx−1,

X 0
j = 9.00, (Y1)0j = 0.01, Z0

j = 0.001,



(51)

where, the no-flux boundary conditions are discretised by means of the central finite
difference [2], j = 1, 2, . . . , Nx − 1, n = 0, 1, . . . , Nt − 1 and

(HY1
)nj ≈ Y1(tn − τ, xj), (52)

is denoting the history functions corresponding to the equation in Y1.
The system in equation (51) can further be simplified as

− Dx

(φX)2X
n+1
j−1 +

(
1
ψX

+ 2Dx

(φX)2

)
Xn+1
j − Dx

(φX)2X
n+1
j+1

= Xnj
(

1
ψX

+ aϕPx
− dx − (a− dx)

Xn
j +(Y1)

n
j +Z

n
j

kh

)
,

− Dy1

(φY1
)2 (Y1)n+1

j−1 +
(

1
ψY1

+
2Dy1

(φY1
)2

)
(Y1)n+1

j − Dy1

(φY1
)2 (Y1)n+1

j+1

= (Y1)n1

(
1
ψY1

+ b1ϕPy1
min

(
1, g
Zn

j −α(Y1)
n
j

Y1)nj

)
− d1 − (b1 − d1)

(Y1)
n
j +Z

n
j

kt

)
,

− Dz

(φZ)2Z
n+1
j−1 +

(
1
ψZ

+ 2Dz

(φZ)2

)
Zn+1
j − Dz

(φZ)2Z
n+1
j+1

= cϕPz
(HY1

)nj +
(

1
ψZ
− dz

)
Znj ,



(53)

which can be written as a tridiagonal system given by

Pn+1
X = Xnj

(
1
ψX

+ aϕPx − dx − (a− dx)
Xn

j +(Y1)
n
j +Z

n
j

kh

)
,

Pn+1
Y1

= (Y1)n1

(
1
ψY1

+ b1ϕPy1
min

(
1, g
Zn

j −α(Y1)
n
j

Y1)nj

)
− d1

− (b1 − d1)
(Y1)

n
j +Z

n
j

kt

)
,

Pn+1
Z = cϕPz

(HY1
)nj +

(
1
ψZ
− dz

)
Znj ,


(54)
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where j = 1, . . . , Nx − 1, n = 0, . . . , Nt − 1 and

Pn+1
E = Tri

(
− Dx

(φX)2 ,
1
ψX

+ 2Dx

(φX)2 ,−
Dx

(φX)2

)
,

Pn+1
Y1

= Tri
(
− Dy1

(φY1
)2 ,

1
ψY1

+
2Dy1

(φY1
)2 ,−

Dy1

(φY1
)2

)
,

Pn+1
Z = Tri

(
− Dz

(φZ)2 ,
1
ψZ

+ 2Dz

(φZ)2 ,−
Dz

(φZ)2

)
.


On the interval [0, τ ] the delayed arguments tn−τ belong to [−τ, 0], and therefore the
delayed variables in equation (51) are evaluated directly from the history functions
Y 0
1 (t, x) as

(HY1)nj ≈ Y 0
1 (tn − τ, xj), (55)

and equation (54) becomes

Pn+1
X = Xnj

(
1
ψX

+ aϕPx
− dx − (a− dx)

Xn
j +(Y1)

n
j +Z

n
j

kh

)
,

Pn+1
Y1

= (Y1)n1

(
1
ψY1

+ b1ϕPy1
min

(
1, g
Zn

j −α(Y1)
n
j

Y1)nj

)
− d1

− (b1 − d1)
(Y1)

n
j +Z

n
j

kt

)
,

Pn+1
Z = cϕPz (Y)01(tn − τ, xj) +

(
1
ψZ
− dz

)
Znj .


(56)

Let s be the largest integer such that τs ≤ τ . By using the system equation (56)
we can compute Xnj , (Y1)nj ,Znj for 1 ≤ n ≤ s. Up to this stage, we interpolate the
data

(t0, (Y1)0j ), (t1, (Y1)1j ), . . . , (ts, (Y1)sj),

using an interpolating cubic Hermite spline ιj(t). Then

(Y1)nj = ιY1(tn, xj),

for all n = 0, 1, . . . , s and j = 1, 2, . . . , Nx − 1.
For n = s + 1, s + 2, . . . , Nt − 1, when we move from level n to level n + 1 we

extend the definitions of the cubic Hermite spline ιj(t) to the point (tn + k, (Y1)nj .
Then the history term (HY1

)nj can be approximated by the functions ιj(tn − τ) for
n ≥ s. This implies that,

(HY1
)nj ≈ (ιY1

)j(tn − τ), (57)

and equation (56) becomes

Pn+1
X = Xnj

(
1
ψX

+ aϕPx − dx − (a− dx)
Xn

j +(Y1)
n
j +Z

n
j

kh

)
,

Pn+1
Y1

= (Y1)n1

(
1
ψY1

+ b1ϕPy1
min

(
1, g
Zn

j −α(Y1)
n
j

Y1)nj

)
− d1

− (b1 − d1)
(Y1)

n
j +Z

n
j

kt

)
,

Pn+1
Z = cϕPz

(ιY1
)j(tn − τ) +

(
1
ψZ
− dz

)
Znj ,


(58)
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where

ιY1
(tn − τ) = [(HY1

)n1 , (HY1
)n2 . . . , (HY1

)nNx−1]′.

Our FOFDM is then consists of equations (51)-(58). This method is analyzed for
convergence in next section and the corresponding numerical results are presented
in Section 4.

3.1. Analysis of convergence. The convergence for the proposed FOFDM is
proved via consistency and stability.

3.1.1. Consistency of the numerical method. We assume that the functions X(t, x),
Y1(t, x), Z(t, x) and their partial derivatives with respect to both t and x are smooth
and satisfy∣∣∣∣∂i+jX(t, x)

∂tixj

∣∣∣∣ ≤ CX , ∣∣∣∣∂i+jY1(t, x)

∂tixj

∣∣∣∣ ≤ CY1
,

∣∣∣∣∂i+jZ(t, x)

∂tixj

∣∣∣∣ ≤ CZ , ∀i, j ≥ 0, (59)

where CX , CY1 , CZ are constant that are independent of the time and space step-
sizes.

The local truncation error (LTE) for the discrete equations in X,Y1, Z in the
FOFDM (56) and (58) is given by

(LTE)X =

(
Xt −

Xn+1
j −Xn

j

ψX

)
−
(
Xxx −

Xn+1
j+1 −2X

n+1
j +Xn+1

j−1

(φX)2j

)
+(f1(t, x,X, Y1, Z)− f1(t, x,Xn

j , (Y1)nj , Z
n
j )),

(LTE)Y1
=

(
(Y1)t −

(Y1)
n+1
j −(Y1)

n
j

ψY1

)
−
(

(Y1)xx −
(Y1)

n+1
j+1−2(Y1)

n+1
j +(Y1)

n+1
j−1

(φY1
)2j

)
,

+(f2(t, x,X, Y1, Z)− f2(t, x,Xn
j , (Y1)nj , Z

n
j )),

(LTE)Z =

(
Zt −

Zn+1
j −Zn

j

ψZ

)
−
(
Zxx −

Zn+1
j+1 −2Z

n+1
j +Zn+1

j−1

(φZ)2j

)
+(f3(t, x,X, Y1, Z)− f3(t, x,Xn

j , (Y1)nj , Z
n
j )),



(60)

where

f1(t, x,X, Y1, Z) = X
(
aϕPx

− dx − (a− dx) X+Y1+Z
kh

)
,

f1(t, x,Xn
j , (Y1)nj , Z

n
j ) = Xn

j

(
aϕPx

− dx − (a− dx)
Xn

j +(Y1)
n
j +Z

n
j

kh

)
,

f2(t, x,X, Y1, Z) = (Y1

(
b1ϕPy1

min
(
1, gZ−αY1

Y

)
− d1 − (b1 − d1) Y1+Z

kt

)
,

f2(t, x,Xn
j , (Y1)nj , Z

n
j ) =

(Y1)n1

(
b1ϕPy1

min
(

1, g
Zn

j −α(Y1)
n
j

(Y1)nj

)
− d1 − (b1 − d1)

(Y1)
n
j +Z

n
j

kt

)
,

f3(t, x,X, Y1, Z) = cϕPz
(ιY1

)j(tn − τ)− dzZ,

f3(t, x,Xn
j , (Y1)nj , Z

n
j ) = cϕPz

(ιY1
)j(tn − τ)− dzZnj .


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The first terms on the right hand side of equations in (60) satisfies∣∣∣∣Xt(tn, xj)− Xn+1
j −Xn

j

ψX

∣∣∣∣ =

∣∣∣∣Xt(tn, xj)− Xn+1
j −Xn

j

∆t
+

Xn+1
j −Xn

j

∆t
−

Xn+1
j −Xn

j

ψX

∣∣∣∣ ,
≤
∣∣∣∣Xt(tn, xj)− Xn+1

j −Xn
j

∆t

∣∣∣∣+

∣∣∣∣Xn+1
j −Xn

j

∆t
−

Xn+1
j −Xn

j

ψX

∣∣∣∣ ,
≤ ∆t

2
|Xtt(ξ, xj)|+

∣∣∣Xt(ξ, xj) + ∆t
2
Xtt(ξ, xj) + (∆t)2

6
Xttt(ξ, xj)

∣∣∣
−

∣∣∣∣∣Xt(ξ,xj)+ ∆t
2
Xtt(ξ,xj)+

(∆t)2

6
Xttt(ξ,xj)

1+
(dx−aϕPx

)∆t

2
+

((dx−aϕPx
)∆t)2

6

∣∣∣∣∣ ,
≤ ∆t

2
CX +

∣∣∣Xt(ξ, xj) + ∆t
2
Xtt(ξ, xj) + (∆t)2

6
Xttt(ξ, xj)

∣∣∣
−

∣∣∣∣∣Xt(ξ,xj)+ ∆t
2
Xtt(ξ,xj)+

(∆t)2

6
Xttt(ξ,xj)

1+
(dx−aϕPx

)∆t

2
+

((dx−aϕPx
)∆t)2

6

∣∣∣∣∣→ 0 as ∆t→ 0,

∣∣∣∣(Y1)t(tn, xj)−
(Y1)n+1

j −(Y1)nj
ψY1

∣∣∣∣ ≤ ∣∣∣∣(Y1)t(tn, xj)−
(Y1)n+1

j −(Y1)nj
ψY1

∣∣∣∣
+

∣∣∣∣ (Y1)n+1
j −(Y1)nj

∆t
−

(Y1)n+1
j −(Y1)nj
ψY1

∣∣∣∣ ,
≤ ∆t

2
|(Y1)tt(ξ, xj)|+

∣∣(Y1)t(ξ, xj) + ∆t
2

(Y1)tt(ξ, xj)
∣∣

+
∣∣∣ (∆t)26

(Y1)ttt(ξ, xj)
∣∣∣− ∣∣∣∣ (Y1)t(ξ,xj)+ ∆t

2
(Y1)tt(ξ,xj)+

(∆)2

6
(Y1)ttt(ξ,xj)

1− d1∆t
2

+
(d1∆t)2

6

∣∣∣∣ ,
≤ ∆t

2
CY1 +

∣∣∣(Y1)t(ξ, xj) + ∆t
2

(Y1)tt(ξ, xj) + (∆t)2

6
(Y1)ttt(ξ, xj)

∣∣∣
−
∣∣∣∣ (Y1)t(ξ,xj)+ ∆t

2
(Y1)tt(ξ,xj)+

(∆t)2

6
(Y1)ttt(ξ,xj)

1− d1∆t
2

+
(d1∆t)2

6

∣∣∣∣→ 0 as ∆t→ 0,

∣∣∣∣Zt(tn, xj)− Zn+1
j −Zn

j

ψZ

∣∣∣∣ =

∣∣∣∣Zt(tn, xj)− Zn+1
j −Zn

j

∆t
+

Zn+1
j −Zn

j

∆t
−

Zn+1
j −Zn

j

ψZ

∣∣∣∣ ,
≤
∣∣∣∣Zt(tn, xj)− Zn+1

j −Zn
j

∆t

∣∣∣∣+

∣∣∣∣Zn+1
j −Zn

j

∆t
−

Zn+1
j −Zn

j

ψZ

∣∣∣∣ ,
≤ ∆t

2
|Ztt(ξ, xj)|+

∣∣∣Zt(ξ, xj) + ∆t
2
Ztt(ξ, xj) + (∆t)2

6
Zttt(ξ, xj)

∣∣∣
−
∣∣∣∣Zt(ξ,xj)+ ∆t

2
Ztt(ξ,xj)+

(∆t)2

6
Zttt(ξ,xj)

1− dz∆t
2

+
(dz∆t)2

6

∣∣∣∣ ,
≤ ∆t

2
CZ +

∣∣∣Zt(ξ, xj) + ∆t
2
Ztt(ξ, xj) + (∆t)2

6
Zttt(ξ, xj)

∣∣∣
−
∣∣∣∣Zt(ξ,xj)+ ∆t

2
Ztt(ξ,xj)+

(∆t)2

6
Zttt(ξ,xj)

1− dz∆t
2

+
(dz∆t)2

6

∣∣∣∣→ 0 as ∆t→ 0,



(61)

where tn−1 ≤ ξ ≤ tn+1 in of each inequality in (61). The second term on the
right-hand side of equations in (60) satisfies
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∣∣∣∣Xxx(tn, xj)−
Xn+1

j+1 −2Xn+1
j +Xn+1

j−1

(φX )2j

∣∣∣∣
≤
∣∣∣Xxx(tn, xj)−

(
Xn

j+1−2Xn
j +Xn

j−1

(∆x)2

)∣∣∣
+

∣∣∣∣Xn
j+1−2Xn

j +Xn
j−1

(∆x)2
−
(
En+1

j+1 −2En+1
j +En+1

j−1

(φE)2j

)∣∣∣∣ ,
≤ (∆x)2

12
|Xxxxx(tn, ζ)|+ (∆x)2

(φX )2
|Xxx(tn, ζ)|

+∆t |Xxxt(ξ, xj)| → 0 as (∆t,∆x)→ (0, 0),∣∣∣∣(Y1)xx(tn, xj)−
(Y1)n+1

j+1−2(Y1)n+1
j +(Y1)n+1

j−1

(φY1
)2j

∣∣∣∣
≤
∣∣∣(Y1)xx(tn, xj)−

(
(Y1)nj+1−2(Y1)nj +(Y1)nj−1

(∆x)2

)∣∣∣
+
∣∣∣( (Y1)nj+1−2(Y1)nj +(Y1)nj−1

(∆x)2

)∣∣∣
+

∣∣∣∣ (Y1)n+1
j+1−2(Y1)n+1

j +(Y1)n+1
j−1

(φY1
)2j

∣∣∣∣ ,
≤ (∆x)2

12
|(Y1)xxxx(tn, ζ)|+ (∆x)2

(φ
(∆x)2

|(Y1)xx(tn, ζ)|
+∆t |(Y1)xxt(ξ, xj)| → 0 as (∆t,∆x)→ (0, 0),∣∣∣∣Zxx(tn, xj)−
Zn+1

j+1 −2Zn+1
j +Zn+1

j−1

(φZ)2j

∣∣∣∣
≤
∣∣∣Zxx(tn, xj)−

(
Zn

j+1−2Zn
j +Zn

j−1

(∆x)2

)∣∣∣
+

∣∣∣∣(Zn
j+1−2Zn

j +Zn
j−1

(∆x)2

)
−
(
Zn+1

j+1 −2Zn+1
j +Zn+1

j−1

(φZ)2j

)∣∣∣∣ ,
≤ (∆x)2

12
|Zxxxx(tn, ζ)|+ (∆x)2

(φZ)2
|Zxx(tn, ζ)|

+∆t |Zxxt(ξ, xj)| → 0 as (∆t,∆x)→ (0, 0),



(62)

where xj−1 ≤ ζ ≤ xj+1 in the third line of each inequality in (62), whereas by
Lipschitz condition [2], we have the third terms in equation (60) satisfying∣∣f1(t, x,X, Y1, Z)− f1(t, x,Xn

j , (Y1)nj , Z
n
j )
∣∣

≤ K1 max{|X −Xn
j |+ |Y1 − (Y1)nj |+ |Z − Znj |},∣∣f2(t, x,X, Y1, Z)− f2(t, x,Xn

j , (Y1)nj , Z
n
j )
∣∣

≤ K2 max{|X −Xn
j |+ |Y1 − (Y1)nj |+ |Z − Znj |},∣∣f3(t, x,X, Y1, Z)− f3(t, x,Xn

j , (Y1)nj , Z
n
j )
∣∣

≤ K2 max{|X −Xn
j |+ |Y1 − (Y1)nj |+ |Z − Znj |}, (63)

where K1,K2,K3 denote the Lipschitz constants.
Let

(eX)nj = |Xn
j −X(tn, xj)|, (eY1

)nj = |(Y1)nj − Y1(tn, xj)|, (eZ)nj = |Znj − Z(tn, xj)|,

then the inequalities in equation (63) becomes∣∣f1(t, x,X, Y1, Z)− f1(t, x,Xn
j , (Y1)nj , Z

n
j )
∣∣ ≤ K1 max{(eX)nj + (eY1)nj + (eZ)nj },∣∣f2(t, x,X, Y1, Z)− f2(t, x,Xn

j , (Y1)nj , Z
n
j )
∣∣ ≤ K2 max{(eX)nj + (eY1)nj + (eZ)nj },∣∣f3(t, x,X, Y1, Z)− f3(t, x,Xn

j , (Y1)nj , Z
n
j )
∣∣ ≤ K3 max{(eX)nj + (eY1)nj + (eZ)nj }, (64)

But we see that (∆t,∆x)→ (0, 0) in equation (61) to (62), this implies that

(eX)nj → (eX)11 = 0, (eY1
)nj → (eY1

)11 = 0, (eZ)nj → (eZ)11 = 0. (65)
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The results that we obtained in equations (61), (62) to (65) prove that (LTE)X → 0,
(LTE)Y1 → 0 and (LTE)Z → 0 as ∆t → 0 and ∆x → 0 and this proves the
consistency of our FOFDM.

3.1.2. Stability of the numerical method. Substituting the exact solutions X(tn, xj),
Y1(tn, xj), Z(tn, xj) instead of the approximations Xnj , (Y1)nj ,Znj in equation (58),
we obtain

Pn+1
X = Xn

j

(
1
ψX

+ aϕPx − dx − (a− dx)
Xn

j +(Y1)
n
j +Z

n
j

kh

)
,

Pn+1
Y1

= (Y1)n1

(
1
ψY1

+ b1ϕPy1
min

(
1, g

Zn
j −α(Y1)

n
j

(Y1)nj

)
− d1

− (b1 − d1)
(Y1)

n
j +Z

n
j

kt

)
,

Pn+1
Z = cϕPz

(ιY1
)j(tn − τ) +

(
1
ψZ
− dz

)
Znj ,


(66)

Subtracting equation (66) from (58), taking the absolute values on both two sides
and using equation in (65), we have

|en+1
PZ
| ≤ 0, |en+1

PY1
| ≤ 0, |en+1

PZ
| ≤ 0, (67)

where en+1
PX

= PX(tn+1, ·)−PX(tn+1, ·),and Similar notations are used in the second
and third equation in (67).

This proves that the method is unconditionally stable.

Remark 1. For the model (49), we see that (LTE)X → 0, (LTE)Y1
→ 0 and

(LTE)Z → 0 as ∆t → 0 and ∆x → 0. Moreover, the method is unconditionally
stable.

4. Numerical results and discussions. In this section, we present our numerical
results with respect to the maximum proliferation rate of tumor cells and blood
supply limitation indicator to help visualize when there are indeed limiting healthy
and tumour cells growth. In order to investigate it, we implement our numerical
method such that the stability conditions given in Theorems 2.1-2.2 are satisfied.
Due to the unavailability of diffusion values, we set the diffusion constants Dx =
10−3,Dy1

= 20−4,Dx = 30−5. Following Elser et al. [7], we present our numerical
results as follows.

Table 1. Parameter values[7]

m = 20.00 n = 10.00 kh = 10.00

kt = 3.00 f = 0.6667 P = 150

m1 = 20.00 β1 = 1.00 c = 0.005

dz = 0.20 g = 100.00 α = 0.05

In Figure 1, we present the case when the birth rate of healthy cell are decreased
than that of parenchyma cell (a < b1 and dearth rate of healthy cell is increased
than that of parenchyma cell (dx > d1) for (a) no treatment blocking phosphorus
uptake by tumor cells, (b) lowered phosphorus P by 20%, (c) increased the time
delay τ from 7 to 11 days and in (d) blocked tumor cell uptake of phosphorus by
half.
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Figure 1. Numerical solution for the dynamics of homogeneous
tumour growth model, when a = 3, dx = 2, b1 = 6, d1 = 0.5.
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Figure 2. Numerical solution for the dynamics of homogeneous
tumour growth model, when a = 6, dx = 1, b1 = 6, d1 = 1.
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Figure 3. Numerical solution for the dynamics of homogeneous
tumour growth model, when a = 6, dx = 0.5, b1 = 3, d1 = 2.

In Figure 2, we present the case when the birth and dearth rates of healthy and
parenchyma cells are equal (a = b1 and dx = d1) for (a) no treatment blocking phos-
phorus uptake by tumor cells, (b) lowered phosphorus P by 20%, (c) increased the
time delay τ from 7 to 11 days and in (d) blocked tumor cell uptake of phosphorus
by half.

In Figure 3, we present the case when the birth of healthy cells are increased
than that of a parenchyma cell (a > b1) and increased death rate of healthy cells
than that of a parencyma cell(dx < d1) for (a) no treatment blocking phosphorus
uptake by tumor cells, (b) lowered phosphorus P by 20%, (c) increased the time
delay τ from 7 to 11 days and in (d) blocked tumor cells uptake of phosphorus by
half.

The numerical solutions in Figure 1 present a slight growth of healthy cells and
fast growth of tumour cell during the first 40 days from the infection date. We also
see that after 40 days of infection, both cells converges to their steady states, with a
slight decrease in their growth. This is due to the competition for resources among
cells, presented by this case. After 40 days the process of vascularization starts to
grow because the tumour cell has reached some genetically size. We also see that
lowered phosphorus and blocked tumor cell uptake of phosphorus do not differ from
the no treatment blocking phosphorus uptake by tumor cells, whereas the above
features are postponed when we increased the time delay τ from 7 to 11 days.

The numerical solutions in Figure 2 present an increase growth of healthy cells
and tumour cell during the first 40 days from the infection date. We also see that
after 40 days of infection, both cells converges to their steady states, with a slight
increase for healthy cells and a decrease growth of tumour cells. This is due to the
competition for resources among cells presented by this case. After 40 days the
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process of vascularization starts to grow because the tumour cell has reached some
genetically size. We note that lowered phosphorus and blocked tumor cell uptake
of phosphorus do not differ from the no treatment blocking phosphorus uptake by
tumor cells, whereas the above features are postponed when we increased the time
delay τ from 7 to 11 days.

The numerical solutions in Figure 3 present an increase growth of healthy cells as
compare to the previous cases and a drastic decrease for tumour cell during the first
40 days from the infection date. After 40 days of infection, both cells converges to
their respective steady states, with an increase of healthy cells and a decrease growth
of tumour cell. This is due to the competition for resources among cells presented by
this case. After 40 days the process of vascularization starts to grow, thus causing
tumour cell to grow gradually. We note that lowered phosphorus and blocked tumor
cell uptake of phosphorus do not differ from the no treatment blocking phosphorus
uptake by tumor cell, whereas the above features are postponed when we increased
the time delay τ from 7 to 11 days.

5. Conclusion. In this paper, we have considered the biological stoichiometry of
tumour dynamics, vascularized by a single solid tumor growing within the confine-
ment of an organ and the environment provided by an organ. We examined the
presence of positive steady state solutions for all the possible limiting cases with
respect to proliferation rate of tumour cell and determine the existence of Hopf bi-
furcation. Thus, our numerical solutions clearly present the fact that the biological
stoichiometry of tumour dynamics is real and can contribute quite a great deal to-
ward the development of therapeutically drugs which can contribute toward healing
tumour and tumour related diseases. Thus, our approach in this work should serve
as a first numerical attempt to incorporate the detailed effects of healthy and tumor
cells competing for both space and essentials, but limiting nutrients within a host.
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