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Abstract: Since the process of angiogenesis is controlled by chemical signals, which stimulate
both repair of damaged blood vessels and formation of new blood vessels, then other chemical
signals known as angiogenesis inhibitors interfere with blood vessels formation. This implies that
the stimulating and inhibiting effects of these chemical signals are balanced as blood vessels form only
when and where they are needed. Based on this information, an optimal control problem is formulated
and the arising model is a system of coupled non-linear equations with adjoint and transversality
conditions. Since many of the numerical methods often fail to capture these type of models, therefore,
in this paper, we carry out steady state analysis of these models before implementing the numerical
computations. In this paper we analyze and present the numerical estimates as a way of providing
more insight into the postvascular dormant state where stimulator and inhibitor come into balance in
an optimal manner.
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1. Introduction

A growing tumor needs a steady supply of oxygen and nutrients for cell duplication, thus the growth
of new vessels of a tumour are understood to be stimulated by mainly the principal stimulus, known
as the angiogenic switch. In most cases it appears to be because of oxygen deprivation, although
other stimuli such as inflammation, oncogenic mutations and mechanical stress may also play a role.
Thus, such angiogenic switch leads to tumor expression of pro-angiogenic factors and increased tumor
vascularization [12].

Initially, during avascular growth, it is provided through the surrounding environment. As the tumor
becomes larger these mechanisms become inadequate and tumor cells enter the dormant stage of the
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cell cycle. As a consequence, vascular endothelial growth factors (VEGF) are released that stimulate
the formulation of new blood vessels and capillaries in order to supply the tumor with needed nutrients.
This process is called tumor angiogenesis. Hence tumor anti-angiogenesis is a treatment approach for
cancer that aims at depriving the tumor of this vasculature.

Ideally, without an adequate support network, the tumor shrinks. Anti-angiogenic treatment was
already proposed in the early seventies by J. Folkman [13], but became medically possible only with
the discovery of the inhibitory mechanisms of the tumor in the nineties [9, 20]. It brings in external
anti-angiogenic agents to disrupt the growth of endothelial cells which form the lining of newly
developing blood vessels and capillaries. The intent to directly kill tumour cells or prevent their
proliferation has in many cases proved futile as the kinetic understanding of tumour control and
sensitivity characteristics reveal that tumour population is far from stable. Therefore, since the tumour
vasculature does not exploit tumour cell sensitivities, Hahnfeldt et al. [14] realized that it relies on
tumour suppression consequent to inhibition of associated vasculature. This has paved the way for
antiangiogenic therapy to control an exceptionally heterogeneous, unconstrained tumour population
via a relatively homogeneous and constrained endothelial population as it allows one to disregard a
vast array of spatial and temporal details of tumour cell expression. As a consequence, no clonal
resistance to angiogenic inhibitors has been observed in experimental cancer [2].

Since developing drug resistance all too often is the limiting factor in conventional chemotherapy
treatments as cancers have a formidable capacity to develop resistance to a large and diverse array of
chemical, biologic, and physical anti-neoplastic agents, Kerbel [18], claimed that it can be largely
traced to the instability of the tumour cell genome, and the resultant ability of tumour cell populations
to generate phenotypic variants rapidly. Therefore, anti-cancer strategies should be directed at
eliminating those genetically stable normal diploid cells that are required for the progressive growth
of tumours. Hence tumor anti-angiogenesis has been called a new hope for the treatment of
tumors [21]. Although these high hopes have not been realized in practice, there still strong interest
and active research on tumor anti-angiogenesis as a method that normalizes the vasculature [15, 16]
and thus, when combined with traditional treatments like chemotherapy or radiotherapy, enhances the
efficiency of these procedures.

Apart from formulating a class of mathematical models for tumor anti-angiogenesis as optimal
control problems, Ledzewicz and Cardwell [30] considered the fact on how to schedule an a priori
given amount of anti-angiogenic (e.g., vessel disruptive) agents in order to minimize the tumor
volume [37, 38], they also analyzed these models for a class of mathematical models that include,
based on a model that was developed and biologically validated by Hahnfeldt, Panigrahy, Folkman
and Hlatky [14]. The principal state variables are the primary tumor volume, p, and the carrying
capacity of the vasculature, q, where the latter is a measure for the tumor volume sustainable by the
vascular network. The dynamics describes the interactions between these variables and the tumor
volume p changes according to some growth function dependent on the variable carrying capacity q,
where the q-dynamics consists of a balance of stimulatory and inhibitory effects. While significant
modeling changes are made in the dynamics for the vascular support in this model, the solutions to
the optimal control problem are in fact qualitatively identical.

Ledzewicz et al, [29] considered two mathematical models for tumour anti-angiogenesis in which
one model was originally formulated in [14] whereas, the other model is a modification of the model
by [11] considered as optimal control problem with the aim of maximizing the tumour reduction

AIMS Mathematics Volume 4, Issue 1, 43–63.



45

achievable with an a priori given amount of angiogenic agents. They argued that depending on the
initial conditions, the optimal controls may contain a segment along which the dosage follows a
so-called singular control, a time-varying feedback control. Thus, the efficiency of piecewise constant
protocols with a small number of switchings is investigated through comparison with the theoretically
optimal solutions. It is shown that these protocols provide generally excellent suboptimal strategies
that for many initial conditions come within a fraction of 1% of the theoretically optimal values.
When the duration of the dosages are a priori restricted to a daily or semi-daily regimen, still very
good approximations of the theoretically optimal solution can be achieved.

Hahnfeldt et al. [14] described the growth of a tumour assuming that tumour growth is strictly
controlled by the evolution of the vascular network that supplies oxygen and nutrients to tumour cells
and noticed that it provides a framework to represent the effects of antiangiogenic therapies. In their
paper, some possible modifications of their model are proposed, and conditions that guarantee the
eradication of the tumour under a regimen of periodic antiangiogenic therapy are derived. The model
variants considered assume the potential doubling time of the vasculature to be constant, and subdivide
the endothelial cell pool, which is involved in angiogenesis, in resting and proliferating cells allowing
for a more detailed description of drug effects.

In [31] considered the problem of minimizing the tumor volume with a priori given amounts of
anti-angiogenic and cytotoxic agents. For one underlying mathematical model, optimal and
suboptimal solutions are given for four versions of this problem: the case when only anti-angiogenic
agents are administered, combination treatment with a cytotoxic agent, and when a standard linear
pharmacokinetic equation for the anti-angiogenic agent is added to each of these models. It is shown
that the solutions of the more complex models naturally can be built on the simplified versions. This
gives credence to a modeling approach that starts with the analysis of simplified models and then adds
increasingly more complex and medically relevant features. Furthermore, for each of the problem
formulations considered here, there exist excellent simple piecewise constant controls with a small
number of switchings that virtually replicate the optimal values for the objective.

Ledzewicz et al. [27] analyzed the scheduling of angiogenic inhibitors as an optimal control
problem for a mathematical model for tumor anti-angiogenesis proposed by Ergun et al. [11] with a
logistic growth function modeling tumor growth. It is shown that optimal controls are bang-bang with
at most two switchings.

Sebastien [36] introduced a phenomenological model for anti-angiogenic therapy in the treatment
of metastatic cancers, which is a structured transport equation with a nonlocal boundary condition
describing the evolution of the density of metastases, that at first were analyzed at the continuous
level. He presented the numerical analysis of a Lagrangian scheme based on the characteristics whose
convergence establishes existence of solutions and proved an error estimate that used the model to
perform interesting simulations in view of clinical applications.

In [7] anti-angiogenic therapy is considered to make a notable difference in every day cancer
treatment. While the technique has many advantages the cost of treatments are often expensive due to
the non-personalized administration medical protocols. Thus, in their paper, Czako et al. [7]
considered a model based solution which aims to lower the medical expenses during the treatment by
creating personalized administration plans with the help of control engineering.

A contribution to the theory of optimal control can be traced in [17], introduction to nonlinear
programming, where the numerical methods for optimal control problem are considered in [1],
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whereas, in [33] explains how optimal-control problems can be solved with a common spreadsheet
such as Microsoft Excel.

Dontchev and Hager [10] analyzed the Euler approximation to a state constrained control problem
and showed that if the active constraints satisfy an independence condition and the Lagrangian satisfies
a coercivity condition, then locally there exists a solution to the Euler discretization. Their error is
bounded by a constant times the mesh size. Their analysis utilizes mappings of the discrete variables
into continuous spaces where classical finite element estimates can be invoked.

In [19] considered the reduction of the effects of modeling imprécisions, that is, the actually
measured state variable is used as the starting point in the next cycle within a horizon-length cycle,
where a cost function is minimized under a constraint that mathematically represents the dynamic
properties of the system under control. Thus, the nonlinear programming approach, the state variables
as well as the control signals are considered over a discrete time-resolution grid, and the solution is
computed by the use of Lagrange’s reduced gradient method. They have suggested that instead of
exerting the estimated control signals, the estimated optimized trajectory is adaptively tracked within
the given horizon and they found out that the transients of the adaptive controller that appear at the
boundaries of the finite-length horizons reduce the available improvement in the tracking precision. In
contrast to the traditional Receding Horizon Control, in which decreasing horizon length improves the
tracking precision.

The shortage of limited resources in every undertaking is a very serious concern to the survival
of human kind. Thus, in this paper, we would like to provide an adequate analysis of the optimal
problems which arise as a result of agiogenic signalling of tumor cells. To this end, it is evident that
in the literature more work required to be done as far as qualitative and quantitative features of these
type of problem are concerned. In turn, this can ensure that the implementation of such models in
real life are indeed cost effective across all stake holders. Therefore, instead of defining admissible
singular arcs as in [14] without presenting models’ solutions, thus, our focus in this paper is to analyse
the equilibrium state of the models, use their derived singular arcs to implement a robust numerical
method based on the qualitative behaviors of the the models.

The rest of the paper is arranged as follow, Section 2 states the problem description, whereas Section
3 highlights the Hamiltonian and Lagrange multipliers. We analyse the equilibrium state of the models
in Section 4 and state the singular controls for the models in Section 5. Numerical method and the
stability of the method are presented in Section 6 and 7, respectively. We discuss our numerical results
in Section 8 and conclude the paper with Section 9.

2. Problem description

Let p, ξ, q, γ, u, a, A, b, d, µq denote the primary tumor volume, tumor growth parameter,
endothelial support, anti-angiogenic killing parameter, treatment with an anti-angiogenic agent, a
priori set maximum dosage, positive constant, birth rate, death rate, net balance between endothelial
cell proliferation and loss to the endothelial cells through natural causes such as death and the
parameter θ ∈ [0, 1]. Then, to reduce the volume (p) of a tumour efficiently results into the
maximization of the tumour volume reduction achievable with an apriori amount of angiogenic
inhibitors [11, 22, 24, 26, 28]
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∫ T

0
u(t)dt ≤ A, (2.1)

for a free terminal T , minimizes the value p(T ) subjects to the dynamics

ṗ = −ξp ln
(

p
q

)
,

q̇Iθ = bpθ − dp
1
3 q − q(µ + γu),

q̇HE = bq
2
3 − dq

4
3 − q(µ + γu),

q̇H1 = bp − dp
2
3 q − q(µ + γu),

ẏ = u,


(2.2)

with initial conditions p(0) = p0 > 0, q(0) = q0 > 0, y(0) = 0 [14]. Equation (2.1) together with
(2.2) is an optimal control problem. Therefore, in the next section we determine the Hamiltonian and
Lagrange multipliers of the optimal control problem.

3. Hamiltonian and Lagrange multipliers

The Pontryagin maximum principle [3, 4, 34] enables us to determine the necessary conditions
for optimality of a control u. Thus, for a row-vector λ = (λ1, λ2, λ3)t ∈ R3 the Hamiltonian H :=
H(λ, p, q, u) is

H = −λ1ξp ln
(

p
q

)
+ λ2 (S (p, q) − I(p, q) − µq − γqu) + λ3u,

where, S and I denote endogenous inhibition, stimulation terms. Therefore, the individual
Hamiltonians [14] corresponding to equation (2.2) are

HIθ = −λ1ξp ln
(

p
q

)
+ λ2

(
bpθ − dp

1
3 q − q(µ + γu)

)
+ λ3u,

HHE = −λ1ξp ln
(

p
q

)
+ λ2

(
bq

2
3 − dq

4
3 − q(µ + γu)

)
+ λ3u,

HH1 = −λ1ξp ln
(

p
q

)
+ λ2

(
bp − dp

2
3 q − q(µ + γu)

)
+ λ3u,

 (3.1)

over all Lebesgue measurable functions u : [0,T ] → [0, a], for which the corresponding trajectory
satisfies y(T ) ≤ A and the transversality conditions are

λ1(T ) = 1, λ2(T ) = 0 and λ3(T ) = constant. (3.2)

Let x̄ := (p, q, y), by Samaee et al. [35], we obtain

∂x̄ f + λT (∂x̄h − ∂t∂ẋh) − λ̇∂x̄h = 0, (3.3)

where,

f = u,

(3.4)
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h =



ṗ + ξp ln
(

p
q

)
,

q̇Iθ − bpθ + dp
1
3 q + q(µ + γu),

q̇HE − bq
2
3 + dq

4
3 + q(µ + γu),

q̇H1 − bp + dp
2
3 q + q(µ + γu),

ẏ − u,


, (3.5)

obtained through equations in (2.2). Applying equation (3.3) to model H1 we obtain
0
0
0

 + λ


ξ
(
ln

(
p
q

)
+ 1

)
dp2/3 + (µ + γu)

0

 − λ̇


ξ
(
ln

(
p
q

)
+ 1

)
dp2/3 + (µ + γu)

0

 =


0
0
0

 , (3.6)

which implies that

λ − λ̇ = 0. (3.7)

Equation (3.7) is also obtained for other models. Solving equation (3.7), we obtain

λ1,2,3(t) = C exp(t), (3.8)

where C, is a constant of integration. Using the transversality conditions we obtain

λ1(t) = exp(t − T ),
λ2(t) = 0,
λ3(t) = C.

 (3.9)

4. Equilibrium state

In order to develop the robust numerical methods it is necessary to analyse the steady state behaviour
of these models. Therefore, in the next subsections we deduce the stability conditions of the models.

4.1. Model Iθ

For this model, we let

F(p, q, u) = −ξp ln
(

p
q

)
,

GIθ(p, q, u) = bpθ − dp
1
3 q − qµ,

H(p, q, u) = 0,

 (4.1)

then

∂F
∂p = −ξ

(
ln

(
p
q

)
+ p

(
1
p − 0

))
,

= −ξ
(
ln

(
p
q

)
+ 1

)
,

∂F
∂q = −ξp

(
0 − 1

q

)
,

= ξ p
q ,

∂F
∂u = 0.


(4.2)
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We see that Hp = Hq = Hu = 0, where the subscripts imply the partial derivatives with respect to a
subscript p, q and u in that order.

Solving for critical point q∗ in equation (4.1), we find that

bpθ − dp1/3q − qµ = 0,
bpθ − q

(
dp1/3 + µ

)
= 0,

bpθ = q
(
dp1/3 + µ

)
,

bpθ(
dp1/3 + µ

) = q∗. (4.3)

But we know that q∗ ≥ p∗, then this enables us to write

bpθ(
dp1/3 + µ

) ≥ p∗,

⇔ p∗
(
dp∗1/3 + µ

)
≥ bp∗θ,

⇔ dp∗4/3 + p∗µ − bp∗θ ≥ 0,
⇔ p∗

(
dp∗1/3 + µ − bp∗θ−1

)
≥ 0, (4.4)

then, p∗ > 0 as p∗ = 0 is not admissible. Therefore,

dp∗1/3 + µ − bp∗θ−1 ≥ 0, (4.5)

which we solve and obtain

p∗ ≥ −
(µ − bpθ−1)3

d3 . (4.6)

From equation (4.2), we obtain the non-zero entries of the Jacobian matrix JIθ := Ji j for i = j = 1 : 3
as

J1,1 = −ξ(ln
(

p
q

)
+ 1), J1,2 = ξ

p
q
, J2,1 = θbpθ−1 − dq/3p

2
3 ,

J2,2 = −dp
1
3 − µ. (4.7)

Using the concept of numeric-analytic dissipativity condition[6], we obtain the characteristic equation

σ2 − trace(
1
2

(J + Jt))σ + det(
1
2

(J + Jt)),

from 1
2 (J + Jt). This implies that the model is stable if(

ξ(ln
(

p∗

q∗

)
+ 1)

)
< 0,

(
dp∗

1
3 + µ

)
< 0,

(
θbpθ−1 − dq/3p

2
3
)
< 0, (4.8)

which implies that

ln
∣∣∣∣∣ p∗q∗

∣∣∣∣∣ < ξ ⇔ ∣∣∣∣∣ p∗q∗

∣∣∣∣∣ < exp(−ξ) and |p∗| <
∣∣∣∣∣(µd

)3∣∣∣∣∣ ,
pθ−1 <

dq∗

3θbp
1
3

. (4.9)
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4.2. Adjoint for model Iθ

Since the Hamiltonian H = H(λ, p, q, u), where the λ’s are constants multipliers then
dHIθ

dt =
∂HIθ
∂λ

dλ
dt +

∂HIθ
∂p

dp
dt +

∂HIθ
∂q

dq
dt +

∂HIθ
∂u

du
dt ,

dHIθ
dt =

∂HIθ
∂p

dp
dt +

∂HIθ
∂q

dq
dt ,

 (4.10)

because dλ/dt = 0 and by the stationary condition we have ∂HIθ/∂u = 0. Therefore, for the steady
state equation in (4.10) becomes

∂HIθ

∂p
dp
dt

+
∂HIθ

∂q
dq
dt

= 0,

⇔
∂HIθ

∂p
dp
dt

= −
∂HIθ

∂q
dq
dt
,

⇔
∂HIθ

∂p
dp
dt

= 0,

⇔ −
∂HIθ

∂q
dq
dt

= 0. (4.11)

Using equation (4.11) we find the corresponding critical points by linearizing the Jacobian matrices as
follow

0 =
∂HIθ

∂p
dp
dt

=

(
−λ1ξ

(
ln

(
p
q

)
+ 1

)
+ λ2

(
bθpθ−1 −

dq
3p2/3

)) (
−ξp ln

(
p
q

))
, (4.12)

and

0 = −
∂HIθ

∂q
dq
dt

=

(
ξλ1

p
q
− λ2

(
dp1/3 + µ

)) (
bpθ − dp1/3q − qµ

)
. (4.13)

Solving for the critical point q∗ in (4.13) we find

q∗1 =
ξλ1 p

λ2dp1/3 + µ
and q∗2 =

ξλ1 pθ

dp1/3 + µ
. (4.14)

The Jacobian matrix is

JIθ =


(
∂HIθ
∂p

)
p

(
∂HIθ
∂p

)
q

(
∂HIθ
∂p

)
u(

∂HIθ
∂q

)
p

(
∂HIθ
∂q

)
q

(
∂HIθ
∂q

)
u(

∂HIθ
∂u

)
p

(
∂HIθ
∂u

)
q

(
∂HIθ
∂u

)
u

 ,

=


−
λ1ξ

p + λ2bθ(θ − 1)pθ−2 +
2dq

9p
1
3

λ1ξ

q −
λ2d

3p
2
2

0
λ1ξ

q −
λ2d

3p
2
3

−
λ1 p
q2 0

0 0 0

 .
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Therefore, the adjoint is stable if and only if and the eigenvalues are∣∣∣∣∣∣−λ1ξ

p∗
+ λ2bθ(θ − 1)p∗θ−2 +

dq∗

2p∗
1
3

∣∣∣∣∣∣ < 0,
∣∣∣∣∣λ1 p∗

q∗2

∣∣∣∣∣ < 0,

∣∣∣∣∣∣λ1ξ

q
−
λ2d

3p
2
2

∣∣∣∣∣∣ < 0,

which implies that∣∣∣∣∣∣exp(t − T )
ξ

p∗
+

dq∗

2p∗
1
3

∣∣∣∣∣∣ < 0,
∣∣∣∣∣exp(t − T )

p∗

q∗2

∣∣∣∣∣ < 0,
∣∣∣∣∣exp(t − T )

ξ

q

∣∣∣∣∣ < 0,

⇒ exp(t − T )
ξ

p∗
< −

dq∗

2p∗
1
3

, and ξ < 0.

4.3. Model He

Applying the same procedures as in the above section we have,

F(p, q, u) = −ξp ln
(

p
q

)
,

GE(p, q, u) = bq
2
3 − dq

4
3 − q(µ + γu),

H(p, q, u) = 0,


then

∂F
∂p

= −ξ
∂

∂p

(
ln

(
p
q

)
+ p

(
1
p
− 0

))
,

= −ξ

(
ln

(
p
q

)
+ 1

)
,

∂F
∂q

= −ξp
(
0 −

1
q

)
,

= ξ
p
q
,

∂F
∂u

= 0, (4.15)

and we also see that Hp = Hq = Hu = 0, where the subscripts denote the partial derivatives with respect
to p, q and u, respectively.

Then from the second equation in (4.15) we see that

q
(
bq−1/3 − dq1/3 − µ

)
= 0, (4.16)

which implies that bq−1/3 − dq1/3 − µ = 0, as q∗ , 0. This implies that

q∗1 =
1
2

(
−µ +

√
µ2 + 4bd

)
b +

−µ+
√
µ2+4bdµ2

d − bµ

d2 and

q∗2 = −
1
2

(
µ −

√
µ2 + 4bd

)
b − µ+

√
µ2+4bdµ2

d − bµ

d2 , (4.17)
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because u∗ = 0. Take q∗ ≥ p∗ and the non-zero entries of the Jacobian matrix JE := Ji j where i = 1 : 3
and j = 1 : 3 are

J1,1 = −ξ

(
ln

(
p
q

)
+ 1

)
,

J1,2 = ξ
p
q
, J2,2 = 2bq

1
3 /3 − 4dq

1
3 /3 − µ, (4.18)

which implies that the model is stable if and only if

|ξ| < 0, |2b/3q∗
1
3 − 4dq∗

1
3 /3 − µ| < 0,

⇒ 2b/3q∗
1
3 < 4dq∗

1
3 /3 + µ.

4.4. Adjoint for model He

Let H = H(λ, p, q, u), then
dHHE

dt =
∂HHE
∂λ

dλ
dt +

∂HHE
∂p

dp
dt +

∂HHE
∂q

dq
dt +

∂HHE
∂u

du
dt ,

dHHE
dt =

∂HHE
∂p

dp
dt +

∂HHE
∂q

dq
dt ,


as dλ/dt = 0 and by the stationary condition we see that ∂H/∂u = 0. Thus, for the steady state we have

∂HHE

∂p
dp
dt

+
∂HHE

∂q
dq
dt

= 0,

⇔
∂HHE

∂p
dp
dt

= −
∂HHE

∂q
dq
dt
,

⇔
∂HHE

∂p
dp
dt

= 0,

⇔ −
∂HHE

∂q
dq
dt

= 0. (4.19)

In view of equation (4.19) we have

0 =
∂HHE

∂p
dp
dt

= λ1ξ
2 p ln

(
p
q

) (
ln

(
p
q

)
+

p
q

)
,

⇔ p∗ ≤ q∗ or q∗ = p∗ exp(
p∗

q∗
), (4.20)

and from

0 = −
∂HHE

∂q
dq
dt

= −

λ1ξp
q

+ λ2

 2b

3q
1
3

−
4dq

1
3

3
− µ

 (bq2/3 − dq4/3 − qµ
)
,

which implies that

p∗ =

q∗λ2

(
2b

3q∗
1
3
−

4dq∗
1
3

3 − µ

)
λ1ξ

and q∗ =
b3

(dq∗1/3 + µ)3 .
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The corresponding Jacobian matrix JHE := Ji j for i = j = 1 : 3 is

JHE =


(
∂H
∂p

)
p

(
∂H
∂p

)
q

(
∂H
∂p

)
u(

∂H
∂q

)
p

(
∂H
∂q

)
q

(
∂H
∂q

)
u(

∂H
∂u

)
p

(
∂H
∂u

)
q

(
∂H
∂u

)
u

 ,

=


−λ1ξ

(
1
p + 1

p

)
λ1ξ

(
1
q +

p
q2

)
0(

∂H
∂q

)
p

(
∂H
∂q

)
q

(
∂H
∂q

)
u(

∂H
∂u

)
p

(
∂H
∂u

)
q

(
∂H
∂u

)
u

 (4.21)

where, the non-zero entries are
J1,1 = −λ1ξ

(
1
p∗

+
1
q∗

)
J1,2 = λ1ξ

(
1
q∗

+
p∗

q∗2

)
, J2,1 =

λ1ξ

q∗
,

J2,2 = −

λ1ξp∗

q∗2
+ λ2

2b − 4d

9q∗
2
3

 .
Therefore, the adjoint of this model is stable if∣∣∣∣∣∣− exp(t − T )ξ

(
1
p∗

+
1
q∗

)∣∣∣∣∣∣ < 0, ξ < 0,
1
q∗
< −

p∗

q∗2
.

4.5. Model H1

We let F(p, q, u) = −ξp ln
(

p
q

)
,

GH1(p, q, u) = bp − dp
2
3 q − qµ,

H(p, q, u) = 0,

 (4.22)

so that ∂F
∂p

= −ξ
∂

∂p

(
ln

(
p
q

)
+ p

(
1
p
− 0

))
,

= −ξ

(
ln

(
p
q

)
+ 1

)
,

∂F
∂q

= −ξp
(
0 −

1
q

)
,

= ξ
p
q
,

∂F
∂u

= 0, (4.23)

where, we see that Hp = Hq = Hu = 0. The subscripts imply the partial derivatives with respect to p, q
and u, respectively. Therefore,

∂GH1
∂p = ∂

∂p

(
bp − dp

2
3 q − qµ

)
,

= b − 2dq/3p(1/3),
∂GH1
∂q = ∂

∂q

(
bp − dp

2
3 q − qµ)

)
,

= −
(
dp

2
3 + µ

)
,

∂GH1
∂u = ∂

∂u

(
bp − dp

2
3 q − qµ

)
,

= 0,


(4.24)
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and the Jacobian matrix JH1 := Ji j for i = j = 1 : 3 is

JH1 =


∂F
∂p

∂F
∂q

∂F
∂u

∂GH1
∂p

∂GH1
∂q

∂GH1
∂u

∂H
∂p

∂H
∂q

∂H
∂u

 , (4.25)

where, the non-zero entries are

J1,1 = −ξ

(
ln

(
p
q

)
+ 1

)
J1,2 = ξ

p
q
, J2,1 = b − 2dq/3p(1/3),

J2,2 = −
(
dp

2
3 + µ

)
.

In view of equation (4.22), we see that,

0 = −ξp ln
(

p
q

)
,

0 = bp − dp
2
3 q − q(µ + γu).

 (4.26)

The first equation in (4.26) requires that −ξp = 0 or ln (p/q) = 0. However, based on the construction
of this model, neither ξ , 0 nor p , 0, then the only choice is

ln
(

p
q

)
= 0,

⇒ exp
(
ln(

p
q

)
)

= 1⇔ p = q. (4.27)

However, further basic requirement on this model is such that ln (p/q) should be a decreasing function
and this is only possible if q∗ ≥ p∗. Solving for q in the second equation in (4.26) we obtain

q∗ =
bp∗

dp∗2/3 − µ
, as u∗ = 0. (4.28)

But q∗ ≥ p∗, then in view of equation (4.28), we see that

bp∗

dp∗2/3 − µ
≥ p∗ ⇔ p∗

(
dp∗2/3 − µ

)
≥ bp∗,

⇔ dp∗5/3 − µp∗ ≥ bp∗,

⇔ dp∗5/3 − µp∗ − bp∗ ≥ 0,
⇔ dp∗5/3 ≥ p∗ (µ + b) ,
⇔ p∗2/3 ≥ (µ + b) /d,
⇔ p∗ ≥ ((µ + b)/d)3/2 , (4.29)

which enables us to rewrite equation (4.28) as

q∗ =
b (µ + b)/d)3/2

d ((µ + b)/d) − µ
,
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=
b (µ + b)3/2

d3/2((µ + b) − µ)
,

=
(µ + b))3/2

d3/2 . (4.30)

Hence, the model is stable if and only if

ξ < 0,

∣∣∣∣∣∣d (µ + b)3/2

d3/2

∣∣∣∣∣∣ < 0,
dq

3p(1/3) <
b
2
. (4.31)

4.6. Adjoint for model H1

For this model we have

dH
dt =

∂HH1
∂λ

dλ
dt +

∂HH1
∂p

dp
dt +

∂HH1
∂q

dq
dt +

∂HH1
∂u

du
dt ,

dHH1
dt = ∂H

∂p
dp
dt +

∂HH1
∂q

dq
dt ,


as dλ/dt = 0 and by the stationary condition we see that (∂H/∂u) = 0. Thus, for the steady state
equation (4.32) becomes

∂HH1

∂p
dp
dt

+
∂HH1

∂q
dq
dt

= 0,

⇔
∂HH1

∂p
dp
dt

= −
∂HH1

∂q
dq
dt
,

⇔
∂HH1

∂p
dp
dt

= 0,

⇔ −
∂HH1

∂q
dq
dt

= 0. (4.32)

Using equation (4.32) we have,

∂HH1
∂p = −λ1ξ

(
ln

(
p
q

)
+ 1

)
,

∂HH1
∂q = ξλ1

p
q .

 (4.33)

In view of equation (4.32) we see that

0 = −
∂H
∂q

dq
dt

= ξλ1
p
q

(
bp − dp2/3q + qµ

)
, (4.34)

which implies that
p∗ = (−

µ

d
)3/2, (4.35)

whereas

0 =
∂HH1

∂p
dp
dt

= −λ1ξ
2
(
ln

(
p
q

)
+ 1

)2

, (4.36)
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which implies that p∗/q∗ = 0, which is possible if p∗ = 0 and q∗ , 0. The Jacobian matrix is

JH1 =


(
Hp pλ1λ1t + Hp pλ2λ2t

)
p

(
Hp pλ1λ1t + Hp pλ2λ2t

)
q

(
Hp pλ1λ1t + Hp pλ2λ2t

)
u(

Hqqλ1λ1t + Hqqλ2λ2t

)
q

(
Hqqλ1λ1t + Hqqλ2λ2t

)
q

(
Hqqλ1λ1t + Hqqλ2λ2t

)
u(

∂H
∂u

)
p

(
∂H
∂u

)
q

(
∂H
∂u

)
u

 , (4.37)

in which we see that (
∂HH1

∂u

)
p

=

(
∂HH1

∂u

)
q

=

(
∂HH1

∂u

)
u

= 0,

and
pλ1 = pλ2 = qλ1 = qλ2 = 0.

Thus, the adjoint of this model is unconditional stable.

5. Singular controls for the models

Since the Hamiltonian (H) is linear in u, then minimizing the control requires that u = 0 or u = a [3].
This is known as the bang controls. In view of equations in (3.1), we obtain the switching function (Φ)
as

Φ(t) = λ3 − λ2(t)γq(t), (5.1)

such that the singular control is [3]

usin(t) =

0 if Φ(t) > 0,
a if Φ(t) < 0,

where, for the three models we have the optimal singular arcs

usin
Iθ

= 1
γ

[
θξ

(
ln

(
p
q

)
− 1

)
+ 1

3ξ
d
b p

1
3−θq −

(
dp

1
3 + µ

)
+ b pθ

q + ξ
]

[28],

usin
HE

= 1
γ

(
b−dq2/3

q1/3 + 2ξ b+dq2/3

b−dq2/3 − µ
)

[27],

usin
H1

= 1
γ

(
ξ ln

(
p
q

)
+ b p

q + 2
3ξ

d
b

q
p1/3 −

(
µ + dp2/3

))
[23].

 (5.2)

6. Numerical method

Not withstanding the associated optimal synthesis of the models considered in this paper, but it is
evident from the stability structures of the continuous models that reliable numerical method should
be developed. Thus, in order to accomplish the development of a robust numerical method for optimal
problems arising as a result of angiogenic signalling, we believe we first have to consider the existing
numerical methods for these types of models. However, in this paper, we consider only one type of
the numerical method for the models. Thus, we sub-divide the interval [0,T] into equal pieces with
specific points of interest

0 = t0, t1, t2, · · · , tN+1 = T,

where N is a positive integer denoting the number of sub-intervals. Since the total-enumeration
methods or linear programming techniques can be used to solve optimal control problems such the
one in [1], because such methods fail to capture the associated optimality, adjoint equation and the
transversality condition. Therefore the only applicable methods are Runge-Kutta or adaptive schemes
and the boundary value problems such as shooting method [5, 8]. Hence, following the
Forward-backward sweep method [32] then the optimal control problem is implemented as we have
shown here below.
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6.1. Forward-backward sweep method (FBSM) for Iθ

Set the f lag = −1, then define the step-size h = 1/N, and initialize the controls, states and the
adjoints with their initial conditions, we have

usin
Iθ = 1/γ(θξ(log(p1/q1) − 1) + 1/3ξd/bp1/3−θ

1 q1 − (dp1/3
1 + µ) + bpθ1/q1 + ξ);

and Step:. WHILE ( f lag < 0) do the following steps.
Step 1a. oldu= u; oldp= p; oldq= q; oldy= y; oldlambda1=λ1;
oldlambda2= λ2; oldlambda3= λ3;
Step 2a
FOR i = 1, 2, · · · ,N set

k11 = −ξpi log(pi/qi);
k12 = bpθi − dp1/3

i qi − µqi − γqiui;
k13 = ui;
k21 = −ξ(pi + h2k11) log ((pi + h2k11)/(qi + h2k12)) ;
k22 = b(pθi + h2k11) − d(p(1/3)

i + h2k11)qi − µ(qi + h2k12)
−γ(qi + h2k12)0.5(ui + ui+1);

k23 = 0.5(ui + ui+1);
k31 = −ξ(pi + h2k21) log ((pi + h2k21)/(qi + h2k22)) ;
k32 = b(pθi + h2k21) − d(p(1/3)

i + h2k21)qi − µ(qi + h2k22)
−γ(qi + h2k22)0.5(ui + ui+1);

k33 = 0.5(ui + ui+1);
k41 = −ξ(pi + h2k31) log ((pi + h2k31)/(qi + h2k32)) ;
k42 = b(pθi + h2k31) − d(p1/3

i + h2k31)qi − µ(qi + h2k32)
−γ(qi + h2k32)0.5(ui + ui+1);

k43 = ui+1;
pi+1 = pi + (h/6)(k11 + 2k21 + 2k31 + k41);
qi+1 = qi + (h/6)(k12 + 2k22 + 2k32 + k42);
yi+1 = yi + (h/6)(k13 + 2k23 + 2k33 + k43);

STOP
Step 3a
FOR i = 1, 2, · · · ,N and j = N + 1 − i set

k11 = λ1 jξ log(p j/q j) + λ1 jξ − λ2 j

(
bθpθ−1

j − dq j/3p2/3
j

)
;

k12 = −ξλ1 j p j/q j + λ2 j(dp1/3
j + µ + γ0.5(u j + u j−1));

k13 = C;
k12 = (λ1 j − h2k11ξ log

(
0.5(p j + p j−1)/(0.5(q j + q j−1))

)
) + (λ1 j − h2k11)ξ

−(λ2 j − h2k12)
(
bθ((0.5(p j + p j−1))θ−1

)
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−(λ2 j − h2k12)
(
d(0.5(q j + q j−1))/3(0.5(p j + p j−1))2/3)

)
;

k22 = −ξ(λ1 j − h2k11)0.5(p j + p j−1)/0.5(q j + q j−1)

+(λ2 j − h2k12)
(
d(0.5(p j + p j−1))1/3 + µ + γ0.5(u j + u j−1)

)
;

k23 = C;
k31 = (λ1 j − h2k21)ξ log

(
0.5(p j + p j−1)/0.5(q j + q j−1)

)
+ (λ1 j − h2k21)ξ

−(λ2 j − h2k22)
(
bθ(0.5(p j + p j−1))θ−1

)
−(λ2 j − h2k22)

(
d(0.5(q j + q j−1))/3((0.5(p j + p j−1))2/3)

)
;

k32 = −ξ(λ1 j − h2k21)0.5(p j + p j−1)/0.5(q j + q j−1)
+(λ2 j − h2k22)(d(0.5(p j + p j−1))1/3 + µ + γ0.5(u j + u j−1));

k33 = C;
k41 = (λ1 j − h2k31)ξ log

(
0.5p j−1/0.5q j−1

)
+ (λ1 j − h2k31)ξ

−(λ2 j − h2k32)
(
bθ(0.5p j−1)θ−1

)
−(λ2 j − h2k32)

(
d0.5q j−1/3(0.5p j−1)2/3

)
;

k42 = −ξ(λ1 j − h2k31)0.5p j−1/0.5q j−1

+(λ2 j − h2k32)(d(0.5p j−1)1/3 + µ + γ0.5u j−1);
k43 = C

λ1 j−1 = λ1 j − (h/6)(k11 + 2k21 + 2k31 + k41);
λ2 j−1 = λ2 j − (h/6)(k12 + 2k22 + 2k32 + k42);
λ3 j−1 = λ3 j − (h/6)(k13 + 2k23 + 2k33 + k43);

7. Stability analysis of FBSM

Basically the FBSM first solves the state equation with a forward in time Runge-Kutta method,
then solves the costate equation backwards in time with the Runge-Kutta method and then updates
the control. Then, stability analysis should follow the procedures carried out when one determine
the condition of the Runge-Kutta method. Since we have impose the numeric-analytic dissipativity
condition [6] to the models eigenvalues, then FBSM is A-stable.

8. Numerical result

Based on the initial conditions p0 = 8.00, q0 = 4.00, u0 = 0.1, parameter values ξ = 0.084, b =

5.85, d = 0.00873, µ = 0.02; γ = 0.01, θ = 0.1, δ = 0.1 ([26]), we implemented the Forward-backward
sweep method (FBSM) for the systems in (2.2) and (3.1) as shown up for the case of Iθ, where the
numerical approximations are presented in Figure 1 and for the remaining two models the results are
presented in Figure 2 and Figure 3. Our aim in this paper is to present the numerical solutions of the
three models, we have considered. Thus, we see that the control (u) and angiogenesis (q) increases
monotonically but remain bounded, except for the H1 model. We also see that the tumour volume (p)
decreases and increases eventually. This is due to the ever growing agiogenesis system of the tumor.
Such phenomena is also evident for model H1. The above-mentioned behaviours remain the same,
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when we perturb the initial values and for an increased values of T .

9. Conlusion

In view of the problem description, Hamiltonian and Lagrange multipliers, we were able to deduce
the multipliers for these models. We have also established the stability conditions for each model which
in turn guaranteed the stability of the Forward-backward sweep method. In doing so, we believe that
this can enable us to attain most features of each model which can give deeper insight of the properties
of the models. Since the authours in [23, 27, 28] were mainly interested in attaining the singular arc of
the models, it is important to combine the defining element and all the syntheses of optimally controlled
trajectories qualitatively and quantitative with the associated solution to a problem. Therefore, this
paper should be viewed as a first attempt to combine singular arc with their associated solutions of the
optimal problems. Hence, our future research direction is to extend the paper to higher dimensional
space, with the inclusion of the spatial effects.
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Figure 1. Numerical solution of Iθ.
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Figure 2. Numerical solution of He.
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Figure 3. Numerical solution of H1.
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7. B. Czako, J. Sápi, L. Kovács, Model-based optimal control method for cancer treatment using
model predictive control and robust fixed point method, 2017 IEEE 21st International Conference
on Intelligent Engineering Systems (INES), (2017), 271–276.

8. W. Cheney and D. Kincaid, Numerical mathematics and computing, Thomson, Belmont,
California, 2004.

9. S. Davis and G. D. Yancopoulos, The angiopoietins: Yin and Yang in angiogenesis, Curr. Top.
Microbiol., 237 (1999), 173–185.

10. A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control,
Math. Comput., 70 (2001), 173–203.

11. A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic
inhibitors, B. Math. Biol., 65 (2003), 407–424.

12. J. Folkman, Endogenous angiogenesis inhibitors, APMIS, 112 (2004), 496–507.

13. J. Folkman, Antiangiogenesis: new concept for therapy of solid tumors, Ann. Surg., 175 (1972),
409–416.

14. P. Hahnfeldt, D. Panigrahy, J. Folkman, et al. Tumor development under angiogenic signaling: a
dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res.,
59 (1999), 4770–4775.

AIMS Mathematics Volume 4, Issue 1, 43–63.



62

15. R. K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for
combination therapy, Nat. Med., 7 (2001), 987–989.

16. R. K. Jain and L. L. Munn, Vascular normalization as a rationale for combining chemotherapy
with antiangiogenic agents, Principles of Practical Oncology, 21 (2007), 1–7.

17. R. E. Kalman, Contribution to the theory of optimal control, Buletin Sociedad Matematica
Mexicana, 5 (1960), 102–119.

18. R. S. Kerbel, Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to
anti-cancer therapeutic agents, BioEssays 13 (1991), 31–36.

19. H. Khan, A. Szeghegyi and J. K. Tar, Fixed point transformation-based adaptive optimal control
using NLP. In: Proc. of the 2017 IEEE 30th Jubilee Neumann Colloquium, Budapest, Hungary,
(2017), 35–40.

20. M. Klagsburn and S. Soker, VEGF/VPF: the angiogenesis factor found?, Curr. Biol., 3 (1993),
699–702.

21. R. S. Kerbel, A cancer therapy resistant to resistance, Nature, 390 (1997), 335–336.

22. U. Ledzewicz and H. Schättler, A synthesis of optimal controls for a model of tumor growth a under
angiogenic inhibitors, Proc. 44th IEEE Conference on Decision and Control, (2005), 934–939.

23. U. Ledzewicz and H. Schättler, Anti-angiogenic therapy in cancer treatment as an optimal control
problem, Summer Research Fellowship, 2006.

24. U. Ledzewicz and H. Schättler, Anti-angiogenic therapy in cancer treatment as an optimal a control
problem, SIAM J. Control Optim., 46 (2007), 1052–1079.

25. U. Ledzewicz and H. Schättler, Analysis of a mathematical model for tumor anti-angiogenesis,
Optimal Control Applications and Methods, 29 (2008), 41–57.

26. U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical a
models of tumor anti-angiogenesis, J. Theor. Biol., 252 (2008), 295–312.
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