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Abstract: Seven human coronaviruses (hCoVs) are known to infect humans. The most recent one,
SARS-CoV-2, was isolated and identified in January 2020 from a patient presenting with severe
respiratory illness in Wuhan, China. Even though viral coinfections have the potential to influence
the resultant disease pattern in the host, very few studies have looked at the disease outcomes in
patients infected with both HIV and hCoVs. Groups are now reporting that even though HIV-positive
patients can be infected with hCoVs, the likelihood of developing severe CoV-related diseases in these
patients is often similar to what is seen in the general population. This review aimed to summarize
the current knowledge of coinfections reported for HIV and hCoVs. Moreover, based on the available
data, this review aimed to theorize why HIV-positive patients do not frequently develop severe
CoV-related diseases.
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1. Introduction

With the rapid advancement of molecular diagnostic tools, our understanding of the etiological
agents of respiratory tract infections (RTIs) has advanced rapidly [1]. Researchers now know that lower
respiratory tract infections (LRTIs)—caused by viruses—are not restricted to the usual suspects, such as
respiratory syncytial virus (RSV), parainfluenza viruses (PIVs), adenovirus, human rhinoviruses
(HRVs) and influenza viruses. Interestingly, the other causative viral agents typically have similar
seasonal incidence and clinical presentations as the more “common” viruses [2,3].

With the third deadly human coronavirus (hCoV)—SARS-CoV-2 (Severe acute respiratory
syndrome coronavirus-2 or SARS-2)—recently identified in China [4,5], the role of coronaviruses (CoV)
in respiratory tract infections is once again under the spotlight. Human CoVs were first isolated and
identified in the 1960s, first hCoV-OC43 (OC43) [6] and then hCoV-229E (229E) [7]. Only after the
global outbreak of severe acute respiratory syndrome (SARS) was linked to the novel SARS-CoV [8],
did the attention shift back to the hCoVs. Since then, researchers have identified NL63-CoV (NL63) [9],
HKU1-CoV (HKU1) [10], and MERS-CoV (Middle Eastern respiratory syndrome coronavirus, or
MERS) [11,12] as agents of both upper respiratory tract infections (URTIs) and LRTIs.

In most cases, infection with the four “common” HCoVs (229E, OC43, NL63 and HKU1) causes
mild cold-like symptoms, involving the upper respiratory tract. A severe LRTI can, however, develop
in immunocompromised patients and children [13]. Unlike the common hCoVs, the more pathogenic
SARS, MERS and SARS-2 frequently cause more severe LRTI. In some patients, the infection is
accompanied by a cytokine storm, which can lead to a poor prognosis [14].

For a long time, researchers have looked at a clinical syndrome as the result of an infection by a
single virus. Now we know that, even though viral interference (one virus competitively suppresses the
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replication of other coinfecting viruses) is the most common outcome of viral coinfections, these types
of infection have the potential to influence the resultant disease pattern in the host [15].

Whereas, “coinfection” refers to the simultaneous infection of a cell or host by separate viruses [16],
“superinfection” refers to a scenario where one virus infects the host some time before infection
by the second virus. For both of these, the fate of the virus-infected host often depends on the
balance between the host’s protective immunity and immunopathology [17,18]. In the context of
human immunodeficiency virus (HIV) infections, however, superinfections refer to the phenomenon
where an HIV infected person is infected with a subsequent distinct HIV viral strain [19]. Therefore,
this manuscript will use the term “coinfection” when referring to the relationship between HIV and
hCoVs in the infected host.

This review aimed to summarize the current knowledge of coinfections reported for hCoVs
and HIV. Also, based on the data available, we aimed to theorize why HIV-positive patients do not
frequently develop severe CoV-related disease.

2. HIV-hCoV Coinfections

Due to the lack of published academic work for HIV/hCoV coinfections, not much is known about
the clinical and epidemiological outcomes in patients with HIV and hCoV coinfections. It is not clear
whether this lack of published data is due to the lack of screening for the hCoVs, or whether the hCoVs
are just not present frequently in HIV-positive patients. During the current coronavirus pandemic,
this lack of information is a concern in countries with high HIV cases, especially in Sub-Saharan
Africa—where 70% of people living with HIV are found [20].

Historically, the four common hCoVs are also known to cause gastrointestinal problems in
HIV-positive individuals. Unfortunately, since this was before the advent of sophisticated diagnostic
tools, electron microscopy was used to identify the presence of coronavirus-like particles (CVLPs) and
little is known about the specific hCoVs present in the stool samples from these HIV-positive patients.
Moreover, even though these are studies reporting on the findings from small HIV-positive cohorts,
between 14–50% of participant’s stool samples were observed to contain CVLPs; for all of these, bar one
patient, there was no correlation with enteric symptoms [21,22]. Therefore, from the late 1980s, human
coronaviruses were speculated to be agents of opportunistic infections in immunocompromised hosts,
and possible causative agents of diarrheal disease in AIDS [21]. More recently, it has been reported
that these hCoVs can also cause more severe RTIs in HIV-positive individuals (Table 1); traditionally,
CoVs were not even considered as a cause of RTIs in HIV-positive individuals [23].

One such study reports a 32-years old, HIV positive male, who tested positive for hCoV-229E and
RSV. This patient was admitted with acute respiratory failure and died of multiorgan failure 14 days
after admission to the intensive care unit (ICU). At the time of admission, the patient was not on any
antiretroviral treatment (ART); he was only started on combination ART with a regimen of abacavir,
lamivudine and efavirenz after testing positive for HIV [24].

Another study reports the detection of hCoV in HIV-positive children with LRTIs. Testing 517
samples, the authors reported the presence of different types of respiratory viruses in 60.9% of children.
Interestingly, OC43, NL63 and HKU1 were detected at varying incidence in clinical samples, with
12.2%, 1.7% and 1.4%, respectively. Importantly, 70% of HIV-negative children with LRTIs also tested
positive for respiratory viruses, including hCoVs [25], showing that this is a problem in all children.

How do the three pathogenic hCoVs behave in HIV-positive patients (Table 1)? According to
our knowledge, only one reported case study of an HIV-positive person infected with SARS-CoV is
available. The 30-year-old male developed relatively mild symptoms, including chest pain and chills,
fever, dry cough and general malaise, but recovered fully from SARS [26]. During the same period,
another study reported the connection between HIV and SARS-CoV. Interestingly, despite contact
between 95 SARS-confirmed patients and 19 HIV-positive individuals in a hospital ward, none of the
HIV-positive patients became infected with the SARS-CoV. However, six of 28 medical personnel who
worked in the same ward were infected with the SARS-CoV [27].
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Researchers are now also reporting cases of HIV/SARS-CoV-2 coinfection. A study of a 61-year-old
male from Wuhan, China is one of the first cases reported; this patient had type II diabetes and mild
lymphopenia, and is a heavy smoker. The patient was placed on oral therapy with the anti-HIV drug,
lopinavir/ritonavir on admission. He recovered fully and was discharged 20 days after first reporting
to the local fever clinic [28].

A group from Spain, reports HIV/SARS-CoV-2 coinfections in five individuals—three male and
two transgender patients. When the patients presented to the hospital, two had URTIs, and three viral
pneumonia. Furthermore, one patient had hypothyroidism, and another asthma as co-morbidities.
On admission to hospital, four of the patients were on HIV ARTs; two were using a protease-inhibitor
(darunavir-boosted cobicistat), and two were using an integrase-inhibitor (dolutegravir). Additionally,
all five patients were started on SARS-CoV-2 boosted-protease inhibitor ART on the day of coronavirus
disease-19 (COVID-19) diagnosis. Initially, two patients were admitted to ICU, but one recovered and
was released from ICU; the remaining patient remains in ICU. So, at the time of reporting, four of the
patients recovered and were discharged [29].

An observational prospective study from Spain (Madrid) reports 51 (eight women, 43 men)
SARS-CoV-2-positive cases (35 laboratory-confirmed; 16 suspected cases) among a cohort of 2873
HIV-positive individuals (an incidence 1.8%). Interestingly, these HIV/SARS-CoV-2 patients presented
similar clinical, laboratory and radiographical features reported for HIV-negative patients infected
with SARS-CoV-2. The authors reported that among HIV-positive individuals, those with COVID-19
has a significantly higher prevalence of co-morbidities (32 or 63%, mostly hypertension and diabetes)
compared with those without COVID-19 (495 or 38%). For this cohort, 37 (73%) patients were
receiving nucleoside reverse transcriptase inhibitors (NRTIs), and 11 (22%) had previous protease
inhibitor treatment before COVID-19 diagnosis. The SARS-CoV-2-positive cohort included 12 mild,
38 mild-to-moderate and 13 severe COVID-19 cases. At the time of reporting, 44 COVID-19 patients
recovered, six patients were still critically ill, and two patients died [30].

Another study from Wuhan, China looked at 1174 HIV-positive people. This group reports
eight (seven males; one female) COVID-19 symptomatic patients, of which six were laboratory- and
two clinically-confirmed. On admission, all eight HIV/SARS-2 patients were on ARTs (NRTIs and
Non-Nucleoside Reverse Transcriptase Inhibitors). Of the eight patients, six had mild symptoms;
two had severe symptoms, resulting in one fatality. Unfortunately, this group does not report any
co-morbidities for the eight patients. Interestingly, another nine HIV/AIDS patients had close contact
with laboratory-confirmed COVID-19 patients, but only one of them tested positive for COVID-19; this
person was asymptomatic for COVID-19. At the time of reporting, this patient had Kaposi’s sarcoma
and was receiving chemotherapy [31].

A group from Turkey studied 1224 HIV-positive individuals. They report only four
HIV/SARS-CoV-2 coinfected male patients, of which three had no co-morbidities and made a full
recovery. All three patients were on HIV ARTs and developed mild COVID-19 symptoms. The
fourth patient, a 44-year-old with co-morbidities, including hypertension, diabetes, chronic obstructive
pulmonary disease (COPD) and obesity, died. This patient was on ARTs, his HIV viral load was low,
and his CD4+ cell count was high before he contracted COVID-19 [32].

Zhao et al., reports the case of a 38-year-old man with fever, accompanied by muscle aches,
who was admitted to hospital in Shenzhen, China. The patient had a travel history to Wuhan
during the SARS-CoV-2 outbreak, but no other COVID-19 symptoms were observed on physical
examination. Computerized tomography (CT) scans showed right lower pneumonia, for which
oseltamivir and interferon (IFN)-alpha inhalation were administered. He had a normal white blood cell,
lymphocyte and platelet count. Even though the patient tested negative for SARS-CoV-2 by reverse
transcription-polymerase chain reaction (RT-PCR) at different time points, he tested positive for the
presence of SARS-CoV-2-specific antibodies 40-days later. On admission to hospital, the patient was
using antiretrovirals (lamivudine, tenofovir, and efavirenz) for an HIV/Hepatitis C (HCV) coinfection.
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His close contact partner, also with HIV-1 infection, who was also taking anti-HIV agents, tested
negative for SARS-CoV-2 RNA throughout the study [33].

The first reported case of HIV/SARS-CoV-2 coinfection from sub-Saharan Africa (specifically
Uganda), involves a 34-year-old HIV-positive woman. On the day of admission, the patient reported
a recent travel history to Italy, but was otherwise healthy and reported no COVID-19-associated
symptoms. Even though the patient showed no respiratory symptoms, she developed gastrointestinal
symptoms. Then, three days after admission, she developed a headache, chest pain, anorexia and
muscle aches, but still no cough or shortness of breath. Prior to contracting COVID-19, she was using
ARTs (tenofovir disoproxil fumarate, lamivudine and efavirenz) for five years and she had no other
recorded co-morbidities. The patient made a full recovery and was discharged on day 24 [34].

In one of the largest clinical case studies describing the clinical characteristics and outcomes in
HIV/SARS-CoV-2 patients—from New York City (USA)—2159 adult patients (older than 18 years old)
with laboratory-confirmed COVID-19 were admitted to hospital in a one-month period. Thirty-one of
these patients (or 1.4%) were HIV-1 positive. In the HIV/SARS-CoV-2 cohort, at least one co-morbidity
was observed in 22 (71%) patients, with hypertension in 21 (67.7%), diabetes mellitus in 13 (41.9%) and
obesity in nine (33.3%) patients. Moreover, eight (25.8%) were diagnosed with asthma or COPD. Before
hospital admission, all patients were on ARTs, with an integrase inhibitor-based triple therapy used by
20 patients. Interestingly, COVID-19-associated symptoms were similar to the commonly reported ones
for the HIV-negative population, with 23 patients (74.2%) presenting with fever or developing fever
following admission. For this group, one patient developed mild, two moderate, 21 severe, and seven
critical symptoms. At the time of reporting, eight patients had died (four had “do not resuscitate”
orders), but 21 (67.7%) recovered and were discharged—13 (41.9%) home and eight (25.8%) to a care
facility—and two were still hospitalized. All eight mortalities were older than 50 years old, and seven
of the eight were using a tenofovir prodrug as part of their ART treatment [20]. Similarly, a large study
of 5700 COVID-19-positive patients admitted to a network of New York City hospitals reports only 48
HIV-positive patients (prevalence of 0.8%). Unfortunately, not much is reported for these patients as
their HIV status was merely reported as a co-morbidity [35].

Gervasoni et al. (2020) describe 47 HIV-positive patients with laboratory-confirmed (28, including
one asymptomatic patient) or probable (19) SARS-CoV-2 infection; these were identified out of 6,000
HIV-positive patients. Almost 64% of the 47 HIV/SARS-CoV-2 patients had at least one co-morbidity
(mainly dyslipidemia, arterial hypertension and Hepatitis B virus (HBV) or HCV coinfections).
At the time of hospitalization, 38 of the patients were on an integrase inhibitor-based ART and 5
a protease inhibitor-based treatment; 20 were receiving a tenofovir-based regimen. The COVID-19
diagnosis of the probable cases was based on their clinical symptoms and the presence of risk factors
(mainly being healthcare workers or contact with confirmed COVID-19 patients). Thirteen of the 28
laboratory-confirmed SARS-CoV-2 positive patients were hospitalized, six with severe lung disease,
of which two required mechanical ventilation. At the time of reporting, 45 patients made a full recovery.
Two fatalities were reported: A 47-year-old overweight man without other co-morbidities, and another
patient with confirmed cardiovascular disease and a recent diagnosis of lung cancer [36].

Benkovic et al. (2020) report the case studies of four HIV/SARS-CoV-2 coinfected patients. All four
patients had uncomplicated cases of SARS-CoV-2 infection, with symptoms commonly reported by the
general population, including fatigue, loss of taste and smell, fever and cough. Co-morbidities were
recorded for all four, with atrial fibrillation, hyperlipidemia, hypertension, type II diabetes mellitus and
treated HCV listed. At the time of testing, all four patients were using ARTs (four were using NRTIs,
three were using integrase strand transfer inhibitors, one was using a CCR5 antagonist, one was using
non-nucleoside reverse transcriptases, and one was using a CYP3A inhibitor) and all had robust CD4+

T cell counts. Three of the patients were asked to home self-isolate, and the fourth was hospitalized;
the latter was also positive for an influenza A test. At the time of reporting, all four patients recovered
from COVID-19 [37].
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Table 1. Human coronavirus infections in HIV-positive patients.

Study Cohort hCoV (%
Incidence) Clinical Presentation

Other Types of Drugs
Administered (Number

Receiving the Drug)

Disease Outcome
at the Time of

Reporting
Co-Morbidities Other Pathogens Reference

Thirty-two-year
old male 229E

Acute respiratory failure,
respiratory distress, cough, fever,
tachypnea, low CD4+ count, high

HIV RNA count, pneumonia, acute
renal failure, anemia,

thrombocytopenia, elevated
C-reactive Protein levels

(ART)
NRTIs, antibiotics,

high dose norepinephrine
infusion

Fatal multi-organ
failure None reported RSV, E. coli, Proteus

mirabilis [24]

Five hundred and
seventeen samples

from children

OC43 (12.2%);
NL63 (1.7%);
HKU1 (1.4%)

Cyanosis (11.4% vs. 8.1%),
CXR-AC (Pneumonia—26.6% vs.
22.1%), C-reactive protein (CRP)
levels (15 vs. 12mg/mL), fever

PCV9
(pneumococcal vaccine) Not reported None reported

hRV (31.7%),
human bocavirus (9.5%),
polyomavirus WUPyV

(8.9%)
Bacteria

[25]

Thirty-year old
male SARS-CoV

Low CD4+ count, high HIV RNA
count, dry cough, fever and

malaise, pneumonia, tachypnea,
lymphopenia,

(HAART)
NRTIs, Protease inhibitors,

Pneumocystis carinii
pneumonia prophylaxis,
Ribavin + prednisolone

(anti-SARS), anti-TB
treatment

Full recovery TB HBV [26]

Sixty-one-year old
male SARS-2 Dry cough, lymphopenia,

pneumonia, dypsnea

Aloglibtin + Metformin,
protease inhibitors,

antibiotics,
immunosuppresants

Full recovery Type II diabetes None reported [28]

Three cisgender
men, 2

transgender
people

SARS-2

Fever, low CD4+ count (1/5), high
HIV RNA load (1/5), elevated CRP
levels (4/5), elevated ferratin levels

(3/5), lymphocytopenia (2/5),
thrombocytopenia, cough, LRTI

(3/5), URTI (2/5), cough

ARTs, hydroxychloroquine
(4), IFN beta-1b (2),

antbiotic, corticosteroids (2),
immunosuppresants (1)

Four recovered; 1
in ICU

Hypothyroidism
(1), asthma (1) None reported [29]

Fifty-one
COVID-positive:
Eight women, 43
men (from 2873

HIV-positive
patients)

SARS-2
Common symptoms:

Non-productive cough, fever,
dyspnea, fatigue

NRTIs (37), protease
inhibitor treatment (11)

hydroxychloroquine (30),
azithromycin (19),

ritonavir-boosted lopinavir
(14)—usually used in
combination, boosted

darunavir (8)

Forty-four
recovered; 2

fatalities

Six-three percent
at least one

co-morbidity
(hypertension,

high BMI, diabetes,
chronic kidney
disease, chronic

liver disease)

None reported [30]
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Table 1. Cont.

Study Cohort hCoV (%
Incidence) Clinical Presentation

Other Types of Drugs
Administered (Number

Receiving the Drug)

Disease Outcome
at the Time of

Reporting
Co-Morbidities Other Pathogens Reference

Eight patients
(from 1174

HIV-positive
patients)

SARS-2
Low CD4+ counts (2/8—100–350
cells/mm3), normal CD4+ counts

(6/8—>350 cells/mm3)
ARTs One fatality None reported None reported [31]

Four male patients
(from 1224

HIV-positive
patients)

SARS-2

High HIV RNA load (3/4), low
CD4+ count, pneumonia, cough,

lymphocytopenia, elevated ferritin
levels (1/4), elevated CRP levels

(2/4), diarrhoea, thrombocytopenia

ARTs
(NRTIs and protease

inhibitors), antibiotics

Three recovered; 1
fatality

Bipolar disorder,
diabetes, COPD,

hypertension,
obesity

HBV [32]

Forty-eight
HIV-positive (from

5700 COVID-19
positive)

SARS-2 None reported None reported None reported None reported [35]

Thirty-eight-year-old
male SARS-2

Fever, muscle aches, fever,
pneumonia, slightly elevated CRP

levels, normal WBC and
lymphocyte count

ARTs
NRTIs, Oseltamivir, IFN-α Full recovery None HCV [33]

Thirty-four-year-old
woman SARS-2

gastrointestinal symptoms,
headache, chest pain, anorexia and

muscle aches

Tenofovir disoproxil
fumarate, lamivudine and

efavirenz
Full recovery None None reported [34]

Thirty-one
HIV-positive (from

2159 COVID-19
positive patients)

SARS-2 Fever viral pneumonia

All patients were on ART;
integrase inhibitor-based

triple therapy
hydroxychloroquine (24),

azithromycin (16),
corticosteroids (8), IL-6R

antagonist tocilizumab (2),
antiviral drug—remdesivir

(1), IL-6R
inhibitor—sarilumab (1)

Twenty-one
recovered; 8

fatalities

Seventy-one
percent at least one

co-morbidity
(hypertension,

diabetes mellitus,
obesity, asthma,

COPD

None Reported [20]

Forty-seven
COVID-positive

(from 6,000
HIV-positive

patients)

SARS-2 Fever, cough, dyspnea, diarrhea,
myalgia, headache

Integrase inhibitor-based
ART; protease

inhibitor-based treatment;
tenofovir-based regime

Forty-five
recovered; 2

fatalities

Sixty-four percent
at least one

co-morbidity
(dyslipidemia,

arterial
hypertension

HBV, HCV [36]

Four male patients SARS-2 Fatigue, loss of taste and smell,
fever, cough All patients were on ART Full recovery

atrial fibrillation,
hyperlipidemia,

hypertension, type
II diabetes mellitus

HCV (1)
influenza A (1) [37]
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To date, studies are reporting a COVID-19 prevalence of between 0.68% [31] and 1.8% [30] in
HIV-positive patients. Similar to data for HIV-negative populations, old age and co-morbidities appear
to be important in the development of severe COVID-19 and mortality in HIV-positive patients [29–31].
Interestingly, groups are now reporting that in HIV-positive patients, the gender, the CD4+ counts, the
HIV viral load, or the ART regimen do not show a clear association with COVID-19 infection or severity
of the disease [20,29–31]. It appears as though, as reported for immunocompetent individuals, that
co-morbidities are an important factor in mortality rates in HIV/SARS-CoV-2 coinfections. Interestingly,
others report, that COVID-19 disease prognosis is improved in HIV-positive patients that are on a
regular ART regimen, and where HIV viral load is suppressed [32].

3. CoV and HIV Induced Cytokine Storms

Many viral infections trigger a hyperinflammatory syndrome, resulting in cytopenias, unremitting
fever, and pulmonary involvement (including acute respiratory distress syndrome (ARDS)) in about
half of patients [38]. A cytokine storm is typically characterized by a decrease in inhibitory cytokines
(e.g., interleukin (IL)-10, transforming growth factor (TGF)-β), an increase in activation cytokines
(e.g., IL-12, interferon (IFN)-γ, TNF-α), and an increase in the infiltration of leukocytes into inflammatory
sites [39].

In the majority of cases, HIV infection triggers an inflammatory response that presents as an acute
retroviral syndrome. While this syndrome is normally self-limiting, primary HIV infection can, at
times lead to a sudden and severe inflammatory process similar to cytokine storm syndrome [40,41].
Whereas, this increase in certain plasma cytokines and chemokines occurs very early after infection,
cytokine storm is associated with acute HIV infection in the period leading up to peak viremia [41–43].
Importantly, the subsidence of the resultant cytokine storm is not complete, and if left untreated,
some cytokines remain at higher than normal physiologic levels, which then persist into the chronic
phase [43].

In severe lung infections, the cytokine storm-linked inflammatory response can move into the
systemic circulation, producing systemic sepsis, which could result in damage of other organs [39,44].
Similarly, the three pathogenic hCoVs can also cause severe pneumonia, which is often associated
with rapid virus replication, massive inflammatory cell infiltration and elevated pro-inflammatory
cytokine/chemokine responses. This can then lead to acute lung injury (ALI), ARDS, and sometimes,
death [14].

Both SARS-CoV- and MERS-CoV-linked severe disease is linked to an excessive immune response
in the host, and cytokine dysregulation may account, at least partly, for the development of the severe
clinical disease, ALI and ARDS [3]. SARS-CoV and MERS-CoV do not significantly stimulate the
expression of certain antiviral cytokines (IFN-α and IFN-β), but do stimulate comparable levels of
TNF-α and IL-6 [45]. In an in vitro Calu-3 cell system, the levels of expression of IL-1β, IL-6 and
IL-8 were significantly higher in MERS-CoV infected cells than in SARS-CoV infected cells at 30 h
post-infection. On the other hand, SARS-CoV induces markedly higher expression levels of TNF-α,
IFN-β and IP (interferon gamma-induced protein)-10 in cells than MERS-CoV at 24 and 30 h [46].
This difference could possibly explain the difference in mortality rates reported for MERS and SARS.
What could this look like?

Not only is an IFN-γ-related cytokine storm induced post-SARS-CoV infection [47–49], IP-10
and IL-2 are induced early in the infection. A subsequent over-production of IL-6, with a decreased
production of IL-10, then likely leads to the main immunopathological damage involved in lung
injury [50]. Severe pneumonia caused by MERS-CoV is also often associated with massive inflammatory
cell infiltration and elevated pro-inflammatory cytokine/chemokine responses [14,45,46]. MERS-CoV
induces the expression of high levels of IL-12, IFN-γ, and chemokines in the infected host [45].

Interestingly, a hyper-immune response is now also associated with severe COVID-19 [51].
Studies suggest that COVID-19-related mortality could also be linked to this virus-induced
hyperinflammation [52], which is likely caused by a cytokine storm [53]. For severe COVID-19,
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the overproduction of early response proinflammatory cytokines (TNF, IL-6, and IL-1β) results
in this cytokine storm. This potentially leads to an increased risk of vascular hyperpermeability,
multiorgan failure, and eventually, death when the high cytokine levels are not controlled [54,55].
Why are we not seeing more frequent severe CoV-related disease, including cytokine storms, in
HIV-positive individuals?

4. HIV-CoV Coinfections and Disease Outcome

Van der Hoek et al. noted that in respiratory coinfections, the hCoV viral load is often much lower
than for single infections [56]. Even though HIV is not a respiratory virus, this could explain why
the hCoV viral load in HIV-positive patients seldomly researches the levels required for the severe
coronavirus-related disease to develop.

Others are now hypothesizing that the disease outcomes seen in HIV-hCoV coinfection could be
due to:

I. The existing infection with HIV-1 interfering with the replication of the CoV in the same
host. This could result in the patient not being coinfected with the hCoV, or due to “viral
interference” [15], the viral load of the hCoV remains low and severe coronavirus disease does
not develop (see comments from [56] above); or

II. HAART, used in the treatment of patients with HIV-1/AIDS, interferes with CoV replication,
thereby preventing the development of the severe coronavirus disease [27,57]; or

III. HIV induced lymphopenia could protect HIV-positive patients from severe CoV-disease clinical
manifestations [58,59].

Data from human and animal studies suggest that, after infection by unrelated pathogens, the
host’s immune response to subsequent infections can be altered. One virus competitively suppressing
the replication of another coinfecting virus is one of the most common outcomes of coinfections [15].
Infections by certain heterologous viruses have been reported to result in protective cross-immunity
by employing different processes, including innate immune activation [60], bystander protection by
activated CD4+ or CD8+ T cells, and/or cross-reactive CD8+ T cells [15,61].

IFN-mediated innate viral interference is the most common form of one virus suppressing the
replication of another, heterologous virus [62]. When IFN binds to its cognate receptor, it results in
the expression of multiple interferon-stimulated genes (ISGs), which in turn control and activates
various cell signaling pathways [63–65]. The ISGs also control the actions of numerous innate immune
mediators that are able to nonspecifically block virus replication [15]. This interference can occur at
various steps of virus replication, including attachment [66], entry [67], genome replication [68,69],
and budding [15,70].

Immunity to previously encountered viruses that alters responses to unrelated pathogens is
another common phenomenon amongst viruses and other microorganisms. One such example is
heterologous immunity, where “exposure to one pathogen will generate an immune response against
numerous antigenic epitopes derived from that pathogen, some of which might cross-react with epitopes
derived from other pathogens.” When a second, unrelated pathogen infects the host, the “cross-reactive
memory cells expand more rapidly and may dominate the overall response” [71]. Another case where
heterologous immunity is commonly observed is in persistently infected individuals who experience
constant, low-level antigenic stimulation that alters their immunity to other pathogens [60]. In one
study, mice are given a modified heat-labile bacterial toxin that altered the microenvironment, such that
it improved the immune response to subsequent infection with RSV, influenza virus, or the fungus
Cryptococcus neoformans. Interestingly, this type of protective immunity is partially T cell- and B
cell-independent. Cytokines produced by activated antigen-presenting cells (APCs) stimulate T cells
to differentiate into polarized subsets and influence the type of immune response that is generated to a
second unrelated pathogen [72].
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Interestingly, heterologous immunity can also lead to immunopathology, instead of protective
immunity. One example of heterologous immunity, resulting in immunopathology, is observed in the
immunopathologic features that become exaggerated and pronounced in young adults or the elderly
(also observed in COVID-19), suggesting that prior infections in young adults—that have not yet
occurred in most young children—may alter the immune environment to subsequent infections in the
older patients [17,73,74]. The cytokine milieu elicited by the active infection seems to be what drives
heterologous infections, and may modulate subsequent cellular responses [17,75]. Could this explain
why we are seeing a more severe pathogenic hCoV infection is some older patients?

The reasons or mechanisms underlying the unexpected disease outcomes in HIV/hCoV coinfections
are unclear. Researchers are speculating that this could be explained by the anti-HIV agents having
anti-CoV properties [5], or the initial HIV infection causing an alteration of host cells so that they no
longer offer a favorable environment for virus replication and/or multiplication [33], a phenomenon
reported previously by Beale [76]. Moreover, researchers have speculated that for SARS-CoV—but
this could probably be for SARS-CoV-2 and MERS-CoV too—the defective cellular immunity in
HIV-positive patients “could paradoxically be a protective factor in some patients” [26]; another
group also hypothesize that for SARS-CoV-2 “the compromised immunity might be the reason that
HIV/AIDS patients did not occur inflammatory changes and clinical symptoms” [31]. Mascolo et al.
hypothesize that the absence of T-cell activation in the immunocompromised patient mitigates the
severe immunopathological phenomena associated with COVID-19 [77]. Based on their own data,
and data from others, Shalev et al. now speculate that even “uncontrolled HIV infection and poor
CD4+ T-cell function may limit SARS-CoV-2–related immune dysregulation and cytokine release” [20],
offering some protection against the development of severe COVID-19.

5. Conclusions

In general, the risk associated with coinfections is still a matter of debate [78]. Therefore, with
the lack of conclusive studies on HIV-CoV coinfections, researchers are concerned that the immune
status that makes HIV-positive people vulnerable to other infections, could also predispose them to
develop more severe CoV infections [58]. Furthermore, if we have evidence that HIV-positive people
are more susceptible to develop more severe hCoV-related diseases, it could lead to the early adoption
of specific therapeutic strategies [24].

However, the estimated COVID-19 prevalence reported in various studies does not suggest
increased rates of hospitalization or mortality in HIV-positive patient populations. Clinical
characteristics and disease outcomes were comparable to those described for the general population
with COVID-19 [20,30,35,36]. In conclusion, recent evidence points to the fact that, even in the
HIV-positive community, pre-existing co-morbidities and old age place the individual at higher risk of
developing a severe disease [28,29,31]. Interestingly, the type of HIV anti-viral drug used, or the HIV
viral load does not appear to be determining factors [31,58]. The veracity of all of these claims needs to
be confirmed, however.
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