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A B S T R A C T   

The nature of interactions between ecological, physical and hydrological characteristics that determine the ef
fects of land cover change on surface and sub-surface hydrology is not well understood in both natural and 
disturbed environments. The spatiotemporal dynamics of water fluxes and their relationship with land cover 
changes between 2009 and 2017 in the headwater Buzi sub-catchment in Zimbabwe is evaluated. To achieve 
this, land cover dynamics for the area under study were characterised from the 30 m Landsat data, using the 
eXtreme Gradient Boosting (XGBoost) algorithm. After the land cover classification, the key water balance 
components namely; interception, transpiration and evapotranspiration (ET) contributions for each class in 2009 
and 2017 were estimated. Image classification of Landsat data achieved good overall accuracies above 80% for 
the two periods. Results showed that the percentage of the plantation land cover types decreased slightly be
tween 2009 (25.4%) and 2017 (22.5%). Partitioning the annual interception, transpiration and ET according to 
land cover classes showed that the highest amounts of ET in the basin were from plantation where land cover 
types with tea had the highest interception, transpiration and ET in the catchment. Higher ET, interception and 
transpiration were observed in the eastern parts of the catchment. At catchment level, results show that 2017 had 
a higher water balance than 2009, which was partly explained by the decrease in plantation cover type.   

1. Introduction 

Spatial information on water flux within the soil-vegetation- 
atmosphere system is critical for water management at catchment 
level in the face of anthropogenic surface modifications and global 
change. Land cover change alters the atmospheric carbon and nitrogen 
cycles, albedo, runoff, soil water holding capacity and biodiversity 
among others at local, regional and global scales (Devaraju et al., 2018; 
Duveiller et al., 2018a; Winckler et al., 2018). The nature of interactions 
between ecological, physical and hydrological characteristics that 
determine the effects of land cover change on surface and sub-surface 
hydrology is not well understood in both natural and 
human-dominated environments. Changes in agricultural land uses are 
central to environmental change studies because they are situated at the 
interface between ecosystems and society. With increases in 

atmospheric evaporative demand due to global warming against 
reduced precipitation in many tropical areas, the identification of the 
drivers of water losses as part of routine landscape management routines 
is imperative (Huxman and Scott, 2007; Liu et al., 2013). Water balance 
assessments therefore provide an important basis on which 
catchment-level decisions on agricultural and forest plantation in
vestments, water resources management and planning, water and car
bon accounting, and impact assessments are premised. 

Changes in vegetation cover have significant impacts on the surface 
water budget, especially for evapotranspiration (ET), an important 
component of the terrestrial hydrological cycle (Aghsaei et al., 2020; 
Gaertner et al., 2019; Gumindoga et al., 2018). ET is the sum of the 
evaporation from the land surface and the transpiration from plants into 
the atmosphere, and links the water budget to carbon sink, and energy 
exchange (Wang and Dickinson, 2012). It is an important component of 
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the hydrological cycle that governs interactions between the atmosphere 
and surface ecosystems (Betts et al., 1996; Liu et al., 2013). Therefore, 
understanding of the long-term variation of regional ET and its drivers is 
crucial for monitoring the biophysical processes related to it. Increases 
in ET may lead to an overall intensification or weakening of the water 
cycle, with implications for the recycling of precipitation and generation 
of runoff, which in turn will have impacts on ecological, hydrologic and 
economic activities depending on water resources availability (Cao 
et al., 2009; Duveiller et al., 2018a; Odongo et al., 2019). 

Agricultural and forestry plantations are important economic activ
ities that contribute to local employment and national development. 
Plantation forests use more water per unit area per year than agricul
tural land covers such as grains, pasture and other crops, which lowers 
runoff and discharge in areas that they are dominant (Lima et al., 2012; 
Prosser and Walker, 2009). This is so because they are usually large 
plants with very large leaf areas that consequently transpire more water, 
their tree canopy intercepts more rain before it reaches the ground, they 
often have deeper roots and they use water over the whole year, as they 
are perennial crops (O’Loughlin and Nambiar, 2001; Parsons et al., 
2007). Large-scale expansion of plantations is therefore a concern as this 
would diminish hydrogeological flows and threaten water availability 
and/or water quality for other subsequent uses (Bosch and Hewlett, 
1982; Farley et al., 2005; Gordon et al., 2005; O’Loughlin and Nambiar, 
2001; Scanlon et al., 2005). Paradoxically, perennial tree plantations 
have the potential to improve livelihoods, develop local and national 
economies, contribute to food security, advance cleaner biofuel energy 
and provide an array of ecosystems services (Nair, 2010). 

It is well established in literature that different vegetation types have 
different ET, and therefore major changes in land cover have consequent 
effects on ET (Duveiller et al., 2018b; Han et al., 2018; Jaramillo et al., 
2018; Mao et al., 2015). In catchments with plantation crops that are 
also changing over time, it therefore becomes important to evaluate 
whether ET is changing with land cover changing or is resilient. In 
addition, the spatial-temporal dynamics related to land cover change, 
climate change, human development, vegetation growth, and water 
cycling have not been simultaneously assessed over agricultural and 
forest plantations landscapes compared to natural systems, from which 
results cannot be directly imported. Consequently, little is known about 
the spatiotemporal dynamics of water flux in the response to land cover 
change and climate over long periods in these areas. 

The substantial extent of plantations as a land cover type in some 
catchments together with the degree to which they reduce runoff and 
recharge is sufficient to justify the inclusion of plantations in water 
resource planning, policy and management (Lima et al., 2012; Parsons 
et al., 2007). However, there is also evidence that land cover change 
may not significantly change ET as previously hypothesized. For 
example, Hamilton et al. (2018) and Abraha et al. (2015), and Blackie 
and Robinson (2007) observed that land cover/land uses changes be
tween annual and perennial land cover types did not significantly 
change the ET dynamics of the catchment for the US Midwest and East 
Africa respectively. It is not clear whether the resilience or lack thereof is 
related to scale of assessment or specific to a catchment or both. There 
are very few catchment scale comparisons of water flux due to conver
sion from annual crops such as maize (Zea mays) and sorghum (Sorghum 
bicolor) to perennial crops such as coffee (Coffea arabica), tea (Camelia 
sinensis) or pine trees (Pinus spp.). This is despite the fact that these 
conversions are common in many tropical areas pushed by diverse 
drivers. Projections are that land cover change will continue into the 
future to meet economic development goals on one hand and humon
gous commodity appetite on the other hand. 

Given the importance of agricultural and forestry plantations as a 
land cover type in terms of economic importance and provision of 
environmental service on one hand and catchment hydrology and 
related water resource management on the other, it is therefore 
important to understand how land cover change can have an impact on 
aspects of the water balance in the catchment. We hypothesize that there 

is a link between land use/cover and water balance such at catchment 
level that is modified by land cover change. The objectives of this study 
were therefore to (1) determine the proportion of agricultural and 
forestry plantations as land use/cover types in Buzi sub-catchment in 
2009 and 2017, (2) establish the quantitative and spatial changes in land 
cover between the time periods and (3) understand the relationship 
between changes in land cover and water balance in the catchment level. 

2. Materials and methods 

2.1. Study area 

The Buzi headwaters sub-catchment is located between latitude 
32�32�0 E and 32�52�0 E, and longitude 20�20�0 S and 20�08�0 S in 
Chipinge district in Zimbabwe under the Save Catchment (Fig. 1). It 
consists of rural communal areas, resettlement areas and large-scale 
individual and corporate commercial farming areas. The sub- 
catchment is shared between south-eastern Zimbabwe and central 
western Mozambique. In rural communal areas and resettlement areas 
in Buzi sub-catchment, the main economic activities are commercial 
farming of coffee, tea, macadamia (Macadamia integrifolia) and other 
cash crops (Mupindu et al., 2004). Buzi headwaters sub catchment has 
an area of 582 km2. The climate is subtropical with two distinct seasons, 
divided almost equally between months of the year (October–March is 
the growing season while April to September is the dry season). 
Compared to the rest of the Buzi basin, the area receives relatively high 
mean annual rainfall totals (1200–1800 mm/year) (Nicolin, 2010). The 
geological setting controls the hydrogeological characteristics and the 
area is predominantly granitic with the most occurring group of lithol
ogy being the paragneiss, quartzite, schist, phyllite, and amphibolite 
group (Lagerblad, 2010). Elevation ranges from 614 m to 1305 m 
(Fig. 1). With a complex terrain and high altitude, the catchment is ideal 
for investigating the response of terrestrial processes to land cover/use 
change. 

2.2. Land cover change assessment 

2.2.1. Image data acquisition pre-processing 
For the land cover classification, two dry season Landsat images for 

2009 and 2017 were acquired. The imagery were obtained with geore
ferencing, which was sufficient for general land cover classification as 
was required in the study. To ensure consistency in the atmospheric 
correction, the analysis ready, atmospherically corrected Landsat Sur
face Reflectance Level 2 science products were ordered from the earth 
explorer (https://earthexplorer.usgs.gov). These were 16-bit signed 
integer data with radiometric and geometric correction and were con
verted to surface reflectance with a provided scale factor. The dates, 
sensor types, cloud cover and other characteristic of the images are in 
Table 1. 

Image stacks were made of five bands, that is, blue (B), green (G), 
blue (B), near infrared (NIR) and shortwave infrared (SWIR1) as Seven 
land cover types formed the classification scheme used to classify the 
images. These are described in detail in Table 2. The training points for 
both 2009 and 2017 classification were obtained from field GPS points 
(Garmin eTrex with ~3 m accuracy) for all plantations and secondary 
survey data for plantations classes (tea, coffee and plantation forest) 
while the other classes were collected from auxiliary secondary sources 
such Google Earth, catchment plans and knowledge of the area. Since 
the number of pixels was very small, it was important to implement the 
region growing method to automatically growth the number of training 
and validation points. After this process, 60% of the training points were 
used training set the model and 40% as a validation set. In total, 198 
points were used for the 2009 image (119 for training and 79 for vali
dation) and 217 points (130 for training and 87 for validation) for the 
2017 image. 
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2.2.2. Image classification algorithm 
To classify the four image stacks for 2009 and 2017, we applied the 

eXtreme Gradient Boosting (XGBoost) approach. Boosting is an 
ensemble machine learning approach that creates a strong learner from 
a given number of weak learners. XGBoost is an improved step from the 
recursive tree-based partitioning method of gradient boosting intro
duced by Friedman (2001). Gradient boosting builds a sequential series 
of shallow trees, where each tree corrects for the residuals in the pre
dictions made by all the previous trees. XGBoost uses the sparsity-aware 
split-finding approach to more efficiently train on sparse data (Gumus 
and Kiran, 2017; Nobre and Neves, 2019; Sheridan et al., 2016). Vari
able importance is determined by evaluating the effect of shuffling 
image bands on the regularized gain. It has been used widely in both 
regression and classification modes after being developed by Chen and 
Guestrin (2016). The XGBoost has been widely recognized as one of the 
most highly performing machine learning algorithms for applications 
across fields. It is fast, accurate and based on smaller models compared 

to random forests and support vector machines that are widely applied 
in classification of remote sensing data. Parameter tuning for automat
ically determining the number of rounds, maximum tree depth, sigma, 
was done using the caret package while the XGBoost was implemented 
with the xgboost package (Chen et al., 2019) using the multi:softmax 
objective in R. 

Fig. 1. A map showing the location of the Buzi Headwaters sub catchment in Zimbabwe and the distribution of elevation and major river systems.  

Table 1 
Description of remote sensing data used in the image classification and spatial 
analysis.  

Description 2009 2017 

Acquisition date 5 June 15 June 
Sensor type Landsat 7 TM Landsat 8 OLI 
Path/Row 168/74 168/74 
Cloud cover 0.00 6.26 
Sun Azimuth 37.80417239 35.71673023 
Sun Elevation 37.01035882 38.55711720 
Projection UTM36S UTM36S 
Spatial resolution 30 30 
Source USGS Earth Explorer USGS Earth Explorer  

Table 2 
Description of land cover types that were used for the classification scheme.  

Land cover/use Description of land cover/use classes 

Tea Tea is a perennial evergreen shrub managed intensively for its 
tender leaves, which are periodically lopped to make a beverage, 
resulting in a flat canopy designed to facilitate plucking either by 
hand or machine 

Coffee Coffee is a perennial tree crop growing up to 3 m in large and 
smallholder plantations as a monocrop. Coffee is planted in rows 
and can reach up to 3 m depending on varieties, with average leaf 
area index of 6 

Plantation 
forest 

Plantation forest are commercial tree species that are grown for 
their woody parts for use in construction and other industries. 
These include common gum trees (Eucalyptus spp, wattle (Acacia 
spp) and pine trees. 

Natural forest These closed forests have a canopy cover of over 40% and a 
density of trees and shrubs growing together. 

Grassland Areas with open grasses and shrubs or sparse trees of lower 
density that cannot be considered as forests 

Cropland/Built- 
up 

These fields are ploughed or fallow during the dry season that 
corresponds with the study. The class also includes bare areas 
from settlements and other human activities. No major dry season 
irrigation for annual cropping was identified in the study area. 

Water Open water bodies that are used for different activities that meet 
the resolution of the data used (30 m � 30 m) in the study.  
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2.2.3. Classification accuracy assessment 
We used the confusion matrix to assess the accuracy of the classifi

cation process relative to reference data. The overall accuracy (OA), 
user’s accuracy (UA) and producer’s accuracy were determined from the 
confusion matrix. OA is the percentage that indicates the probability 
that a pixel is classified correctly by the thematic map. PA for is the 
percentage of a category on the ground that is correctly classified by the 
on the map, and measures proportion of pixels omitted from a reference 
classes (omission error). UA expresses the proportion of a category on 
the ground that is included erroneously in another category (commis
sion error) (Congalton, 1991; Foody, 2002). 

2.2.4. Linking land cover changes to water balance in the catchment 
The land cover types obtained from the classification were linked to 

the annual water balance parameters for the catchment that were ob
tained from the FAO Vapor data portal (https://wapor.apps.fao.org/ 
catalog/1). This was done with the objective of determining the con
tribtuion of each land cover type to the water flux that are important for 
catchment boundaly layer processes (Table 2). The used water balance 
parameters were precipitation, transipiration, interception and evapo
transipiration for the year 2009 and 2017 (Table 3). These products are 
derived from the application of the process-based SEBAL algorithms 
(Bastiaanssen et al., 1998). In the SEBAL model, water fluxes are 
computed from satellite images and weather data using the surface en
ergy balance. SEBAL is based on the logic that the incoming net solar 
radiation drives all energy exchanges on the Earth’s surface and there
fore all water fluxes require/use energy (Ning et al., 2017). Precipitation 
used was the Climate Hazards Group Infrared Precipitation Fields 
(CHIRPS) rainfall at 0.05� (~5 km) resolution (Funk et al., 2015). 

The FAO WaPOR datasets were at a lower resolution that the landsat 
data and therefore majority (modal) resampling was applied on the 
classified image to bring them to the same resolution of 250 m of the 
FAO Wapor data. The resampled classes were converted to points and 
used to extract the values of the water balance parameters for each land 
cover class for the two periods. In addition, to determine the relation
ships between the different land cover types and water flux, we calcu
lated three water related vegetation indices from the Landsat bands that 
have been identified as direct indicators of leaf water content (Du et al., 
2018). These were the Land Surface Water Index (LSWI, Eq. (1)), 
Modified Normalised Difference Water Index (MNDWI, Eq. (2))and the 
normalised difference vegetation index (NDVI, Eq. (3)). These vegeta
tion indices were then correlated with water flux data. 

LSWI¼
ρNIR � ρSWIR1
ρNIRþ ρSWIR1

(1)  

MNDWI¼
ρGreen � ρSWIR1
ρGreenþ ρSWIR1

(2)  

NDVI¼
ρNIR � ρRed
ρNIRþ ρRed

(3) 

The process of modelling the relationship between land cover types 
and water flux is summarized in the schematic diagram in Fig. 2. 

3. Results 

3.1. Image classification results 

The XGBoost achieved an overall accuracy of 83.1% for 2009 and 
86.6% for 2017 (Table 4). The highest producers’ accuracies were for 
the class water while for the other classes the results varied depending 
on the year. The best-classified vegetation classes from the user’s ac
curacy for 2009 were tea and coffee (90.5% and tea 92.3%). For 2017, 
they were cropland/built-up (92%) and grassland (90%). All land cover 
types had satisfactory classification accuracies with users’ accuracies 
averages for the two periods exceeding 75% (Table 3). The most 
important bands in separation of classes for were the SWIR and NIR 
bands, which for 2009 and 2017 classifications accounted for over 70% 
of the regularized gain in classification (Fig. 3). 

3.2. Land cover/use types and changes between 2009 and 2017 

The thematic maps for the two time periods (2009 and 2017) show 
that grassland and natural forest were the most dominant land cover 
type in the Buzi headwaters sub-catchment (Fig. 4, Fig. 5). About a third 
of the sub-catchment had grasslands in both assessment periods. From 
the 2009 classification, plantations (tea, coffee and forest plantations) 
occupied 25.4% of the land cover/use types. In 2017, the plantation 
cover had reduced to 22.5% of the sub-catchment, driven by a 3.3% 
decrease in the cover class coffee from 5% of the sub-catchment to 1.7% 
of the catchment in 2017 while other plantation cover types remained 
relatively unchanged. Coffee is distributed across the catchment, while 
tea fields were mainly located in the eastern and northern parts of the 
study area with isolated occurrences in the southern and central parts 
(Fig. 4). 

3.3. Land use based ET in Buzi sub-catchment 

The resampled land cover classes for 2009 and 2017 are shown in 
Fig. 6. The data on precipitation showed that 2017 was a wetter year 
compared to 2009 but the general distribution of annual precipitation in 
the sub-catchment remaining the same. There is a general precipitation 
gradient from the north to the south of the sub-catchment. However, 
transpiration, interception and evapotranspiration do not follow the 
precipitation patterns. These are higher on the eastern side of the 
catchment, where tea and coffee land cover types are more dominant 
(see Fig. 7). 

Using all the pixels in the catchment, the results showed that the 
greatest amounts of interception in the sub-catchment occur in the cover 
class tea and plantation forests, followed by natural forest. As expected, 
water had the least interception and transpiration but high evapo
transpiration (Fig. 8). In terms of changes between the periods, coffee 
areas had an increase in interception between 2009 and 2017, although 
the transpiration remained the same. In terms of transpiration, all 
classes had reduced transpiration amounts in 2017 compared to 2009 
except for coffee, which remained the same between the two periods 
(Fig. 8). Through transpiration and total evapotranspiration, the results 
indicate that the plantation cover types are influencing atmospheric 
processes more than natural forest and grassland in the sub-catchment 
(see Fig. 9). 

We further determined the correlation between precipitation, inter
ception, transpiration and evapotranspiration losses for all pixels in the 
catchment, which are shown in Table 5. Overall, correlations between 
transpiration, ET and interception and LSWI, MNDWI and NDVI were 
significant (p < 0.05). In general, these correlations were highest for 
2009 compared to 2017. Transpiration was higher in 2009 compared to 
2017, while total evapotranspiration was higher in 2017 compared to 
2009 (Fig. 10). From these results, it is evident that vegetation param
eters in the catchment as represented by vegetation indices influence 
water flux in the catchment in the two periods. The terrestrial moisture 

Table 3 
Water baance obtained from the FAO WaPOR dataset for 2009 and 2017.  

Data Precipitation Transpiration Interception Evapotranspiration 

Units mm mm mm mm 
Data CHIRPS data FAO WaPOR FAO 

WaPOR 
FAO WaPOR 

Resolution 25 km 250 m 250 m 250 m 
Temporal 

scale 
Yearly sum Yearly sum Yearly sum Yearly sum 

Period 2009 & 2017 2009 & 2017 2009 & 
2017 

2009 & 2017  
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limitation therefore becomes the most significant factor influencing 
water flux as shown by the positive correlations between vegetation 
indices and water flux. 

The catchment level water balance is shown in Fig. 10. The results 
indicate that there was a more positive water balance in 2017 compared 
to 2009. As a ration of the precipitation, the water balance for 2017 was 
37% of the precipitation while that of 2007 was only 9% of precipitation 

received. There was a 31% increase in precipitation between 2009 and 
2017 and a 33% reduction in catchment transpiration in the same 
period. 4.6% of the precipitation was lost through interception in 2009 
while only 3.8% was lost in 2017 (Fig. 10). The results show that there 
was a 3% reduction in plantation areas in the catchment, a 31% increase 
in precipitation, and a 400% increase in the water balance between 2009 
and 2017. This means that precipitation alone does not explain the 
water balance in the catchment but the changes in land cover. 

4. Discussion 

In this study, we aimed at understanding how land cover change 
affect aspects of the water balance at sub-catchment level by linking 
remote sensing image classification with water flux in a heterogeneous 
tropical catchment. We have presented a catchment-level water balance 
assessment using remote sensing derived land cover dynamics for 2009 
and 2017, which were linked to interception, transpiration and ET. 
Finally, the water balance for the two periods was calculated to repre
sent long-term spatio-temporal dynamics of terrestrial variables. 

4.1. Land cover change assessment 

The image classification process determined the spatial and quanti
tative distribution of the selected land cover classes in the Buzi Head
waters sub catchment as shown by the thematic maps for 2009 and 
2017. The accuracies achieved by implementation of the XGBoost al
gorithm for image classification are satisfactory and comparable to other 
classification accuracies in similar landscapes. For example, while 
Chemura and Mutanga (2017) obtained comparable classification using 
Landsat data, the XGBoost has added advantages that it is fast and 
produces smaller but more accurate models as it applies the 
sparsity-aware split-finding approach to more efficiently train the clas
sifier (Sheridan et al., 2016). There is therefore a huge scope in appli
cation of the XGBoost in image classification for remote sensing 
applications as an addition or alternative to exiting methods as shown in 
this study. 

A significant part of the Buzi Headwaters have been modified by 
human activities as human-induced cover types (cropland, plantation 
forest, coffee, tea and water) now dominate the landscape of the sub 
basin accounting for 44.6% in 2009 and 46% in 2017. The high agri
cultural development potential of the Buzi Headwaters sub catchment 
makes the area to be in high demand for agricultural land uses at the 
expense of natural cover types. In 2009 a quarter of the catchment 

Fig. 2. Flow chart summarising the process for modelling the water balance effects of plantation land cover types in Buzi sub-catchment.  

Table 4 
Producers, users and overall classification accuracies for the 2009 and 2017 
images.  

Class 2009  2017  

Producer User Producer User 

Tea 90.5 95.0 86.4 86.4 
Coffee 92.3 82.8 78.6 78.6 
Plantation forest 72.7 80.0 80.0 83.3 
Natural forest 78.3 75.0 77.8 84.0 
Grassland 78.9 78.9 96.4 90.0 
Cropland/Built-up 81.8 81.8 92.0 92.0 
Water 88.9 100 100.0 88.9 
Overall 83.1  86.6  
N 142  149   

Fig. 3. Variable importance of the five bands used in image classification using 
XGBoost for 2009 and 2017. 
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Fig. 4. Spatial distribution of plantation land cover types in Buzi Headwaters obtained from the XGBoost classification of Landsat imagery. Fig. 4a shows the land 
cover classes for 2009 and 4 b for 2017. 

Fig. 5. Percentage area in each land cover/use type in Buzi sub-catchment in 2009 and 2019.  

Fig. 6. Land use classes resampled from 30 m to 250 m using majority filter for 2009 and 2017 images.  
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Fig. 7. Distribution of precipitation, interception, transpiration and evapotranspiration in 2009 and 2017 in Buzi sub-catchment.  

Fig. 8. Amount of interception, transpiration and evapotranspiration from each land cover/use type between 2009 and 2017.  
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(25.4%) was under plantation cover type which reduced to 22.5% in 
2017 but in both years exceeding the recommended maximum threshold 
of 20% of catchment for plantation cover types (Parsons et al., 2007). 

In addition to changes in area for land cover types, co-occurrences of 
the plantation cover type was also observed especially for tea and 
plantation forest. Tea and plantation forest cover types have been shown 
to be concentrated in certain localities compared to coffee, which was 
scattered in smallholder plots across the sub-catchment. The close as
sociation between tea and plantation forest means that these plantation 
types will take significant areas in particular parts of the catchment, 
increasing the impact of plantations on the catchment hydrology and 
other environmental conditions. Parsons et al. (2007) suggested that it is 
better that plantation cover types be sparsely distributed across a 
catchment in order to minimise their impacts. Creutzig et al. (2019) 
observed that activities that affect the biophysical environment tend to 
co-occur and this has synergistic, additive, or multiplicative effects on 

biodiversity and loss of other ecosystem services. 
The growth of plantation forests has also been linked to large-scale 

government initiated reforestation programs elsewhere (Belay and 
Mengistu, 2019). Conversion to cropland/built-up has reinforced the 
observations that agriculture and settlements remain the main driver for 
land cover change in tropical areas (Betru et al., 2019; Phalan et al., 
2013; Xu et al., 2019). These findings show that land cover changes are 
two dimensional, the first being the quantitative changes in area under 
each class and the second being the spatial re-arrangement of land 
use/cover types, both of which are important in dealing with land cover 
change in policy dialogue. 

4.2. Land cover change and water balance 

Although the plant physiology and management govern negative and 
positive environmental interactions of plantation land cover types, there 

Fig. 9. Relationship between (a) LSWI and interception for 2009, (b) LSWI and interception for 2009, (c) MNDWI and ET in 2009 and (d) MNDWI and ET for 2017.  

Table 5 
Correlation between water flux (interception, transpiration and ET) with vegetation indices (LSWI, MNDWI and NDVI doe the whole catchment. The bold values are for 
2009 while the plain are for 2017.   

LSWI MNDWI NDVI Transpiration Interception ET Precipitation 

LSWI 1.00 0.73 0.87 0.50 0.51 0.52 ¡0.03 
MNDWI 0.68 1.00 0.36 0.35 0.34 0.39 ¡0.02 
NDVI 0.85 0.21 1.00 0.48 0.49 0.48 ¡0.03 
Transpiration 0.45 0.35 0.37 1.00 0.79 0.98 ¡0.08 
Interception 0.43 0.32 0.36 0.71 1.00 0.75 0.19 
ET 0.45 0.39 0.35 0.97 0.64 1.00 ¡0.11 
Precipitation � 0.12 � 0.08 � 0.11 � 0.23 0.00 � 0.24 1.00  
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are significant differences between annual crops and plantations. Tree 
crops alter the water cycle of catchments, as they are likely to increase 
interception and increase evapotranspiration, which in both cases re
duces runoff (Cao et al., 2009; Farley et al., 2005; Gordon et al., 2005). 
For example, Parsons et al. (2007) indicated that land conversion from 
grassland to plantations reduce water yield by as much as 200 mm/year 
in areas receiving over 1000 mm/year of rainfall. Similar impacts of 
land use/cover change have been reported elsewhere (Aghsaei et al., 
2020; Betru et al., 2019; Eichelmann et al., 2018; Gaertner et al., 2019; 
Han et al., 2018, 2019). The relationship of tree crops with soil moisture 
and ground water resources is more complex. This is because it depends 
on many factors such as the amount, intensity, duration and distribution 
of rainfall, topography, position of the plantation on the landscape, 
species and age of the plantations (Lima et al., 2012; Parsons et al., 2007; 
Prosser and Walker, 2009). 

The relatively higher water flux from plantation cover types is 
explained by higher plant transpiration and canopy conductance of 
these species. A further supplementary irrigation in the dry period also 
entails continued water flux in irrigated plantation crops compared to 
natural systems such as grasslands and natural forests that are depen
dent of the natural environment. Since these plantations are perennial 
tree crops, they have higher total root biomass and effective rooting 
depth accumulated over years that creates a positive transpiration 
forcing (Parsons et al., 2007; Yang et al., 2016). The ability of this study 
to provide this understanding without the any near prospects of 
expensive flux towers provides information on which catchment man
agement can be based, and for similar catchment to adopt such as an 
approach. 

This study has demonstrated that ET sources shift in a catchment 
with land cover changes, with this also altering the water flux in the 
catchment. From a catchment management perspective, it shown which 
areas need focus in term of reducing ET from the catchment in order to 
maximize water yield and discharge. Thus, depending on the type of 
changes in land cover at catchment scale, water flux parameters respond 
accordingly and it is possible to achieve both positive and negative ef
fects on water balance. As such, the suggestion by Odongo et al. (2019) 
that the effects of land use changes on water balance of a catchment are 
insignificant in the short-term and only discernible in the long-term 
concurs with the findings of this study. In some cases, land cover 
change can have a spatial re-arrangement of land cover types which will 
cancel out the impacts at catchment scale as losses will be compensated 
by gains elsewhere in the catchment (Kumar et al., 2017). 

It is also important to note that the effects of the changes in land 
cover may be beyond quantitative water flux but may also include water 
quality changes and resultant impacts on ecosystems and economic 

activities (Jarvie et al., 2002). Similar impacts of changes in plantation 
cover types on catchment dynamic processes and condition have been 
reported elsewhere (Gebrehiwot et al., 2014; Le Maitre et al., 2014; 
Meshesha et al., 2014; Miettinen et al., 2016). The decrease of 28% in 
AET between 2009 and 2017 points to the significance of plantations in 
influencing water dynamics as transpiration was shown as the most 
important water flux activities accounting for between 58% (2017) and 
88% (2009) of annual precipitation. Changes in land use/cover explain 
the changes in water balance that was observed in many ways. For 
example, N�obrega et al. (2017) opined that changes in land use can 
significantly degrade soil hydraulic properties and thus affect the water 
losses. Some plantation forests such as eucalyptus have been reported to 
draw as much as 120 mm year� 1 from groundwater, which is consid
erable (Swaffer et al., 2020). 

4.3. Implications on catchment scale water resources management 

The issue of plantations and water resources requires an under
standing of several areas of hydrology because forest vegetation cover 
influences several aspects of water balance in landscapes. This is even 
more urgent in transboundary basins where activities in one sub-basin 
have spill over effects in other basins and other countries. According 
Lagerblad (2010) irrigation is the largest water user in the basin, taking 
up to 4% of the flows. The expected urban and agricultural development 
in the Upper Buzi catchment due to population growth and the land 
reform program respectively are expected to lead to increased demand 
on water resources in the Buzi basin in eastern Zimbabwe, both for 
urban water supply and irrigated agriculture (Mupindu et al., 2004). 
Therefore in addition to current focus on the effects of urbanisation and 
settlements on catchment processes (Palamuleni et al., 2011), some 
attention should be placed on the specific dynamics of land cover change 
as they also influence water flux. It is imperative from this study that a 
decrease in plantations area increases the water balance, and notwith
standing climatic influences, points to importance in regulating the area 
under plantations in catchments especially with decreasing precipitation 
and increased evaporative losses from warming under global environ
mental change. This is especially so because during dry years, the in
fluence of land use change exceeds that of climate in determining 
dynamics at catchment scale (Odongo et al., 2019). 

5. Conclusions 

In this study, we connected land cover changes from satellite remote 
sensing data to water flux variables data at catchment level to under
stand the contribution of land cover change to water flux for a tropical 
catchment. Our approach presents a remote sensing based approach for 
evaluating and tracking the effect of land use/cover change on water 
balance that is related to many ecosystem processes. We observed that 
there were changes in land use/cover in Buzi sub-catchment from 2009 
to 2017 with major changes related to human dominated activities such 
as settlements and croplands with decreases in grasslands. From the 
results of this study, we conclude that increase in areas under agricul
tural plantations could threaten water yield as these land cover types 
increase ET with decreases in their areas being good for positive 
catchment water balance. We also found that spatial distribution and re- 
arrangement of plantations within a catchment is an important factor in 
water balance, as they are some plantations types co-occur and thus are 
concentrated in specific parts of the catchment. It was noted that plan
tation cover types are significant in influencing water flux in Buzi sub- 
catchments that they are significant and water balance changing with 
land use change. From our findings, we recommend that regular moni
toring of development of plantations is important at catchment level 
given their contribution to water dynamics vis-vis decreasing water 
availability die to climate change and competing uses. The insights from 
this study are imperative for catchment managers for related or similar 
catchments with plantations cover types in terms of understanding, and 

Fig. 10. Water balance calculation for Buzi catchment from water flux for 2009 
and 2017. 
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projecting impacts from land cover change on water resources for in
tegrated catchment management. 
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