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a b s t r a c t 

Several analytical models have been developed in this work to describe the evolution of 

fatalities arising from coronavirus COVID-19 worldwide. The Death or ‘D’ model is a simpli- 

fied version of the well-known SIR (susceptible-infected-recovered) compartment model, 

which allows for the transmission-dynamics equations to be solved analytically by assum- 

ing no recovery during the pandemic. By fitting to available data, the D-model provides 

a precise way to characterize the exponential and normal phases of the pandemic evolu- 

tion, and it can be extended to describe additional spatial-time effects such as the release 

of lockdown measures. More accurate calculations using the extended SIR or ESIR model, 

which includes recovery, and more sophisticated Monte Carlo grid simulations – also de- 

veloped in this work – predict similar trends and suggest a common pandemic evolution 

with universal parameters. The evolution of the COVID-19 pandemic in several countries 

shows the typical behavior in concord with our model trends, characterized by a rapid in- 

crease of death cases followed by a slow decline, typically asymmetric with respect to the 

pandemic peak. The fact that the D and ESIR models predict similar results – without and 

with recovery, respectively – indicates that COVID-19 is a highly contagious virus, but that 

most people become asymptomatic (D model) and eventually recover (ESIR model). 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Motivation 

The SIR (susceptible-infected-recovered) model is widely used as first-order approximation to viral spreading of conta- 

gious epidemics [1] , mass immunization planning [2,3] , marketing, informatics and social networks [4] . Its cornerstone is

the so-called “mass-action” principle introduced by Hamer, which assumes that the course of an epidemic depends on the 

rate of contact between susceptible and infected individuals [5] . This idea was extended to a continuous time framework by

Ross in his pioneering work on malaria transmission dynamics [6–8] , and finally put into its classic mathematical form by

Kermack and McKendric [9] . The SIR model was further developed by Kendall, who provided a spatial generalization of the

Kermack and McKendrick model in a closed population [10] (i.e. neglecting the effects of spatial migration), and Bartlett, 

who – after investigating the connection between the periodicity of measles epidemics and community size – predicted 
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a traveling wave of infection moving out from the initial source of infection [11,12] . More recent implementations have

considered the typical incubation period of the disease and the spatial migration of the population. 

The COVID-19 pandemic has ignited the submission of multiple manuscripts in the last weeks. Most statistical distri- 

butions used to estimate disease occurrence are of the binomial, Poisson, Gaussian, Fermi or exponential types. Despite 

their intrinsic differences, these distributions generally lead to similar results, assuming independence and homogeneity of 

disease risks [13] . 

In this work, we propose a simple and easy-to-use epidemiological model – the Death or D model [14] – that can be

compared with data in order to investigate the evolution of the infection and deviations from the predicted trends. The D

model is a simplified version of the SIR model with analytical solutions under the assumption of no recovery – at least

during the time of the pandemic. We apply it globally to countries where the infestation of the COVID-19 coronavirus has

widespread and caused thousands of deaths [15,16] . 

Additionally, D-model calculations are benchmarked with more sophisticated and reliable calculations using the extended 

SIR (ESIR) and Monte Carlo Planck (MCP) models – also developed in this work – which provide similar results, but allow 

for a more coherent spatial-time disentanglement of the various effects present during a pandemic. A similar ESIR model 

has recently been proposed by Squillante and collaborators for infected individuals as a function of time, based on the Ising

model – which describes ferromagnetism in statistical mechanics – and a Fermi-Dirac distribution [17] . This model also 

reproduces a posteriori the COVID-19 data for infestations in China as well as other pandemics such as Ebola, SARS, and

influenza A/H1N1. 

The SIR model considers the three possible states of the members of a closed population affected by a contagious disease.

It is, therefore, characterized by a system of three coupled non-linear ordinary differential equations [18] , which involve 

three time-dependent functions: 

• Susceptible individuals, S(t) , at risk of becoming infected by the disease. 
• Infected individuals, I(t) . 
• Recovered or removed individuals, R (t) , who were infected and may have developed an immunity system or die. 

The SIR model describes well a viral disease, where individuals typically go from the susceptible class Sto the infected 

class I, and finally to the removed class R . Recovered individuals cannot go back to be susceptible or infected classes, as it is,

potentially, the case of bacterial infection. The resulting transmission-dynamics system for a closed population is described 

by 

dS 

dt 
= −λSI, (1) 

dI 

dt 
= λSI − βI, (2) 

dR 

dt 
= βI, (3) 

N = S(t) + I(t) + R (t) , (4) 

where λ > 0 is the transmission or spreading rate, β > 0 is the removal rate and Nis the fixed population size, which im-

plies that the model neglects the effects of spatial migration. Currently, there is no vaccination available for COVID-19, and 

the only way to reduce the transmission or infection rate λ– which is often referred to as “flattening the curve”– is by

implementing strong social distancing and hygiene measures. 

The system is reduced to a first-order differential equation, which does not possess an explicit solution, but can be 

solved numerically. The SIR model can then be parametrized using actual infection data to solve I(t) , in order to investigate

the evolution of the disease. In the D model, we make the drastic assumption of no recovery in order to obtain an analytical

formula to describe – instead of infestations – the death evolution by COVID-19. This can be useful as a fast method to

foresee the global behavior as a first approach, before applying more sophisticated methods. We shall see that the resulting 

D model describes well enough the data of the current pandemics in different countries. 

2. The death or D model 

The main assumption of the D model is the absence of recovery from coronavirus, i.e. R (t) = 0 , at least during the pan-

demic time interval. This assumption may be reasonable if the spreading time of the pandemic is much faster than the

recovery time, i.e. λ � β . The SIR equations are then reduced to the single equation of the well-known SI model, 

dI 

dt 
= λ(N − I(t)) I(t) , (5) 

which represents the simplest mathematical form of all disease models, where the infection rate is proportional to both the 

infected, I, and susceptible individuals N − I. Eq. (5) is trivially solved by multiplying by dtand dividing by (N − I ) I , 

dI 

(N − I) I 
= λdt, (6) 
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Fig. 1. Fits to total (left panel) and daily (right panel) deaths by COVID-19 in China using the D (t) and D ′ (t), respectively. The dashed curve shows a fit to 

the daily deaths using the parameters determined to fit the total deaths (top of left panel), which provides similar results to an independent fit (parameters 

on the top right), given the statistical fluctuations in the daily rates. Data are taken from [19] . 

 

 

 

 

 

 

 

 

 

 

 

where we have defined the constants 

b = 

1 

λN 

, C = 

I 0 
N 

. (7) 

The parameter bis the characteristic evolution time of the initial exponential increase of the pandemic. The constant Cis the 

initial infestation rate with respect to the total population N. Assuming C � 1 , 

I(t) = 

I 0 e 
(t−t 0 ) /b 

1 + C e (t−t 0 ) /b 
. (8) 

In order to predict the number of deaths in the D model we assume that the number of deaths at some time tis propor-

tional to the infestation at some former time τ, that is, 

D (t) = μI(t − τ ) , (9) 

where μis the death rate, and τ is the death time. With this assumption we can finally write the D-model equation as 

D (t) = 

a e (t−t 0 ) /b 

1 + c e (t−t 0 ) /b 
, (10) 

where a = μI 0 e 
−τ/b ,c = C e −τ/b , and a/cyields the total number of deaths predicted by the model. This is the final equation

for the D-model, which presents a similar shape to the well-known Woods–Saxon potential for the nucleons inside the 

atomic nucleus or the bacterial growth curve. The rest of the parameters, μ,τ,I 0 and Nare embedded in the parameters

a, b, c, which represent space-time averages and can be fitted to the timely available data. Consequently, the D-function 

passes into a well-known logistic model, which is described by the Riccati equation, but with different constants (e.g. see 

Ref. [20] and references therein). 

In Fig. 1 , we present the fit of the D-model to the COVID-19 death data for China, where its evolution has apparently

been controlled and the D function has reached the plateau zone, with few increments over time, or fluctuations that are

beyond the model assumptions. This plot shows the duration of the pandemic – about two months to reach the top end

of the curve – and the agreement, despite the crude assumptions, between data and the evolution trend described by the 

D-model. This agreement encourages the application of the D model to other countries in order to investigate the different 

trends. 

2.1. Evolution of D-model parameters 

In order to get insight into the stability and uncertainty of our predictions, Fig. 2 shows the evolution of a,b, and cand

other model predictions from fits to the daily data in Spain. The meaning of these quantities is explained below: 

• The parameter a is the theoretical number of deaths at the day corresponding to t = 0 . In general, it differs from the

experimental value and can be interpreted as the expected value of deaths that day. Note that experimental data may be

subject to unknown systematic errors and different counting methods. 
• The parameter b, as mentioned above, is the characteristic evolution time. During the initial exponential behavior, it 

indicates the number of days for the number of deaths to double. Moreover, 1 /bis proportional to the slope of the

almost linear behavior in the mid region of the D function. That behavior can be obtained by doing a Taylor expansion

around t 0 = −b �n cand is given by 

D (t) � 

1 

(
1 − 1 

�n c 

)
+ 

t 
. (11) 
c 2 2 bc 
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Fig. 2. Evolution of a, b and c parameters and various predictions of the D-model as a function of time (days). 

 

 

 

 

 

 

 

• The parameter cis called the inverse dead factor because D (t → ∞ ) = a/cprovides the asymptotic or expected total num-

ber of deaths. 
• The times T 95 and T 99 correspond to D = 0 . 95 D (∞ ) and D = 0 . 99 D (∞ ) , respectively. These times are obtained by solving the

equation D (t) = γ a/c, where γ = 0 . 95 or 0.99. The solution of that equation is 

t = b �n 

(
1 

c 

γ

1 − γ

)
. (12) 

Fig. 2 shows the stable trend of the parameters between days 19 and 24 (corresponding to March 27–30), right before

reaching the peak of deaths cases, which occurred in Spain around April 1. Such stability validates the D-model predictions 

during this time. However, a rapid change of the parameters is observed, especially for a, once the peak is reached, drastically

changing the prediction of the number of deaths given by a/c. This sudden change results in the slowing down of deaths

per day and longer time predictions T 95 and T 99 . 

The parameters of the D model correspond to average values over time of the interaction coefficients between individuals, 

i.e. they are sensitive to an additional external effect on the pandemic evolution. These may include the lockdown effect 

imposed in Spain in March 14 and other effects such as new sources of infection or a sudden increase of the total susceptible

individuals due to social migration and large mass gatherings [21] . It is not possible to identify a specific cause because its

effects are blurred by the stochastic evolution of the pandemic, which is why any reliable forecast presents large errors. 

2.2. The D 

′ model 

One can also determine deaths/day rates by applying the first derivative to Eq. (10 ), 

D 

′ (t) = 

a e (t−t 0 ) /b 

b(1 + c e (t−t 0 ) /b ) 2 
, (13) 
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Fig. 3. Predictions of the D model for D ′ (t) in Spain according with the data collected up to April 5. 

Fig. 4. Comparison of parameters fitted to D (t) and D ′ (t) in Spain according with the data on April 5. 

 

 

 

 

 

 

 

 

 

 

 

which allows for a determination of the pandemics peak and evolution after its turning point. The D model describes well

the cumulative deaths because the sum of discrete data reduce the fluctuations, in the same way as the integral of a discon-

tinuous function is a continuous function. However, the daily data required for D 

′ have large fluctuations – both statistical 

and systematic – which normally gives a slightly different set of parameters when compared with the D model. 

Using the D model fitted to cumulative deaths allows to compute deaths/day as 

D (t) − D (t − �t) � D 

′ (t )�t , (14) 

where �t = 1 day. Fig. 3 shows that Eqs. (13) and (14) yield similar parameters, as the time increment is small enough

compared with the time evolution of the D (t) function. Hence, the first derivative D 

′ (t) can be used to describe deaths per

day. In addition, Fig. 4 shows that the parameters may be different for both D and D 

′ functions using cumulative and daily

deaths, respectively, as shown for Spain on April 5. It is also important to note that bis directly proportional to the full width

at half maximum ( F W HM) of the D 

′ (t) distribution, 

F W HM = 2 b �n (3 + 2 

√ 

2 ) ≈ 3 . 5 b. (15) 

As shown below, the bparameter presents typical values between 4 and 10 for most countries undergoing the initial ex- 

ponential phase, which yields a minimum and maximum time of 14 and 35 days, respectively, between the two extreme 

values of the F W HM. 

2.3. D n model with two or more channels of infection 

Some models [22] include changes in the transmission rate due to various interventions implemented to contain the 

outbreak. The simple D model does not allow to do this explicitly, but changes in the spread can be taken into account

by considering the total D or D n function as the sum of two or more independent D-functions with different parameters,

which may reveal the existence of several independent sources, or virus channels. An example is shown in Fig. 5 , where the

two-channel function 

D 

′ 
2 = D 

′ (a, b, c) + D 

′ (a 2 , b 2 , c 2 ) , (16) 

has been fitted with six parameters to the Spanish data up to April 13. The fit reveals a second, smaller death peak, which

substantially increase the number of deaths per day and the duration of the pandemic. This is equivalent to add a second,
999 
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Fig. 5. Predictions of the D ′ 2 model in Spain using a sum of two D ′ -functions for data collected up to April 13. 

Fig. 6. Predictions of the D 2 model in Spain using a sum of two D-functions for data collected up to April 13. 

 

 

 

 

 

 

 

independent, source of infection several weeks after the initial pandemic. The second peak may as well represent a second 

pandemic phase driving the effects of quarantine during the descendant part of the curve. 

Additionally, the cumulative D-function can also be computed with a two-channel function, 

D 2 = D (a, b, c) + D (a 2 , b 2 , c 2 ) , (17) 

which provides, as shown in Fig. 6 , a more accurate prediction for the total number of deaths and clearly illustrates the

separate effect of both source peaks. It is interesting to note that for large t,a ≈ a 2 ,c ≈ c 2 and b 2 ≈ 2 b. In such a case, the

total number of deaths expected during the pandemic is given by D 2 (∞ ) = 2 a/c. 

2.4. Estimation of the infected function I(t) 

The D-model can also be used to estimate I(t) using the initial values of I 0 = I(0) and the total number of susceptible

people N = S(0) . The initial value of Nis unknown, and not necessarily equal to the population of the whole country since

the pandemic started in localized areas. Here, we shall assume N = 10 6 , although plausible values of Ncan be tens of millions.

Note that the no-recovery assumption of the D model is unrealistic, and this calculation only provides an estimation of the

number of individuals that were infected at some time, independently of whether they recovered or not. 

From the definition of D (t) in Eq. (9) , the following relations between the several parameters of the model were extracted

a = μI 0 e 
−τ/b , (18) 

c = 

I 0 
N 

e −τ/b , (19) 

b = 

1 

λN 

. (20) 

Solving the first two equations for μand I 0 we obtain 

I 0 = Nc e τ/b , (21) 

μ = 

a 
. (22) 
Nc 

10 0 0 



J. Enrique Amaro, J. Dudouet and J. Nicolás Orce Applied Mathematical Modelling 90 (2021) 995–1008 

Fig. 7. Predictions of the D model for the infected function I(t) in Spain according to data collected up to April 6. 

Fig. 8. (Top panel) Results for D (t) /I(t) (deaths over infected) and (bottom panel) I(t) /N (infected over susceptible) according to the D-model. Results are 

for data collected in Spain up to April 6, assuming N = 10 6 . 

 

 

 

 

 

 

Hence, μcan be computed by knowing N. However, to obtain I 0 one needs to know the death time τ . This has been estimated

to be about 15–20 days for COVID-19 cases, which can be used to compute two estimates of I(t) . These are given in Fig. 7

for the case of Spain. 

Since there is no recovery in the D model, the total number of infected people is I ∼ Nfor large t, i.e. N = 10 6 in our

case. In Fig. 7 , we have labeled the beginning of the lockdown in Spain (March 15). For τ = 15 days, most of the susceptible

individuals were already infected on that date, and even more for τ = 20 days, as the pandemic had started almost two

months earlier. Most of the individuals got infected, even if a great part of them – approximately 99% – had no symptoms

of illness or disease. 

Moreover, the top panel of Fig. 8 shows the ratio D (t) /I(t) (deaths over infected), as given by Eqs. (8) and (10) , 

D (t) 

I(t) 
= 

a 

Nc e τ/b 

1 + c e (t+ τ ) /b 

1 + c e τ/b 
, (23) 
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which also depends on Nand τ . For N = 10 6 , the ratio D/Iincreases similarly to the separate functions D and Ibetween the

initial and final values, 

D (0) 

I(0) 
= 

a 

Nc e τ/b 
, (24) 

D (∞ ) 

I(∞ ) 
= 

a 

Nc 
. (25) 

These results depend on the total susceptible population N. However, the ratio of infected with respect to susceptibles, 

I/N, is independent on N. This function depends only on τand is shown in the bottom panel of Fig. 8 for τ = 15 and 20 days,

which reveals the rapid spread of the pandemic. Accordingly, between 10% and 30% of the susceptibles were infected in 

March 7, and one month later (April 6), when the fit was made, all susceptibles had been infected. This does not means

that the full population of the country got infected, since the number Nis unknown and, for instance, excludes individuals 

in isolated regions, and it may additionally change because of spatial migration, not considered in the model. 

3. The extended SIR model 

D-model predictions can be compared with more realistic results given by the complete SIR model [9,11] , which is char-

acterized by Eqs. (1) , (2) , (3) and (4) with initial conditions R (0) = 0 ,I(0) = I 0 ,S(0) = N − I 0 . The SIR system of dynamical

equations can be reduced to a non-linear differential equation. First, dividing Eq. (1) by Eq. (3) one obtains, 

dS 

dR 

= − λ

β
S, (26) 

which yields the following exponential relation between the susceptible and the removed functions, 

S = S 0 e 
−λR/β . (27) 

Moreover, Eq. (4) provides a relation between the infected and the removed functions, 

I = N − S − R = N − S 0 e 
−λR/β − R, (28) 

which yields, by inserting into Eq. (3) , the final SIR differential equation 

dR 

dt 
= β

(
N − S 0 e 

−λR/β − R 

)
. (29) 

In order to obtain R (t) we only need to solve this first-order differential equation with the initial condition R (0) = 0 .

Moreover, if we normalize the functions S,Iand R to 1, 

S = sN, (30) 

I = iN, (31) 

R = rN, (32) 

so that s + i + r = 1 , then r(t) verifies 

dr 

dt 
= β

(
1 − s 0 e 

−λNr/β − r 
)
, (33) 

which can be solved numerically, or by approximate methods in some cases. In Ref. [9] , a solution was found for small

values of the exponent λNr/β . For the coronavirus pandemic, however, this number is expected to increase and be close to

one at the pandemic end. 

At this point, we propose a modification of the standard SIR model. Instead of solving Eq. (33) numerically and fitting

the parameters to data, the solution can be parametrized as 

r(t) = 

a 

c + e −t/b 
, (34) 

which presents the same functional form as the D-model and, conveniently, provides a faster way to fit the model param-

eters by avoiding the numerical problem of solving Eq. (33) . In fact, numerical solutions of the SIR model present a similar

step function for R (t) . Additionally, one can assume that D (t) is proportional to R (t) , and can also be written as 

dD 

dt 
= a 2 

(
1 − c 2 e 

−r/b 2 − r(t) 
)
, (35) 

where a 2 ,c 2 = s 0 and b 2 = β/ (λN) are unknown parameters to be fitted to deaths-per-day data, together with the three pa-

rameters of the r(t) -function: a,b,c. 
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Fig. 9. Fit of the ESIR model to daily deaths in Spain up to April 15 using no boundary condition for the final number of deaths (left panel), and with 

boundary conditions of D ′ (100) = 10 (middle panel) and D ′ (100) = 5 (right panel) deaths/day. 

Fig. 10. Fit to the data (average of 7 consecutive days up to May 8) of the ESIR and D ′ 2 models in the United Kingdom (left) and France (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 shows fits of the ESIR model to daily deaths in Spain during the coronavirus spread. The use of no boundary

condition for the number of deaths (left panel) is not an exact solution of the SIR differential equation. A way to solve this

problem is to impose the condition D 

′ (∞ ) = 0 , as the number of deaths must stop at some time. Numerically, it is enough

to choose a small value of D 

′ (t) for an arbitrary large t . The middle and right panels of Fig. 9 show different boundary

conditions of D 

′ (100) = 10 and D 

′ (100) = 5 , respectively, which yield the same results and the expected behavior for a viral

disease spreading and declining. It is also consistently observed (e.g. see middle and right panels of Fig. 9 ), that at large

t ,r(t ) → 

a 
c ≈ 1 , which essentially means that most of the susceptible population Nrecovers, as we previously inferred from

the D model. As shown in Fig. 10 , the ESIR model, where c 2 has been adjusted to 1, is characterized by a broad plateau

structure which, again, does not consider additional spatial-time effects. 

As previously done with the D model, one can also expand the ESIR model to accommodate its failure to take additional

spatial-time effects into account. Similarly, the ESIR2 model is proposed as, 

ESIR2 (t) = a 2 
(
1 − c 2 e 

−r/b 2 − r(t) 
)
, (36) 

with 

r(t) = 

a 

c + e −t/b 
+ 

a ′ 
c ′ + e −t/b ′ 

= 

a 

2 a + e −t/b 
+ 

a 

2 a + e −t/b ′ , (37) 

where we have assumed that a = a ′ and c = 2 a to accommodate that r(∞ ) → 1 and c 2 = 1 . Hence, we are left with five free

parameters. 

Fig. 11 shows the comparison between the ESIR2 and D 

′ 
2 
fits to real data for some European countries where COVID-

19 has widely spread: Germany, Italy, France, Spain, United Kingdom, Sweden, Belgium and Netherlands, which indicate a 

common pattern for the evolution of the COVID-19 pandemic. Death data are taken from Refs. [19,23,24] and consider 7-day

average smoothing to correct for anomalies in data collection such as the typical weekend staggering observed in various 

countries, where weekend data are counted at the beginning of the next week. Real error intervals are extracted from the

correlation matrix. As discussed in Section 2.3 , the reduced D 

′ 
2 
model has been used with a = a 2 and c = c 2 . Although arising

from different assumptions – no recovery (D-model) and recovery (ESIR model) – both models provide similar patterns 

following the data trends, with slightly better values of χ2 per degree of freedom for the ESIR2 model. It is also interesting to

note that the reduced ESIR2 model with five parameters yields similar results to the full ESIR2 model, with eight parameters.
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Fig. 11. Reduced ESIR2 and D ′ 2 model fits to deaths-per-day data up to August 9. 

 

 

 

 

 

As data become available, daily predictions vary for both ESIR2 and the D 

′ 
2 models. This is because the model parameters

are actually statistical averages over space-time of the properties of the complex system. No model is able to predict changes

over time of these properties if the physical causes of these changes are not included. The values of the model parameters

are only well defined when the disease spread is coming to an end and time changes in the parameters have little influence.

Contrarily, Fig. 12 shows clear discrepancies between D 

′ 
2 
and ESIR2 fits to data with larger χ2 / ndf values. There are several

reasons for these anomalies: (1) a second wave surges as lockdown measures are suddenly released, as clearly shown in 
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Fig. 12. Discrepancies between the reduced D ′ 2 and ESIR2 models and deaths-per-day data. 

 

 

 

 

 

 

 

the case of Iran, (2) different spatial-time effects as the virus spreads throughout a large country, or, generally, (3) simply

because of defective counting (e.g. weekend and backlog effects). 

4. Discussion of global results 

More sophisticated calculations can be compared with D 

′ 
2 
and ESIR2 predictions. In particular, Monte Carlo (MC) simula- 

tions have also been performed in this work for the Spanish case [25] , which consist of a lattice of cells that can be in four

different states: susceptible, infected, recovered or death. An infected cell can transmit the disease to any other susceptible 

cell within some random range R . The transmission mechanism follows principles of nuclear physics for the interaction of 

a particle with a target. Each infected particle interacts a number n of times over the interaction region, according to its

energy. The number of interactions is proportional to the interaction cross section σand to the target surface density ρ . 

The discrete energy follows a Planck distribution law depending on the ‘temperature’ of the system. For any interaction, an 

infection probability is applied. Finally, time-dependent recovery and death probabilities are also applied. The resulting virus 

spread for different sets of parameters can be adjusted from COVID-19 pandemic data. In addition, parameters can be made 

time dependent in order to investigate, for instance, the effect of an early lockdown or large mass gatherings at the rise of

the pandemic. 

As shown in Fig. 13 , our MC simulations present similar results to the D 

′ 
2 model, which validates the use of the simple

D-model as a first-order approximation. More details on the MC simulation will be presented in a separate manuscript [25] .

Interestingly, MC simulations follow the data trend up to May 11 without any changes in the parameters for nearly two
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Fig. 13. Predictions of the MC and D models in Spain up to May 11. 

Fig. 14. Universality of the normalized D (left), D ′ (middle) and ESIR2 (right) models. 

 

 

 

 

 

 

 

 

weeks. An app for Android devices, where the Monte Carlo Planck model has been implemented to visualize the simulation 

is available from Ref. [26] . 

In order to investigate the universality of the pandemic, it is interesting to compare all countries by plotting the D model

in terms of the variable (t − t 0 ) /b, where t 0 is the maximum of the daily curve given by t max = −b �n (c) . By shifting Eq. (10) by

t max = −b �n (c) and dividing by t max = a/c, the normalized D function is given by, 

D norm 

(t) = 

c e (t−t max ) /b 

1 + c e (t−t max ) /b 
. (38) 

The left of Fig. 14 shows similar trends for the normalized D curves of different countries, which suggests a universal

behavior of the COVID-19 pandemic. Only Iran seems to slightly deviate from the global trend, which may indicate an early 

and more effective initial lockdown. A similar approach can be done for the daily data using the D 

′ and ESIR2 models, as

shown in the middle and right panels of Fig. 14 , respectively. Although different countries show similar trends, statistical

fluctuations in the daily data do not result in a nice universal behavior as compared with D norm 

. However, the D 

′ and ESIR2

plots show that an effective lockdown is characterized by flatter and broader peaks, best characterized the Iranian case, 

whereas Spain and Germany present the sharper peaks. 

5. Final remarks 

The global models considered in this work present some differences with respect to other existing models. First, in this 

work we have tried to keep the models as simple as possible. This allows to use theoretical-inspired analytical expressions 

or semi-empirical formulae to perform the data analysis. The use of semi-empirical expressions for describing physical phe- 

nomena is recurrent in physics. One of the most famous is the semi-empirical mass formula from nuclear physics. Of course

the free parameters need to be fitted from known data, but this allowed to obtain predictions for unknown elements. 

In our case we were inspired by the well known statistical SIR-kind models slightly modified to obtain analytical expres- 

sions that carry the leading time dependence. 

We have found that the D and D 2 models allow a fast and efficient analysis of the pandemics in the initial and advanced

stages. Our results show that the time dependence of the pandemic parameters due to the lockdown can be effectively 

simulated by the sum of two D-functions with different widths and heights and centered at different times. The distance 

between the maxima of the two D-functions should be a measure of the time between the effective pandemic beginning 

and lockdown. 
1006 



J. Enrique Amaro, J. Dudouet and J. Nicolás Orce Applied Mathematical Modelling 90 (2021) 995–1008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the Spanish case this is about 20 days. Taking into account that lockdown started in March 14, this marks the pan-

demic starting time as about February 22. Had the lockdown started on that date, the deaths would had been highly re-

duced. The smooth blending between the two peaks provides a transition between the two statistical regimes (or physical 

phases) with and without lockdown. 

The Monte Carlo simulation results are in agreement with our previous analysis with the D and D 2 models. The Monte

Carlo generates events in a population of individuals in a lattice or grid of cells. We simulate the movement of individ-

uals outside of the cells and interactions with the susceptible individuals within a finite range. The randon events follow 

statistical distributions based on the exponential laws of statistical mechanics for a system of interacting particles, driven 

by macroscopic magnitudes as the temperature, and interaction probabilities between individuals, that can be related to 

interaction cross sections. 

The Monte Carlo simulation spread the virus in space-time, and allows also space-time dependence on the parameters. 

In this work we have made the simplest assumptions, only allowing for a lockdown effect by reducing the range of the in-

teraction starting on a fixed day. This simple modification allowed to reproduce nicely the Spanish death-per-day curve. The 

lockdown produces a relatively long broadening of the curve and a slow decay. Similar MC calculations can be performed in

several countries to infer the devastating effect of a late lockdown as compared with early lockdown measures. The later is

the case of South Africa and other countries, which have not reached the exponential growth. 

The Death (D) and extended SIR (ESIR) models are simple enough to provide fast estimations of pandemic evolution 

by fitting spatial-time average parameters, and present a good first-order approximation to understand secondary effects 

during the pandemic, such as lockdown and population migrations, which may help to control the disease. Similar models 

are available [17,27] , but challenges in epidemiological modeling remain [28–31] . This is a very complex system, which

involves many degrees of freedom and millions of people, and even assuming consistent disease reporting - which is rarely 

the case – there remains an important open question: Can any model predict the evolution of an epidemic from partial 

data? Or similarly, Is it possible, at any given time and data, to measure the validity of an epidemic growth curve? We

finally hope that we have added new insightful ideas with the Death, the extended SIR and Monte Carlo models, which can

now be applied to any country which has followed the initial exponential pandemic growth. 

It is important to note that the ESIR and D models predict similar patterns of infected and death cases assuming very

different premises: recovery and no recovery, respectively. This, together with the fact that the ESIR model predicts that 

r → 1 for large t, i.e. that most infected cases eventually recover, leads to the logical conclusion that most people in a

fixed population N become asymptomatic in the D model and eventually recover from COVID-19. One remaining important 

question is what is N exactly; is it the whole country, a state or a province, or is it localized to specific areas? 
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