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ABSTRACT
We derive constraints on the thermal and ionization states of the intergalactic medium (IGM) at redshift ≈ 9.1 using new upper
limits on the 21-cm power spectrum measured by the LOFAR radio telescope and a prior on the ionized fraction at that redshift
estimated from recent cosmic microwave background (CMB) observations. We have used results from the reionization simulation
code GRIZZLY and a Bayesian inference framework to constrain the parameters which describe the physical state of the IGM.
We find that, if the gas heating remains negligible, an IGM with ionized fraction �0.13 and a distribution of the ionized regions
with a characteristic size � 8 h−1 comoving megaparsec (Mpc) and a full width at half-maximum (FWHM) �16 h−1 Mpc is
ruled out. For an IGM with a uniform spin temperature TS � 3 K, no constraints on the ionized component can be computed. If
the large-scale fluctuations of the signal are driven by spin temperature fluctuations, an IGM with a volume fraction �0.34 of
heated regions with a temperature larger than CMB, average gas temperature 7–160 K, and a distribution of the heated regions
with characteristic size 3.5–70 h−1 Mpc and FWHM of �110 h−1 Mpc is ruled out. These constraints are within the 95 per cent
credible intervals. With more stringent future upper limits from LOFAR at multiple redshifts, the constraints will become tighter
and will exclude an increasingly large region of the parameter space.

Key words: radiative transfer – galaxies: formation – intergalactic medium – cosmology: theory – dark ages, reionization, first
stars – X-rays: galaxies.

1 IN T RO D U C T I O N

The Epoch of Reionization (EoR) is one of the least understood
chapters in the history of our Universe. The formation of the first
luminous sources initiated the transition of the cold and neutral
intergalactic medium (IGM) into a hot and ionized state. This
transition had a significant impact on the later stages of structure
formation through various feedback mechanisms (see e.g. Ciardi &
Ferrara 2005 for a review). Although we know that reionization took
place, very few facts about it are known with certainty (see e.g.
Morales & Wyithe 2010; Pritchard & Loeb 2012; Zaroubi 2013;
Barkana 2016, for reviews).

Theoretical models suggest that ionizing ultraviolet (UV) photons
from the first sources created localized ionized regions, which over
time grew in size, started to overlap and, as an increasing number
of sources formed, led to a complete reionization of the IGM.
Observations of high-redshift (z � 6) quasar absorption spectra
suggest that complete reionization was reached around redshift ≈6
(e.g. Fan et al. 2006; Mortlock et al. 2011; Venemans et al. 2015;

� E-mail: ghara.raghunath@gmail.com (RG); sambit.giri@gmail.com (SKG)

Bañados et al. 2018). On the other hand, the measurement of the
Thomson optical depth from the observation of cosmic microwave
background (CMB) (Planck Collaboration VI 2018) suggests that
the probable period of this event lies at redshift �10 (Choudhury &
Ferrara 2006; Mitra, Choudhury & Ferrara 2011, 2012). However,
the details of the reionization process such as the exact timing of
the EoR, the morphology of the H I distribution in the IGM, and the
properties of early sources are still poorly known.

The redshifted 21-cm signal from neutral hydrogen in the IGM
is the most promising probe of the EoR, as it has the ability to
reveal many of the unknown facts about this epoch. Inspired by
its potential, several radio telescopes such as the Low Frequency
Array (LOFAR)1 (van Haarlem et al. 2013; Patil et al. 2017), the
Precision Array for Probing the Epoch of Reionization (PAPER)2

(Parsons et al. 2014; Kolopanis et al. 2019), the Murchison Widefield
Array (MWA)3 (Bowman et al. 2013; Barry et al. 2019), and the

1http://www.lofar.org/
2http://eor.berkeley.edu/
3http://www.mwatelescope.org/
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Hydrogen Epoch of Reionization Array (HERA)4 (DeBoer et al.
2017) have invested considerable amounts of observing time to detect
this signal. Due to their limited sensitivity, these radio interferometers
aim to measure the statistical fluctuations of the signal. The planned
Square Kilometre Array (SKA)5 will in addition be able to produce
actual tomographic images of the distribution of the signal on the
sky (Mellema et al. 2015; Ghara et al. 2017). Beside these large
radio interferometers, single antenna experiments such as EDGES
(Bowman & Rogers 2010), EDGES2 (Monsalve et al. 2017; Bowman
et al. 2018), SARAS (Patra et al. 2015), SARAS2 (Singh et al. 2017),
BigHorns (Sokolowski et al. 2015), SciHi (Voytek et al. 2014), and
LEDA (Price et al. 2018) are being used to attempt a detection of the
sky-averaged 21-cm signal and its evolution with redshift.

In spite of all these efforts, so far no undisputed detection of
the 21-cm signal from the EoR has been made. The main reason
for this is that the signal is several orders of magnitude weaker
than the Galactic and extragalactic foregrounds at these frequencies
(see e.g. Shaver et al. 1999; Jelić et al. 2008). Moreover, the signal
low amplitude implies long integration times are required to exceed
the instrumental noise. Although there exist accurate methods to
subtract (Harker et al. 2009; Chapman et al. 2013, 2016; Bonaldi &
Brown 2015; Mertens, Ghosh & Koopmans 2018), suppress (Datta,
Bharadwaj & Choudhury 2007; Majumdar, Bharadwaj & Choudhury
2012; Ghara, Choudhury & Datta 2016), or avoid (Datta, Bowman &
Carilli 2010; Liu, Parsons & Trott 2014) the foregrounds, these only
work if the sky signal has been measured with high fidelity over
the time of observation. This then requires exquisite calibration of
the system as any leftover artefacts from strong sources will make a
measurement impossible (Barry et al. 2016; Patil et al. 2017). This
implies calibrating the many hardware components of the telescope
(see e.g. Kern et al. 2019) while a further complication is added by
the presence of the temporally and spatially varying ionosphere (see
e.g. Mevius et al. 2016).

Recently, Bowman et al. (2018) have claimed a detection of
the sky-averaged 21-cm signal at z ≈ 17 in observations with the
EDGES2 low-band antenna. These results are debated (e.g. Draine &
Miralda-Escudé 2018; Hills et al. 2018; Bradley et al. 2019; Singh &
Subrahmanyan 2019), but if true would challenge our theoretical
understanding of the early universe as explanations for its strength
require either a previously unknown cooling mechanism (see e.g.
Tashiro, Kadota & Silk 2014; Barkana 2018; Fialkov, Barkana &
Cohen 2018; Muñoz & Loeb 2018) or a radio background other than
the CMB (Feng & Holder 2018; Fialkov & Barkana 2019).

Other attempts have to date only provided upper limits on the
expected signal. While global signal experiments probe the average
brightness temperature, experiments with radio interferometers con-
strain the power spectrum of the expected 21-cm signal. Observations
with the GMRT (Paciga et al. 2013) provided the very first upper
limit, which was a 2σ value of (248)2 mK2 for k = 0.50 h Mpc−1 at
z = 8.6. Later PAPER and MWA produced additional upper limits
(Parsons et al. 2014; Ali et al. 2015; Barry et al. 2019). Note that
the PAPER collaboration initially reported a strong upper bound
(Beardsley et al. 2016) that was later revised to a weaker upper
bound (Cheng et al. 2018; Kolopanis et al. 2019). The first LOFAR
upper limit on the power spectrum of the signal obtained from one
night observation was (79.6)2 mK2 at k = 0.053 h Mpc−1 and a
redshift between 9.6 and 10.6 (Patil et al. 2017). Recently, upper
limits were provided for even higher redshifts. Gehlot et al. (2019)

4https://reionization.org/
5http://www.skatelescope.org/

placed upper limits on the power spectrum in the redshift range z =
19.8–25.2 using observations with the LOFAR-Low Band Antenna
array and Eastwood et al. (2019) placed upper limits at z ≈ 18.4
using observations with the Owens Valley Radio Observatory Long
Wavelength Array (OVRO-LWA).6

Mertens et al. (2020) have provided the second LOFAR upper
limit on the 21-cm power spectrum at redshift ≈9.1 using 10
nights of observations. At k = 0.1 h Mpc−1, the 2σ upper limit is
(106.65)2 mK2, a factor of ≈8 improvement at the same k-scale over
the value obtained from one night of observations (Patil et al. 2017)
and the best upper limit so far on the large-scale power spectrum at
redshift ≈9. The results give upper limits for a range of k values but
only at one redshift, z ≈ 9.1. In this paper, we explore scenarios for
the EoR that can be ruled out by these new upper limits. As they are
about an order of magnitude higher than the most popular theoretical
predictions, we can expect that only extreme models will be ruled
out. Similar analyses were performed by Pober et al. (2015) and
Greig, Mesinger & Pober (2016) for the earlier upper limits from
PAPER, which were reported in Ali et al. (2015).

Extracting astrophysical and cosmological information from 21-
cm observations is not straightforward as, in addition to the cosmo-
logical dependence, the characteristics of the expected signal depend
crucially on specific properties of the early sources and their redshift
evolution. While UV photons from such sources are mostly absorbed
during ionization of H I in surrounding regions, X-ray photons, due to
their longer mean free path (MFP), penetrate further into the neutral
gas and increase its temperature (see e.g. Madau, Meiksin & Rees
1997; Zaroubi & Silk 2005; Zaroubi et al. 2007). At the same time,
Ly α photons from the same sources determine the coupling strength
of the H I spin temperature with the gas temperature. In view of
this complexity, an exploration of many theoretical models of the
expected 21-cm signal is necessary to interpret the results from radio
observations. Such signal prediction algorithms are often combined
with a Bayesian inference framework, such as the Markov chain
Monte Carlo (MCMC), to explore and constrain the reionization
parameters (e.g. Greig & Mesinger 2015; Greig & Mesinger 2017;
Cohen et al. 2019; Park et al. 2019). This is the approach we will
use here, relying on the GRIZZLY code (Ghara, Choudhury & Datta
2015a; Ghara et al. 2018) to generate the reionization scenarios and
models for the 21-cm signal.

Since the codes that are used to generate the 21-cm signal use
source parameters as input, the results from such Bayesian inference
frameworks typically constrain these source parameters. However, it
should be realized that the 21-cm observations themselves charac-
terize the state of the IGM and do not contain any direct information
about the source properties. It is perfectly possible that many different
source models lead to the same 21-cm signal, especially if one
only has information from a single redshift, as is the case for the
latest LOFAR upper limits. As explained in more detail below,
we will therefore have a strong focus on IGM parameters such
as the average ionized fraction, average spin temperature, volume
fraction of ‘heated region’ (i.e. partially ionized regions with gas
temperature larger than the CMB temperature) and size distributions
of ionized and heated regions. We give much less weight to the source
parameters, which however are still needed by the models to generate
the 21-cm signals.

Our paper is structured as follows. In Section 2, we describe
the basic methodology to prepare the Bayesian framework used to
interpret the observations. We present our results in Section 3 and

6http://www.tauceti.caltech.edu/LWA/
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discuss them from the point of view of other observations in Section 4,
before concluding in Section 5. The cosmological parameters as
used in this study are �m = 0.27, �� = 0.73, �B = 0.044, h =
0.7, consistent with the Wilkinson Microwave Anisotropy Probe
(WMAP) results (Hinshaw et al. 2013). These are the same as used in
the N-body simulation used in this paper. Within the error bars, these
are consistent with Planck 2015 results (Planck Collaboration XIII
2016) that are used in Mertens et al. (2020). Note that all distances
and scales used in this study are in comoving coordinates.

2 ME T H O D O L O G Y

Here, we introduce the approach employed to generate the 21-cm
signal and compare it with the observational upper limit.

2.1 Cosmological simulations

We use the GRIZZLY code (Ghara et al. 2015a, 2018) to generate
brightness temperature maps at redshift ≈9.1. This algorithm re-
quires cosmological density fields and halo catalogues as input. These
are retrieved from results of the PRACE7 project PRACE4LOFAR,
which was run specifically for the purpose of providing several
cosmological simulations for the interpretation of LOFAR data. Here,
we use the largest volume, of length 500 h−1 comoving megaparsec
(Mpc) (see e.g. Giri et al. 2019a, b). This corresponds to a field of
view of 4.27◦ × 4.27◦ at redshift ≈ 9.1 which is comparable to the
LOFAR primary beam of ≈4◦. The cosmological N-body simulation
was run using CUBEP3M (Harnois-Déraps et al. 2013) with 69123

particles and a mass resolution of 4.05 × 107 M�. Haloes were
identified on the fly with a spherical overdensity halo finder (Watson
et al. 2013), and only those with masses 109 M� and higher, i.e.
resolved with at least ≈25 particles, were used. More details on the
PRACE4LOFAR simulations can be found in Dixon et al. (2016).

The GRIZZLY simulations are run on gridded versions of the density
fields from which the haloes have been removed as they are not
part of the IGM and their effect is captured by the assumptions of
the source model through the photon escape fraction. We use 3003

grids for the results in this paper. The smallest k-scale that can be
probed with this resolution is ≈ 1.9 h Mpc−1 (corresponding to scale
≈ 3.3 h−1 Mpc). The smallest scale probed in Mertens et al. (2020),
which is ≈ 0.4 h Mpc−1 (corresponding to scale ≈ 15 h−1 Mpc),
remains within the Nyquist limit of our simulation and free from the
aliasing effect (Mao et al. 2012).

2.2 Modelling the 21-cm signal using GRIZZLY

The differential brightness temperature, δTb, of the 21-cm signal can
be expressed as (see e.g. Madau et al. 1997; Furlanetto, Oh & Briggs
2006b)

δTb(x, z) = 27 xH I(x, z)[1 + δB(x, z)]

(
�Bh2

0.023

)

×
(

0.15

�mh2

1 + z

10

)1/2 (
1 − Tγ

TS(x, z)

)
mK, (1)

where the quantities xH I, δB, and Tγ (z) = 2.73 (1 + z) K
denote the neutral hydrogen fraction, baryonic density contrast,
and the CMB temperature, respectively, each at position x and
redshift z. TS represents the spin temperature of hydrogen in the
IGM. In this paper, we will consider the dimensionless power

7Partnership for Advanced Computing in Europe: http://www.prace-ri.eu/.

Table 1. The 	2
21 upper limits at 1σ level at redshift

≈9.1 from LOFAR observations for different k-bins
(Mertens et al. 2020).

k (h Mpc−1) 	2
21(k) (mK2) 	2

21,err (mK2)

0.075 (58.97)2 (30.26)2

0.100 (95.21)2 (33.98)2

0.133 (142.17)2 (39.98)2

0.179 (235.80)2 (51.81)2

0.238 (358.95)2 (64.00)2

0.319 (505.26)2 (87.90)2

0.432 (664.23)2 (113.04)2

spectrum of the brightness temperature, i.e. 	2(k) = k3P(k)/2π2.
The spherically averaged power spectrum P(k) can be expressed as
〈 ˆδTb(k) ˆδTb

�
(k′)〉 = (2π )3δD(k − k′)P (k), where ˆδTb(k) denotes the

Fourier component of δTb(x) at wavenumber k.
The GRIZZLY algorithm is based on a one-dimensional radiative

transfer scheme and is an independent implementation of the BEARS

algorithm described by Thomas & Zaroubi (2008, 2011), Thomas
et al. (2009), and Krause et al. (2018). It approximates the transfer
of photons by assuming that the effect from individual sources is
isotropic and can therefore be pre-calculated as radial profiles around
each source. The algorithm corrects for overlap by ensuring that the
total ionized volume of the region created by multiple sources is the
correct one. This approach makes the code very fast, a requirement
necessary for parameter studies such as the one we perform here.

Ghara et al. (2018) presented a detailed comparison between the
performance of this code and the full three-dimensional radiative
transfer code C2RAY (Mellema et al. 2006b). We found that although
GRIZZLY employs a range of approximations, its results agree with
those of the full radiative transfer quite well, while being at least 105

times faster. In Appendix A, we give a brief outline of this code, while
we refer the reader to the original papers (Ghara et al. 2015a, 2018)
for a more detailed and complete description of the algorithm. Note
that we have not included redshift space distortions while evaluating
the power spectrum for different model parameters, as their impact
remains rather small during the EoR, when ionization fluctuations
dominate the power spectrum of δTb (Jensen et al. 2013; Ghara et al.
2015a; Majumdar et al. 2016).

The upper limits from Mertens et al. (2020) at scales k = 0.075
and 0.1 h Mpc−1 are 	2 = (58.97)2 and (95.21)2 mK2, respectively
(see also Table 1). Before proceeding, it should be realized that these
values are rather high compared to the power spectrum at redshift
≈9.1 predicted by various standard reionization scenarios, such as in
Mellema et al. (2006a), Iliev et al. (2007), Greig & Mesinger (2015),
Ghara, Datta & Choudhury (2015b), Hassan et al. (2016), Bolgar
et al. (2018), and Ross et al. (2019). For example, the predicted
power spectra at z ≈ 9 at k = 0.1 h Mpc−1 are found to be �103

mK2. Models that can be excluded by these upper limits therefore
have to be quite extreme.

As the lowest upper limit is for the largest scales, our aim is to
identify scenarios that produce large amplitudes for the large-scale
fluctuations. Spatial fluctuations in the 21-cm signal can only be
caused by spatial fluctuations in xH I, δB, or TS (see equation 1).
Previous studies have shown that the fluctuations in δB are small on
the scales measured by LOFAR (e.g. Peebles 1993). We therefore
consider two different scenarios to identify models with either large
xH I and/or TS fluctuations. In the first scenario, we assume a uniform
TS, so that the large-scale fluctuations of the signal are mostly driven
by fluctuations in xH I. In the second scenario, we relax the uniform
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Table 2. Overview of the source parameters used in GRIZZLY, their explored ranges as well as for which models these are used as input parameters.

Source parameters Description Explored range Corresponding models

ζ Ionization efficiency [10−2, 102.5] Varied in both the uniform and non-uniform TS models
Mmin Minimum mass of the UV emitting haloes [109 M�, 1012 M�] Varied in the uniform TS model

Fixed to 109 M� in the non-uniform TS model
Mmin, X Minimum mass of the X-ray emitting haloes [109 M�, 1012 M�] Used and varied only for the non-uniform TS model
fX X-ray heating efficiency [0.1, 10] Used and varied only for the non-uniform TS model
α Spectral index of the X-ray spectrum Fixed to 1.2 (fiducial) or 0.3 Used only for the non-uniform TS model

TS assumption and allow sources of heating to create local regions of
high TS. In this case, the large-scale fluctuations are predominantly
sourced by fluctuations in TS. These two scenarios will be discussed
in detail later in Sections 3.1 and 3.2.

To calculate the evolution of the IGM for these scenarios, GRIZZLY

needs to characterize the source properties with a range of parame-
ters. The following are used in our study (also listed in Table 2).

(i) Ionization efficiency (ζ ): The rate of ionizing photons per unit
stellar mass escaping from a halo is given by Ṅi = ζ × 2.85 ×
1045 s−1 M−1

� . This value corresponding to ζ = 1 derives from
the model galaxy spectrum employed when calculating xH II and TK,
which has been produced with the publicly available code PEGASE28

(Fioc & Rocca-Volmerange 1997). Note that the emission rate of
the ionizing photons is assumed to be proportional to the halo mass.
We refer the reader to Ghara et al. (2015a) for more details. We
calculate the stellar mass of a halo using M� = f� × �B

�m
× Mhalo,

where f� is the star formation efficiency, fixed at 0.02 (Behroozi &
Silk 2015; Sun & Furlanetto 2016). The parameter ζ combines all the
degeneracies from various quantities related to the star formation rate
and the emission rate of ionizing photons from the sources, as well
as their escape fraction into the IGM. The case ζ = 1 corresponds
to a star formation efficiency of 2 per cent and an escape efficiency
of 100 per cent, but also to a star formation efficiency of 20 per cent
and an escape efficiency of 10 per cent. We vary ζ in both scenarios
considered in this paper.

(ii) Minimum mass of the UV emitting haloes (Mmin): In the
above parametrization of the ionizing efficiency, the number of
ionizing photons escaping from a halo depends linearly on its mass.
However, below a certain minimum mass radiative and mechanical
feedback can severely reduce the star formation efficiency (see e.g.
Hasegawa & Semelin 2013; Dawoodbhoy et al. 2018). We model
this by introducing Mmin as the minimum mass of haloes from which
ionizing photons escape into the IGM. As with ζ , this parameter
represents different physical processes, not only feedback but for
example also very low escape fractions from lower mass haloes (see
e.g. Gnedin, Kravtsov & Chen 2008; Sharma et al. 2016). Due to
the mass resolution of our N-body simulation (see Section 2.1), the
lowest value for Mmin is 109 M�. Although haloes of lower masses
could contribute, as we will see below, the LOFAR results are not able
to constrain such low values. In general, one expects star formation
in haloes with mass �109 M� to be suppressed due to radiative
feedback (see e.g. Wise et al. 2014; Dixon et al. 2016). Note that
we do not employ radiative feedback in this study as Mmin remains
�109 M� for the scenarios considered here. We vary Mmin in the
uniform TS scenario while fix it to 109 M� in the non-uniform TS

model.

8http://www2.iap.fr/pegase/

(iii) Minimum mass of X-ray emitting halo (Mmin, X): In addition
to the stellar contributions, GRIZZLY can also include heating and
ionization from X-ray sources such as quasars, high-mass X-ray
binaries, etc. As not all star hosting haloes are necessarily substantial
X-ray sources, we use the minimum mass of dark matter haloes
that contain X-ray sources as a separate parameter. This allows us
to include scenarios in which the X-ray source population deviates
from the population of galaxies. We consider and vary this parameter
only in the non-uniform TS model.

(iv) X-ray heating efficiency (fX) and spectral index (α): The
spectrum of an X-ray source at energy E is modelled as a power law,
i.e. Iq(E) = Aq E−α , where α is the spectral index. The normalization
constant Aq is determined such that the X-ray luminosity per stellar
mass is 3.4 × 1034fX erg s−1 M−1

� , where fX is a parameter. This
implies a rate of X-ray photons per unit stellar mass emitted from
a halo Ṅx = fX × 8.47 × 1043 s−1 M−1

� . The value of Ṅx for fX =
1 is ∼ two orders of magnitude larger than the measurements of
high-mass X-ray binaries in local star-forming galaxies in 0.5–8 keV
band (Mineo, Gilfanov & Sunyaev 2012). We assume that the UV
band spans the range 13.6–100 eV, while the X-ray band goes from
100 eV to 10 keV. We vary fX while we keep α fixed at 1.2 (fiducial)
or 0.3 in the non-uniform TS model.

2.3 Derived IGM parameters

As mentioned above, although GRIZZLY uses astrophysical source
parameters to generate brightness temperature maps, the main goal
of this work is to infer the IGM properties at z ≈ 9.1 from the new
LOFAR upper limit. At this epoch, the IGM is expected to consist
of H II regions embedded in a (partially) neutral medium. The signal
from such gas is in emission (δTb > 0), in absorption (δTb < 0), or
zero depending on its spin temperature TS. In addition to δB, two
major sources of the spatial fluctuations of the signal are fluctuations
in ionized fraction xH II and spin temperature TS.

If the signal is dominated by xH II fluctuations, the maximum power
spectrum obtained from a model depends not only on the volume-
averaged ionized fraction (xH II) and spin temperature, but also on
the size distribution of the H II bubbles (e.g. Furlanetto, McQuinn &
Hernquist 2006a). We will therefore study the latter by characterizing
the probability distribution function (PDF) of the sizes of H II regions
with RH II

peak and 	RH II
FWHM, which represent the size at which the

PDF has a maximum and the full width at half-maximum (FWHM),
respectively. Fig. 1 shows an example of such a distribution.

Similarly, in the presence of spin temperature fluctuations, the
power spectrum of the 21-cm signal also depends on the size
distribution of the heated regions (i.e. regions with TK > Tγ ) besides
the average gas temperature TK, fraction of volume occupied by the
heated regions fheat, and mass-averaged brightness temperature (δTb).
Similarly to the PDF of H II regions, we will characterize the size
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Figure 1. The PDF of the ionized regions of size R estimated using the
MFP method. This ionization state is the same as shown in the left-hand
panel of Fig. 2 which corresponds to the parameter choice ζ = 50, Mmin =
3 × 1010 M�. RH II

peak and 	RH II
FWHM represent the size of the H II bubbles

at which the PDF becomes maximum and the FWHM of the distribution,
respectively.

distribution of the heated regions adopting the parameters Rheat
peak and

	Rheat
FWHM.

There exists no unique way to characterize the size distribution
of a complex three-dimensional structure such as the distribution of
H II/heated regions in the IGM. We refer the reader to Friedrich et al.
(2011), Lin et al. (2016), and Giri et al. (2018a) for an overview of the
various methods that can be used. In this work, we will use a Monte
Carlo based approach, namely the MFP method, first proposed by
Mesinger & Furlanetto (2007). In the MFP algorithm, we randomly
select a point inside the region of interest (e.g. H II regions) and
shoot a ray in a random direction until it reaches the boundary of
the region. The length of the ray is recorded. When this process is
repeated numerous times, the PDF of the recorded lengths provides
the PDF of the regions of interest. Here, we use 107 rays shot on the
fly during the GRIZZLY simulation.

A list of parameters used to characterize the IGM is given below
(also in Table 3):

(i) Volume-averaged ionized fraction (xH II).
(ii) Volume-averaged gas temperature in the partially ionized IGM

with xH II < 0.5 (TK).
(iii) Uniform spin temperature of the IGM (TS). Note that 1-

(Tγ /TS) form will be used rather than TS.
(iv) Mass-averaged differential brightness temperature (δTb).
(v) Volume fraction of heated regions with TK > Tγ (fheat).
(vi) RH II

peak (Rheat
peak): Size of the H II (heated) regions at which the

PDF of the sizes peaks.
(vii) 	RH II

FWHM (	Rheat
FWHM): FWHM of the PDF of the sizes of the

H II (heated) regions.

Note that we do not model the signal directly in terms of these IGM
parameters, these are rather derived quantities from the simulations.

2.4 GRIZZLY emulator

Although GRIZZLY is fast and efficient, for parameter estimation
with a Bayesian inference framework where hundreds of thou-
sands of models may be needed, the use of GRIZZLY can become

computationally too expensive. We therefore adopt an alternative
approach. First, we emulate the power spectra derived from GRIZZLY

simulations using the machine learning algorithm known as Gaussian
Process Regression (GPR; Rasmussen & Williams 2006). The power
spectrum emulator is used to interpolate within the parameter space
and evaluate the power spectrum for parameter values which have not
been simulated. For a description on how to emulate EoR simulations
with GPR, we refer the reader to Kern et al. (2017) and Jennings et al.
(2019). We use the GPR module provided in the PYTHON package
SCIKIT-LEARN (Pedregosa et al. 2011). We determine the values for
the hyperparameters for GPR using cross-validation, a process which
prevents overfitting of the model (e.g. Franklin 2005; Cawley &
Talbot 2010). We have used 10-fold cross-validation (Kohavi 1995)
to construct the emulators.

Given a set of parameters as described in the previous section, we
have configured GRIZZLY to generate the spherically averaged power
spectrum for the k-bins of the LOFAR data. However, as we will
see later, not all the data points from the upper limit of the power
spectrum are useful for this analysis. We therefore only use power
spectrum amplitudes at scales k � 0.15 h Mpc−1 to build up our
emulator, more specifically at k = 0.075, 0.1, and 0.13 h Mpc−1.
We quantify the accuracy of the emulators with their mean squared
error (MSE).9 In order to test the accuracy, we calculate the MSE
for the testing set. The testing set is independent of the data set used
for emulation. The MSE of the emulators for predicting the 21-cm
power spectrum is found to be less than 10 per cent.

We combine this emulator with the MCMC module available in the
EMCEE PYTHON package (Foreman-Mackey et al. 2013) to explore
the parameter space of different scenarios. As we are interested in the
IGM parameters, we also construct emulators for mapping the source
parameters to the IGM parameters. The MSE of these emulators is
less than 5 per cent.

2.5 Bayesian inference framework

As described in the previous section, we combine the GRIZZLY

emulator with an MCMC algorithm to explore the parameter space
for different scenarios and to constrain them using the observed upper
limits. The probability of any parameter value θ , i.e. the posterior
p(θ |x), given some observation x, is defined by Bayes’ theorem as

p(θ |x) ∝ p(x|θ ) p(θ ), (2)

where p(θ ) represents the prior on the parameter values. The quantity
p(x|θ ), also known as the likelihood L, gives the probability of any
observation given certain parameters. It should be kept in mind that
the likelihood cannot be defined by the formal χ2 method as the
observed power spectrum is an upper limit only. Therefore, here we
define the likelihood as follows.

Let us denote the observed power spectrum 	2
o(ki) by 	2

21(ki) ±
	2

21,err(ki), while the model power spectrum estimated using the
emulator for a set of parameters θ is denoted by 	2

m(ki, θ ). Two
major sources of uncertainty on the modelled large-scale power
spectrum are: (i) error from the emulators themselves, (ii) sample
variance that increases at larger scales. The combined error remains

9The MSE of the emulator is defined as (e.g. Jennings et al. 2019)

MSE =
〈(

Qtrue − Qemulated

Qtrue

)2
〉

,

where <> represents the mean estimate. The quantities Qtrue and Qemulated

are true and emulated values, respectively.
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Constraining the IGM at z ≈ 9.1 with the LOFAR 4733

Table 3. An overview of the IGM parameters considered in this paper. Except for TS in the case of the uniform TS model, all of
these are derived from the simulation results. We explore a range [−12:1] for 1 − Tγ /TS. The last column refers to the models in
which such a quantity is considered.

IGM parameters Description Corresponding models

xH II Volume-averaged ionized fraction Uniform and non-uniform TS models
TK Volume-averaged gas temperature in the partially ionized IGM

with xH II < 0.5
Non-uniform TS model

1 − Tγ /TS Tγ and TS are the CMB and spin temperature Uniform TS model
δTb Mass-averaged differential brightness temperature Uniform and non-uniform TS models
fheat Volume fraction of regions with temperature larger than Tγ Non-uniform TS model
RH II

peak Size at which the PDF of the size distribution of the H II

regions peaks
Uniform TS model

Rheat
peak Size at which the PDF of the size distribution of the heated

regions peaks
Non-uniform TS model

RH II
FWHM FWHM of the PDF of the size distribution of the H II regions Uniform TS model

Rheat
FWHM FWHM of the PDF of the size distribution of the heated

regions
Non-uniform TS model

�10 per cent for the scales considered in this study. Thus, we
assume a 10 per cent modelling error, σm(ki) = 0.1 × 	2

m(ki, θ ). This
error is always larger than the sampling error from the simulation.
The total variance σ 2 = 	4

21,err + 	4
m,err includes the errors from

the observation and simulations. For an upper limit, we define the
likelihood L(θ ) for a model with parameters θ as (see Appendix B
for the derivation)

L(θ ) =
∏

i

1

2

[
1 + erf

(
	2

21(ki) − 	2
m(ki, θ )√

2σ (ki)

)]
. (3)

This expression results in the following key behaviour:

(i) If the model power spectrum, 	2
m(ki, θ ), as estimated using

the emulator for a set of parameters θ is larger than the observed
power spectrum, 	2

21(ki) + σ (ki), within at least one k-bin ki, L(θ )
approaches 0 and that model is ruled out by the upper limit.

(ii) If 	2
m(ki, θ ) is smaller than 	2

21(ki) − σ (ki) for all k-bins,L(θ )
approaches 1, and that model is consistent with the upper limit.

(iii) In case the above two conditions do not hold, the likelihood
estimated from equation (3) remains between 0 and 1.

In this work, we aim to find models that are excluded by the
measured upper limit. Thus, we useLex(θ ) = 1 − L(θ ) in the MCMC
analysis as the likelihood of a set of parameters θ to be excluded by
the upper limit.10

In addition to this, we use a prior on the ionized fraction estimated
from the measured Thomson scattering optical depth in Planck
Collaboration VI (2018). As we do not have any prior information
about the redshift evolution of the average ionized fraction, xH II,
we estimate the maximum value which is possible at redshift ≈9.1
as follows. If we assume that xH II increases or remains constant
with time, a Thomson scattering optical depth τ = 0.054 ± 0.007
translates into a maximum ionized fraction 0.57 ± 0.24 at redshift
≈ 9.1. Here, we thus use xH II,max(z = 9.1) = 0.81 as the maximum
possible value for xH II at redshift ≈9.1. This corresponds to a scenario
in which the universe is neutral at z > 9.1, has a constant ionized
fraction in the range 9.1 > z > 6 and reionization ends suddenly at
redshift ≈6. Note that this is unlikely to be a realistic scenario, as xH II

10Note that, following the same calculation shown in Appendix B, one can
also directly estimate the likelihood of set of parameters θ to be excluded as

Lex(θ ) = ∏
i

1
2

[
1 − erf

(
	2

21(ki )−	2
m(ki ,θ)√

2σ (ki )

)]
.

is expected to gradually increase to 1 with time. While studies such
as Pober et al. (2015), Greig et al. (2016), and Monsalve et al. (2019)
consider model-dependent reionization histories and estimate xH II

by comparing the estimated τ for the models with the measured τ

from the CMB observations, here we use xH II,max(z = 9.1) = 0.81 as
a model-independent conservative upper limit of the ionized fraction
at z ≈ 9.1.

3 R ESULTS

Now we apply the parameter estimation framework described in the
previous section to the upper limits from Mertens et al. (2020) (also
given in Table 1). As described before, we will discuss two scenarios.
While the first one considers ionized patches in a uniform TS IGM,
the second one also includes TS fluctuations. We present our results
in the following sections.

3.1 Ionized patches and a uniform TS

In this section, we focus on the scenario in which the large-scale
modes are caused by the presence of ionized regions, and assume a
uniform spin temperature with a value TS (see e.g. Ali et al. 2015
and Pober et al. 2015 for previous papers adopting a uniform TS

model). These ionized regions are expected to be photoheated to a
temperature TK ≈ 104 K and emit no signal as xH I ≈ 0. Here, TS

represents the spin temperature of the neutral part of hydrogen in
the IGM. The sizes and spatial distribution of the ionized regions are
determined by the astrophysical parameters ζ and Mmin. Therefore,
this model has three parameters ζ , Mmin, and 1 − Tγ /TS which we
will explore.

We further assume the existence of a uniform Ly α background
which fully couples TS to the kinetic temperature TK, and thus a
uniform TS implies a uniform TK for the neutral IGM. The lowest
value of TK is obtained in the complete absence of heating processes,
when adiabatic cooling due to cosmological expansion gives TK =
2.1 K at z≈ 9.1 for our choice of cosmological parameters (calculated
using CMBFAST; Zaldarriaga & Seljak 2000).11 Higher values for
TK can be caused by heating through X-rays. To obtain a uniform

11Here we do not consider any additional cooling mechanisms, such as the
interaction between baryons and cold dark matter particles, which have been
proposed to explain the recent EDGES low-band observations of the global
signal at z ≈ 17 (Barkana 2018; Bowman et al. 2018) nor additional sources
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4734 R. Ghara et al.

Figure 2. Left-hand panel: a slice through the brightness temperature cube at z ≈ 9.1 for the parameter choice ζ = 50, Mmin = 3 × 1010 M�, and 1 − Tγ /TS =
−12. The averaged ionized fraction of this map is 0.55. Right-hand panel: the curves show the power spectra of the 21-cm brightness temperature as a function
of scale for 8556 different combinations of ζ and Mmin. We assume 1 − Tγ /TS = −12, which corresponds to a uniform TS = 2.1 K. The red points with error bars
(2σ ) show the upper limits from the 10-night observations with LOFAR (Mertens et al. 2020). The dashed blue curve refers to the spherically averaged power
spectrum of the brightness temperature cube from which the slice in the left-hand panel has been extracted. The model power spectra shown in the right-hand
panel are also used to build an emulator of the power spectrum using the GPR.

distribution, this heating will have to be driven by very hard rather
than soft X-ray photons (see e.g. Fialkov, Barkana & Visbal 2014;
Pacucci et al. 2014). Since the spin temperature appears in the
differential brightness temperature expression (equation 1) as 1 −
Tγ /TS, we use this, rather than TS, as a parameter in our study. For TS

� Tγ , 1 − Tγ /TS approaches 1, while for the lowest value of TS =
2.1 K, 1 − Tγ /TS ≈ −12. We therefore explore the range [−12,1].

Since we assume that 1 − Tγ /TS is constant, the power spectrum
scales by (1 − Tγ /TS)2 at all wavenumbers. Therefore, we train
our GPR emulator only to generate power spectra for different
combinations of ζ and Mmin while keeping 1 − Tγ /TS = 1. For
ζ and Mmin, we select the ranges [10−2–102.5] and [109–1012 M�],
respectively. The total number of GRIZZLY models used for training
the emulator is 8556.

We first illustrate the outcome of this set of GRIZZLY models in
Fig. 2. The left-hand panel shows a 2D slice from the brightness
temperature cube for the case ζ = 50, Mmin = 3 × 1010 M�, and
1 − Tγ /TS = −12. This combination of parameters produces an
ionization map with large H II bubbles with characteristic size larger
than several tens of Mpc and a volume-averaged ionized fraction of
0.55. The corresponding power spectrum is plotted as a thick dashed
curve in the right-hand panel of Fig. 2, together with the other 8555
models from the training set. All these curves assume the minimal
value of 1 − Tγ /TS = −12.

The red points in the right-hand panel of Fig. 2 denote the current
LOFAR upper limits on 	2 with 1σ error bars. Clearly, some of
the models have a power spectrum amplitude larger than the upper
limits at the larger scales. These results also show that scales with
k � 0.15 h Mpc−1 do not significantly constrain the models, which
is why, as mentioned in Section 2.4, we only use the lowest three

of excess radio background as considered in studies such as Feng & Holder
(2018) and Fialkov & Barkana (2019) .

k values to build the emulator and to calculate the likelihood in the
MCMC framework.

3.1.1 GRIZZLY and IGM parameters

Fig. 3 shows the dependence of the power spectra at scale k =
0.075 h Mpc−1 on the parameters ζ and Mmin obtained from the
training set. The left-hand and right-hand panels of the figure
correspond to 1 − Tγ /TS = −12 and −9, respectively. The solid
curves in both panels represent the contours corresponding to the
upper limit at this scale, i.e. 	2 = (58.97)2 mK2. One can easily see
that a significant part of the parameter space can be ruled out by this
upper limit alone for 1 − Tγ /TS = −12. However, the volume of
parameter space which can be excluded rapidly shrinks for higher
values of 1 − Tγ /TS, and almost no constraints can be set for 1 −
Tγ /TS � −8.

Fig. 3 also shows that the section of parameter space covering ζ

� 10 and 109.8 M� � Mmin � 1011 M�, which produces a highly
ionized IGM is disfavoured. In fact, the excluded parameter space
remains close to the parameter space which completes reionization
by redshift ≈9.1, which corresponds to the region in white at the
bottom right corner of both panels.

In the left-hand panel of Fig. 4, we plot the average ionized fraction
xH II as a function of the ζ and Mmin values we have explored. One
can easily see that the models with the largest amplitude of the
large-scale power spectrum correspond to an ionized fraction ≈0.5.
This is expected as at this stage of the reionization process, the
typical dimension of the bubbles becomes comparable to the size
of the scale of interest (see e.g. Ghara et al. 2015a). As the ionized
fraction approaches 1, the power spectrum decreases and becomes
negligible at the end of the reionization process due to the paucity
of neutral hydrogen. One can see that for 1 − Tγ /TS = −12, the
excluded parameter space corresponds to average ionized fractions
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Constraining the IGM at z ≈ 9.1 with the LOFAR 4735

Figure 3. Power spectra at scale k = 0.075 h Mpc−1 from the training set as a function of ζ and Mmin. We assume 1 − Tγ /TS = −12 and −9 for the left-hand
and right-hand panels, respectively, i.e. TS = 2.1 and 2.73 K at z ≈ 9.1. The white region at the right bottom corner of the panels corresponds to a fully
ionized IGM. The solid contours in both panels represent the upper limit constraint from LOFAR at scale k = 0.075 h Mpc−1, i.e. 	2 = (58.97)2 mK2. For a
deterministic observation, the region enclosed by the solid contour will be excluded. The dash–dotted lines denote the contour for xH II = 0.81.

Figure 4. Averaged ionized fraction (left-hand panel) and brightness temperature (right-hand panel) at z ≈ 9.1 from the training set as a function of ζ and
Mmin. We assume 1 − Tγ /TS = −12 in the right-hand panel. The white regions at the right bottom corners of the panels correspond to a fully ionized IGM.
The contours in both panels represent the upper limit from LOFAR at scale k = 0.075 h Mpc−1, i.e. 	2 = (58.97)2 mK2, for 1 − Tγ /TS = −12 (solid) and −9
(dashed). For a deterministic observation, the region enclosed by the contours will be excluded. The dash–dotted lines denote the contour xH II = 0.81.

�0.2. It is interesting to note that, coincidentally, in this scenario the
parameter space excluded by the LOFAR upper limit shares the same
boundary at xH II ≈ 0.81 with the parameter space excluded by the
CMB Thomson scattering optical depth constraint on the maximum
possible value of ionized fraction at redshift ≈9.1 (dash–dotted line,
see Section 2.5).

The right-hand panel of Fig. 4 shows the value of the average
brightness temperature δTb as a function of ζ and Mmin for 1 −
Tγ /TS = −12. δTb falls between ≈−300 mK (fully neutral) and
zero (fully ionized). We find that the excluded parameter space is

concentrated around δTb � −250 mK. This is due to the fact that the
average ionized fraction remains �0.2 for the excluded parameter
space for the case of the lowest spin temperature.

Fig. 5 shows the dependences of RH II
peak and 	RH II

FWHM on ζ and
Mmin. Clearly, the most probable size of the bubbles and the FWHM
increase with increasing ζ and decreasing Mmin, as the average
ionized fraction increases (also see Giri et al. 2018a; Giri, Mellema &
Ghara 2018b). As expected, the parameter space that is excluded
has preferentially a large characteristic size of the ionized regions.
More specifically, the part of the parameter space that can be
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4736 R. Ghara et al.

Figure 5. The distribution of RH II
peak (left-hand panel) and 	RH II

FWHM (right-hand panel) over the parameter space of ζ and Mmin for z ≈ 9.1. RH II
peak and 	RH II

FWHM
represent the radius at which the probability distribution of the sizes of the ionized regions has maximum amplitude and the FWHM of that distribution,
respectively. We use the MFP method to estimate the bubble size distribution. The region in white in the bottom right of the panels corresponds to fully ionized
IGM at redshift ≈ 9.1. The solid curves show the contours of 	2 = (58.97)2 mk2 for 1 − Tγ /TS = −12. For a deterministic observation, the region enclosed by
the solid contour will be excluded. The dash–dotted line shows the contour for xH II = 0.81.

ruled out for 1 − Tγ /TS = −12 shows RH II
peak � 10 h−1 Mpc and

	RH II
FWHM � 30 h−1 Mpc.

To test whether the results for the derived IGM quantities could
be sensitive to the choices for the source model, we also explored a
source model in which the ionizing emissivity depends non-linearly
on the halo mass. As can be seen in Appendix C, changing the source
model affects the constraints on the source parameters but reproduces
the same constraints on the derived IGM parameters, illustrating that
these constitute the more robust results of our study.

3.1.2 MCMC results

Up to this point, we have only explored the implications of the
LOFAR upper limits using the results from GRIZZLY for slices through
selected parameter spaces. In this section, we employ our parameter
estimation framework that includes the emulator results and an
MCMC algorithm. The aim is to explore the full parameter space
and find the probability that the models are ruled out by the current
upper limit from LOFAR. We use 20 walkers and 106 steps for this
MCMC analysis. We checked the convergences of the MCMC chains
using the integrated autocorrelation time as suggested in Goodman &
Weare (2010) and find that the chains are well converged for this
number of steps.

The likelihood used for this MCMC analysis is given by equa-
tion (3). In addition, we use a flat prior on xH II(z = 9.1) ≤ 0.81.
Fig. 6 shows the posterior distribution of the parameters ζ , Mmin, and
1 − Tγ /TS, with the solid and dashed curves indicating the 68 per cent
and 95 per cent credible intervals12 of the excluded models within
the range of parameters considered here. As expected, and as already
suggested by Fig. 3, higher values of ζ (�10) and lower values of
Mmin (in particular 109.8 M� � Mmin � 1011 M�) are more likely to

12We estimate the credible intervals of our posterior distributions by the
approach based on computing the highest density interval (see e.g. Hyndman
1996).

be excluded as they result in higher ionization and thus a large-scale
power spectrum more likely to exceed the observed one. Similarly,
a colder IGM is more likely to be ruled out than a hotter IGM, as the
former increases the signal strength.

We use a separate emulator to estimate the IGM parameters xH II,
RH II

peak, and 	RH II
FWHM for this scenario from the same set of GRIZZLY

source parameters as used in our MCMC framework. This emulator
is constructed using the same method as described in Section 2.4.
Fig. 7 shows the posterior distribution of the IGM parameters. The
constraints on the excluded IGM parameters are also listed in Table 4.
Clearly, an IGM with xH II ≈ 0.13 − 0.74, (1 − Tγ /TS) � −8.5, and
H II bubble distribution characterized by RH II

peak ≈ 8 − 58 h−1 Mpc
and 	RH II

FWHM ≈ 16 − 185 h−1 Mpc is ruled out within 95 per cent
credible intervals. This part of the parameter space corresponds
to −250 mK � δTb � −55 mK. Note that the excluded parameter
space requires satisfying all of the above-quoted conditions. These
results are in agreement with our findings in Section 3.1.1. However,
it is also clear from Figs 6 and 7 that tighter constraints on the
power spectrum are required to put any bounds on source and IGM
parameters with this analysis if the IGM is not very cold.

3.2 Spin temperature fluctuations

In this section, we relax the uniform TS assumption and consider the
scenario in which X-ray sources cause partial ionization and heating
of the IGM. However, we will not vary all five GRIZZLY parameters
ζ , Mmin, Mmin, X, fX, and α (see Section 2.2). Instead, we fix the
values of Mmin and α and only retain the remaining three parameters.
This choice is motivated by a preliminary study suggesting that
the LOFAR upper limits provide very weak constraints on Mmin

and α.
We set Mmin = 109 M�, i.e. the lowest dark matter halo mass

provided by our N-body results (Section 2.1). This means that, unlike
the previous scenario, all haloes contribute to the ionization of the
neutral hydrogen in the IGM. All the haloes also emit Ly α photons,
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Constraining the IGM at z ≈ 9.1 with the LOFAR 4737

Figure 6. Constraints on the three GRIZZLY parameters of the uniform TS scenario (see Section 3.1) from the MCMC analysis using the LOFAR upper limit for
z ≈ 9.1. The colour bar shows the probability that models are ruled out. The solid and dashed curves show the 68 and 95 per cent credible intervals of the ruled
out models. The diagonal panels show the marginalized probability distribution by which each parameter value as used in the MCMC analysis is ruled out.

building a strong Ly α background. We thus assume that the Ly α

coupling is saturated (in other word, TS = TK) in this scenario. The
value of the X-ray spectral index α is uncertain and dependent on the
properties of the X-ray sources. For X-ray sources such as quasars and
mini-quasars, the spectrum can be very steep, with α � 1 (Vignali,
Brandt & Schneider 2003; Gallerani et al. 2017; Martocchia et al.
2017), while for high-mass X-ray binaries, the observed spectral
index can be as small as α ≈ 0.2 (Mineo et al. 2012; Islam et al.
2019). In this study, we assume α = 1.2. Below we discuss the effect
of different α on our results.

The remaining three parameters constitute our parameter space.
For ζ we keep the same range used in the previous scenario, while we
vary Mmin, X between 109 and 1012 M�, and fX between 0.1 and 10.
As we will see below, this choice covers the regime that is interesting
from the point of view of the current LOFAR upper limits. As the run
time of the simulations with spin temperature fluctuations is much
longer than in the previous scenario, we initially cover the parameter
space with a coarser grid. We then visually identify the part of the
parameter space that provides a large amplitude of the large-scale
power spectrum and fine sample only that region to increase the
accuracy of the emulator. We thus end up using only 1495 power

spectra generated using GRIZZLY to train our GPR emulator for this
scenario.

In Fig. 8, we show a slice from the brightness temperature map
corresponding to the scenario with ζ = 0.1, Mmin, X = 3 × 1011 M�,
and fX = 2. The average ionized fraction remains ≈0.01 due to the
small value of ζ . The average volume fraction of heated regions of
this map is also small (≈ 0.1) as Mmin, X is large, and thus only a few
of the massive haloes contribute to the heating. While in the previous
scenario the patchiness of the signal was due to the ionized regions
only, now it is also sourced by the heated regions around the sources.

The thick dashed curve in the right-hand panel of Fig. 8 refers to the
power spectrum of the δTb map shown in the left-hand panel, together
with the 1494 other power spectra used to build the three-parameter
emulator of 	2 for this scenario. Similar to the previous case, we
find that the large-scale power spectra of some of the extreme models
are larger than the LOFAR upper limits, which are shown by the red
data points and their limits in the right-hand panel of the figure.

3.2.1 GRIZZLY and IGM parameters

Fig. 9 shows the power spectrum at scale k = 0.075 h Mpc−1 in
the 2D parameter space of fX and Mmin, X. Note that unlike Fig. 3,
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4738 R. Ghara et al.

Figure 7. Similar to Fig. 6, but this shows constraints on the IGM parameters at z ≈ 9.1 in the uniform TS scenario. The colour bar shows the probability that
models are ruled out. The solid and dashed curves correspond to the 68 and 95 per cent credible intervals of the ruled out models. The marginalized probability
distributions of the IGM parameters are shown in the diagonal panels.

Table 4. Constraints from the MCMC analysis on the IGM parameters of the uniform TS scenario at z ≈ 9.1.
Note that our analysis excludes the parameter space that satisfies all the conditions given in this table.

IGM parameters of uniform
TS scenario Prior

68 per cent credible interval
of the excluded models

95 per cent credible interval
of the excluded models

xH II Flat in [0, 0.81] [0.24, 0.60] [0.13, 0.74]
1 − Tγ /TS Flat in [−12, 1] [ − ∞, −10.21] [ − ∞, −8.50]
TS (K) Flat in [2.1, ∞] [0, 2.435] [0, 2.874]
δTb (mK) – [ −189.31, −87.65] [ −251.23, −56, 75]
RH II

peak ( h−1Mpc) – [9.89, 24.55] [7.55, 58.07]
	RH II

FWHM ( h−1Mpc) – [21.88, 70.79] [16.37, 184.93]

where the power spectra were derived from the GRIZZLY simulations,
here they are evaluated directly with the emulator. In this plot we fix
ζ = 0.1, which ensures a small average ionized fraction at z = 9.1
(xH II = 0.01). Clearly, the power spectrum remains the lowest and
constant for a combination of a high value of fX and a low value of
Mmin, X. In this case, heating of the partially ionized gas in the IGM
due to X-rays becomes very efficient, raising the gas temperature
above the CMB (TK � Tγ ) and rendering δTb independent of the
spin temperature. On the other hand, the heating of the gas in the IGM

remains inefficient for a combination of small fX and high Mmin, X.
As expected, the power spectrum for such models (top left corner
of the Figure) is larger than the power spectrum for the heated IGM
(bottom right corner of the Figure).

One can see that the spin temperature fluctuations are efficient
around the diagonal of the parameter space, starting from small
values of fX and Mmin, X. Specifically, the combination of high Mmin, X

and fX enhances the large-scale power spectrum. In this combination,
the heated/emission regions around the rare X-ray emitting sources
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Constraining the IGM at z ≈ 9.1 with the LOFAR 4739

Figure 8. Left-hand panel: a slice through the brightness temperature cube for the parameter choice ζ = 0.1, Mmin = 109 M�, Mmin, X = 3 × 1011 M�, fX =
2, and α = 1.2. The average ionized fraction of this map is 0.01, while the average volume fraction of the heated regions is 0.1. Right-hand panel: the curves
show the power spectra of the 21-cm brightness temperature as a function of scale for 1495 different combinations of parameters. The red points with error bars
show the upper limits from the 10-night observations with LOFAR (Mertens et al. 2020). The blue dashed curve represents the power spectrum of the brightness
temperature cube from which the slice in the left-hand panel has been extracted.

Figure 9. Spherically averaged power spectra of the 21-cm signal from
z ≈ 9.1 at scale 0.075 h Mpc−1 as a function of Mmin, X and fX. These
power spectra are generated using an emulator which is trained with 1495
models from GRIZZLY. This plot corresponds to ζ = 0.1, Mmin = 109 M�,
and α = 1.2. The solid contour represents the upper limit constraint
from LOFAR at scale 0.075 h Mpc−1, i.e. 	2 = (58.97)2 mK2. For a
deterministic observation, the region enclosed by the solid contour will be
excluded.

remain isolated in the background absorption signal (see e.g. the
left-hand panel of Fig. 8). Also, the partial ionization and heating
of the IGM far away from the X-ray emitting sources remain small
for a high value of Mmin, X. We also plot the contour corresponding
to the LOFAR current upper limit at scale k = 0.075 h Mpc−1, i.e.
(58.97)2 mK2. Clearly, some parts of the parameter space with the
combination of high Mmin, X (� 1011 M�) and fX (� 1) are ruled out
with high confidence.

Next, we will consider the global parameters of this scenario. Note
that to estimate the IGM parameters, we use an emulator different
from the one used for the source parameters. In Fig. 10, we show

the average temperature (TK) of regions with ionized fraction smaller
than 0.5, the volume fraction of heated regions fheat, and the average
brightness temperature δTb. As expected, TK remains small for a
combination of high Mmin, X and low fX, which also keeps fheat low.
In this case the average signal remains in absorption, as shown in the
right-hand panel of the figure. On the other hand, TK is high for the
opposite case of a low Mmin, X and a high fX, for which fheat approaches
1 and δTb becomes positive. The parameter space excluded by the
LOFAR upper limit at scale k = 0.075 h Mpc−1 is shown by the
solid curves in all panels. It corresponds to 10 K � TK � 100 K, fheat

� 0.3, and −200 mK � δTb � −100 mK.
In this scenario, the size distribution of the heated regions is

more relevant than the size distribution of the ionized regions.
Similarly to the size distribution of the ionized regions considered
in the previous scenario, here we analyse the size distribution of
the heated regions, characterizing the PDF with two parameters,
namely Rheat

peak and 	Rheat
FWHM, which represent the size of the heated

regions at which the PDF becomes maximum and FWHM of the
PDF, respectively. Fig. 11 shows the distribution of Rheat

peak and
	Rheat

FWHM, suggesting that the characteristic size of the heated
regions incSingh & Subrahmanyan 2reases with increasing fX.
The white regions represent an IGM fully heated above the CMB
temperature. The parameter space in the range Rheat

peak ≈ 5 − 20 h−1

Mpc and 	Rheat
FWHM ≈ 10 − 30 h−1 Mpc is the one excluded by

the LOFAR upper limit at z = 9.1. Note that the excluded
parameter space requires satisfying all of the above-mentioned
conditions.

3.2.2 MCMC results

Next, we explore the three-dimensional parameter space, i.e. ζ ,
Mmin, X and fX, using MCMC to find models that are ruled out by
the current LOFAR upper limit. Similar to our previous scenario,
we have used 20 walkers and 106 steps for the MCMC analysis and
checked the convergence of the chains. Note that we use a flat prior on
xH II(z = 9.1) ≤ 0.81. The outcome of the analysis is summarized in
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4740 R. Ghara et al.

Figure 10. Average gas temperature for regions with ionized fraction less than 0.5 (left-hand panel), volume fraction of the heated regions (middle panel), and
average brightness temperature at redshift ≈9 as a function of Mmin, X and fX. Here ζ = 0.1. The solid curve represents the contour corresponding to 	2 =
(58.97)2 mK2 at scale 0.075 h Mpc−1 which is the LOFAR upper limit on the spherically averaged power spectrum. For a deterministic observation, the region
enclosed by the solid contours will be excluded.

Figure 11. Distribution of Rheat
peak (left-hand panel) and 	Rheat

FWHM (right-hand panel) at z ≈ 9.1 as a function of the parameters fX and Mmin, X for ζ = 0.1. Rheat
peak

and 	Rheat
FWHM represent the radius at which the probability distribution of the sizes of the heated regions (i.e. regions with TK > Tγ ) has maximum amplitude

and the FWHM of that distribution, respectively. We use the MFP method to estimate the size distribution of the heated regions. The region in white in the
bottom right of the panels corresponds to IGM fully heated above the CMB temperature. The solid curve represents the contour corresponding to 	2 = (58.97)2

mK2 which is the LOFAR upper limit on the power spectrum at scale 0.075 h Mpc−1. For a deterministic observation, the region enclosed by the solid contours
will be excluded.

Fig. 12. Clearly, a high emissivity of X-ray photons (fX � 0.3) with a
large Mmin, X (� 1010 M�) is the most likely to be excluded within the
68 per cent credible intervals by LOFAR alone. This combination of
parameter values results in large heated regions around rare massive
haloes embedded in a cold IGM. On the other hand, the combination
of large fX and a small Mmin, X causes more uniform heating and
thus it reaches more easily the TS � Tγ condition where the power
spectrum remains lower than the measured one. Similarly, a very
small value of fX yields almost no heating and coincides with the
scenario discussed in the previous section. In such models, a larger
value of ζ is more likely to be ruled out as we have also seen in the
previous scenario. Therefore, we see a second ruled out region in the
parameter space shown in Fig. 12.

Next, we will constrain the IGM parameters of this non-uniform TS

scenario, and show the posterior distribution of the IGM parameters
in Fig. 13. These results are also listed in Table 5. Clearly, two
regimes of the parameter space are likely to be excluded. The first
one has large H II regions in a poorly heated IGM, which is the
configuration already discussed in the previous section. In this case,
least likely values of the IGM parameters are: 0.5 � xH II � 0.6, TK �
3.55 K with fheat ≈ 0. The second part of the parameter space which
is likely to be excluded corresponds to large heated regions with:
xH II � 0.08, 7 K � TK � 160 K, −234 � δTb � −65 mK, fheat �
0.34, 3.5 h−1Mpc � Rheat

peak � 70 h−1 Mpc, and 	Rheat
FWHM � 110 h−1

Mpc. These limits correspond to 95 per cent credible intervals as
shown in Fig. 13.
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Constraining the IGM at z ≈ 9.1 with the LOFAR 4741

Figure 12. Constraints on the three parameters of our second scenario with non-uniform TS fluctuation models presented in Section 3.2 from the MCMC
analysis using the LOFAR upper limit at z ≈ 9.1. The colour bar shows the probability that models are ruled out. The solid and dashed curves show the 68 and
95 per cent credible intervals of the ruled out models. The diagonal panels show the marginalized probability distribution for the parameters used in the MCMC
analysis in this scenario.

Up to this point we have only considered α = 1.2. A less steep
SED with a smaller value of α contains a smaller number of soft
X-ray photons and a larger number of hard X-ray photons. Thus,
the heating due to an X-ray spectrum with smaller α is less patchy
than that from a steeper spectrum (see e.g. Pacucci et al. 2014; Das
et al. 2017; Islam et al. 2019), resulting in a smaller amplitude of the
large-scale power spectrum of the signal. We have verified that for
α = 0.3 the results are similar to those obtained with α = 1.2, except
that the contour of the excluded region (see Fig. 9) shrinks towards
higher Mmin, X values and it shifts slightly towards higher values of
fX.

4 D ISCUSSION

We have considered two extreme scenarios, one in which fluctuations
at large scales are driven by large ionized regions in a uniform spin
temperature IGM, and the other in which they are driven by large
heated regions in a non-uniform spin temperature IGM. One question
that naturally arises is whether there exist other models capable of
exceeding the LOFAR upper limits which are not covered by the two
scenarios we have explored. As fluctuations in the 21-cm signal are
induced by ionization and/or spin temperature fluctuations, it seems

hard to come up with alternative scenarios which can be excluded
without invoking non-standard physics.

A second question is whether the extreme cases considered are
in any way realistic or whether they are already excluded by other
observations. We have limited ourselves to deriving constraints from
the LOFAR upper limits at z = 9.1 and have not added information
from other redshifts, apart from a very conservative upper limit on
the ionized fraction based on the Thomson scattering optical depth
derived from the Planck results. This has been a conscious choice
as using data from multiple redshifts requires assumptions about the
evolution of the source properties which, given the small constraining
power of the LOFAR upper limits, does not seem justified. However,
it is still possible to apply a minimal check on the models that we
find to be excluded by the LOFAR upper limits.

We first consider the scenario in which the excluded models require
a fairly large value for xH II. The results from Mitra, Choudhury &
Ferrara (2015) show that the combined constraints from Planck and
z > 6 quasar spectra imply that xH II � 0.4 at z = 9.1. Although this
limits the constraining power of the LOFAR upper limits, the latter is
still unique in excluding some models, as we have found cases with
xH II ≈ 0.3 and 1 − Tγ /TS = −12 which violate them (see Fig. 4).
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4742 R. Ghara et al.

Figure 13. Constraints on the IGM parameters of the non-uniform TS model presented in Section 3.2 from the MCMC analysis using the LOFAR upper limit
at z ≈ 9.1. The colour bar shows the probability that models are ruled out. The solid and dashed curves show the 68 and 95 per cent credible intervals of the
ruled out models. The diagonal panels show the marginalized probability distribution for each of the IGM parameters considered in this scenario.

Table 5. Constraints from the MCMC analysis on the IGM parameters of the non-uniform TS scenario at z ≈
9.1. Note that our analysis excludes the parameter space that satisfies all the conditions given in this table.

IGM parameters of
non-uniform TS scenario Prior

68 per cent credible interval
of the excluded models

95 per cent credible interval
of the excluded models

xH II Flat in [0, 0.81] [0, 0.06], [0.50, 0.58] [0, 0.08], [0.45, 0.62]
TK (K) Flat in [2.10, ∞) [19.23, 115.61], [2.10, 2.32] [7.41, 158.48], [2.10, 3.55]
fheat – [0, 0.14] [0, 0.34]
δTb (mK) – [ −154.50, −84.26] [ −234.15, −65.53]
Rheat

peak ( h−1 Mpc) – [5.32, 17.78] [3.50, 69.82]
	Rheat

FWHM ( h−1 Mpc) – [10.47, 38.01] [0, 113.76]

Monsalve et al. (2017) presented phenomenological constraints
on the evolution of the global 21-cm signal derived from EDGES
high-band observations. These constraints are mostly about changes
in the signal and are therefore very different from the single z =
9.1 upper limits used for our results. However, our approach does
produce values for the global signal (see the right-hand panels in
Figs 4 and 10), with excluded models lying in the range −250 K
� δTb � −55 mK. These can be compared to the values in fig. 9 of

Monsalve et al. (2017), where the authors show that for a minimum
value of −200 mK, the 	z for the FWHM of the entire absorption
feature has to be above ≈5. They also show that this lower limit is
inconsistent with an end of reionization at z ≈ 6. At face value this
implies that the models excluded by the new LOFAR upper limits on
the 21-cm power spectrum are also excluded by the EDGES high-
band constraints on the evolution of the global signal. However,
it should be kept in mind that the EDGES constraints are based
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Constraining the IGM at z ≈ 9.1 with the LOFAR 4743

on an assumed Gaussian profile for the evolution of the global
signal. Furthermore, the systematics for the EDGES results are
not fully known (e.g. Hills et al. 2018; Singh & Subrahmanyan
2019).

This comparison to previous results shows that the new LOFAR
upper limits exclude rather extreme models which were already
unlikely in view of other observational constraints. However, it is
important to point out that the LOFAR observations are of a very
different character and thus contribute a new and independently
obtained piece of the reionization puzzle. As we obtain more
stringent upper limits and additional redshift points, the constraints
will improve and start to rule out increasingly large regions of the
parameter space.

5 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have used the new LOFAR upper limit on the
dimensionless spherically averaged power spectrum of the 21-cm
signal from redshift ≈9.1 (Mertens et al. 2020) and investigated
which reionization scenarios can be ruled out by it. The upper
limits as obtained from 10 nights of observations are (58.97)2 and
(95.21)2 mK2 at scales k = 0.075 and 0.1 h Mpc−1, respectively.
As these numbers are much larger than the amplitude of the power
spectrum expected for standard reionization histories, we mainly
focused on the extreme models that produce such high values for
the large-scale power spectrum. However, our study also covers the
usual range of the parameter space.

With the code GRIZZLY, we generated power spectra for thou-
sands of models for different combinations of parameters namely,
ionization efficiency (ζ ), minimum mass of the UV emitting haloes
(Mmin), minimum mass of X-ray emitting haloes (Mmin, X), and X-
ray heating efficiency (fX). On the basis of these results, we build
emulators for different scenarios based on GPR that map source
parameters to power spectra. These emulators combined with an
MCMC framework are then used to constrain the source parameters
at z ≈ 9.1 using the observed upper limits. We also build emulators
that map source parameters to IGM parameters, which are used to
put constraints on the IGM parameters. We considered two extreme
scenarios in which large-scale fluctuations of the signal are driven
by (i) ionized regions embedded in an IGM with a uniform spin
temperature, and (ii) spin temperature fluctuations.

As the 21-cm observations themselves characterize the state of
the IGM, a major focus of this study is to constrain the thermal
and ionization state of the IGM at z ≈ 9.1 using these upper limits.
We study the state of the IGM in terms of parameters such as the
average ionization fraction (xH II), average gas temperature of the
partially ionized IGM (TK), (1 − Tγ /TS), mass-averaged brightness
temperature (δTb), volume fraction of the heated region (fheat), size
of the H II (heated) regions at which the PDF of the sizes peaks
RH II

peak(Rheat
peak), and the FWHM of the PDFs 	RH II

FWHM(	Rheat
FWHM). The

results of our study can be summarized as follows.

(i) In the uniform TS scenario, we found that the models which
can be ruled out by the upper limit have a high-UV photon emission
rate. More specifically, the model with the coldest possible IGM, i.e.
TS � 2.1 K, requires an emission rate � 2.85 × 1046s−1 M−1

� , which
is 10 times larger than that predicted by population synthesis codes.
At the same time, those models require a suppression of ionizing
photons from haloes with mass �109.8 M�.

(ii) A high emissivity of the UV photons renders the gas in the
IGM largely ionized at the target redshift, so that ionized fractions
xH II � 0.13 are excluded within a 95 per cent credible interval. At
the same time, the H II bubbles required have to be few in number and

large in size. The characteristic size of the H II bubbles needs to be,
RH II

peak � 8 h−1Mpc, with an FWHM of the probability distribution of
the size distribution larger than 16 h−1Mpc. This keeps the average
brightness temperature of the excluded models � −250 mK. The size
of the parameter space which can be excluded depends crucially on
the value of TS, as it decreases with increasing TS and no constraints
can be set for TS � 3 K.

(iii) For the scenario where the large-scale fluctuations of the
signal are driven by spin temperature fluctuations, we found that the
models ruled out are those in which regions with temperature larger
than CMB cover a volume fraction �0.34 and at the same time are
large with a characteristic size in the range 3.5 − 70 h−1 Mpc and
a size distribution with an FWHM of � 110 h−1 Mpc. The average
gas temperature of the partially ionized regions for these excluded
models is 7–160 K, while the average brightness temperature lies in
between −234 and −65 mK. The heated regions required for these
excluded models are large in size and few in number at the same time.
This implies that scenarios in which the heating is driven by fewer
X-ray emitting sources hosted by the rare massive haloes (Mmin, X �
1010 M�) with a high emissivity of X-ray photons (X-ray luminosity
� 1034 erg s−1 M−1

� ) are more likely to be ruled out by the current
upper limit.

As the current upper limits on the 21-cm power spectrum are
rather large and restricted to one redshift, the constraints on the IGM
and source parameters that can be obtained are not yet very strong.
However, they do illustrate the potential of this type of observations
to characterize the state of the IGM and from this the properties
of early sources in a redshift range which has not been yet well
explored. We expect LOFAR to produce more stringent upper limits
on the power spectrum both through analysing more of the available
data (also at other redshifts) and improving the methods to deal with
systematic effects. Combining these with other observables, such as
the global 21-cm signal and observations of high-z galaxies using the
present and next generation of ground-based and space telescopes
such as the James Webb Space Telescope, the European Extremely
Large Telescope, and the Atacama Large Millimetre Array, will give
us a much deeper understanding of this crucial period in the history
of the Universe.
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APPEN D IX A : GRIZZLY

Here, we briefly describe the one-dimensional radiative transfer
method used in the code GRIZZLY to simulate the redshifted 21-cm
signal from the EoR. We refer the reader to Ghara et al. (2015a,
2018) for a more detailed description of the method. While the
basic approach of GRIZZLY mainly follows the BEARS algorithm
(Thomas & Zaroubi 2008; Thomas et al. 2009; Thomas & Zaroubi
2011), it differs slightly from the original method. Both codes avoid
solving the one-dimensional radiative transfer equations on the fly
and, instead, they use previously generated 1D ionization profiles
to simulate an ionization field. Below, we briefly describe the steps
used in GRIZZLY:

(i) First, we generate a large number of 1D profiles of ionized
fraction and kinetic temperature for different combinations of source
parameter values. The parameters used for this are ionization effi-
ciency, the ratio of X-ray and UV luminosities, X-ray spectral index,
overdensity of the uniform background IGM and redshift. In this
study, we assume that the age of the source is 10 Myr. For a given
cosmology, these profiles need to be generated only once.

(ii) Next, we determine the size of the H II regions in all the 1D
profiles and create a list of their radii for different parameter values.

These are defined as the distance from the centre of the source at
which the ionized fraction drops to 0.5.

(iii) Given a halo with a certain mass and position, we first
determine the corresponding UV luminosity. From this, we determine
the size of the H II region around that halo using the density field
and the list of radii as generated in the previous step. This is done
iteratively as follows. We start with a small value of the radius,
estimate the spherically averaged overdensity contained within it
and look for the same combination of radius and overdensity in the
pre-compiled list. If this is not found, we change the initial choice of
the radius and continue the iteration until a match is obtained. This
step is repeated for all haloes. The corresponding ionization profiles
are used to generate the ionization field.

(iv) When individual H II regions overlap, we estimate the number
of photons in excess and distribute them around the surface of the
overlapping regions so that all the photons are used for ionization.

(v) We then generate the kinetic temperature field from the
ionization field and a correlation of the ionized fraction and the
gas temperature (for details, see Ghara et al. 2015a).

Given the value of the uniform TS, the δTb maps can be generated
using the ionization maps and density field for our first scenario. For
our second scenario, which assumes TS = TK, we use the ionization,
density, and temperature maps to generate the δTb maps following
equation (1).

APPENDI X B: LI KELI HOOD FOR U PPER
LI MI T OBSERVATI ONS

Using Bayes theorem, we can write the posterior of our model
parameters θ for simulating the model power spectrum 	2

m(k, θ )
given the observed power spectrum 	2

o(k) as follows:

p(θ |	2
o(k)) ∝ p(	2

o(k)|θ )) p(θ ), (B1)

where the first and second term in the right hand side of the equation
are the likelihood L(θ |	2

o(k)) and prior, respectively.
If 	2

o(k) is a deterministic, a scenario is ruled out when the
modelled power spectrum 	2

m(ki) is above 	2
o(ki) in any one

wavenumber-bin ki. We can write L(θ |	2
o(ki)) as a Heaviside

function H(	2
o(ki) − 	2

m(ki)). However, the 	2
o(ki) is probabilistic

with mean of 	2
21(ki) and standard deviation of 	2

21,err(ki).
Therefore, we need to draw a 	2

a(ki) from a normal distribution
N

(
	2

21(ki), 	2
21,err(ki)

)
and calculate the probability of our model.

Here, 	2
a(ki) is a nuisance parameter over which we can marginalize

to get the L(θ |	2
o(ki)). Therefore, L(θ |	2

o(ki)) can be written as
follows:

L (θ |	2
o(ki)) =

∫ ∞

−∞
p(	2

o(ki)|	2
a) p(	2

a(ki)|θ ) d	2
a . (B2)

The value for p(	2
a(ki)|θ ) is a Heaviside function

H(	2
a(ki) − 	2

m(ki)), while p(	2
o(ki)|	2

a(ki)) is defined by a
N

(
	2

21(ki), 	2
21,err(ki)

)
. Putting these functions into equation B2,
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we get

L (θ |	2
o(ki))

= 1√
2π	2

21,err

∫ ∞

−∞
H(	2

a(ki) − 	2
m(ki)) e

− 1
2

(
	2

a (ki )−	2
21(ki )

	2
21,err

)2

d	2
a

= 1√
2π	2

21,err

∫ ∞

	2
m(ki )

e
− 1

2

(
	2

a (ki )−	2
21(ki )

	2
21,err

)2

d	2
a

= 1

2

[
1 + erf

(
	2

21(ki) − 	2
m(ki)√

2	2
21,err(ki)

)]
, (B3)

where erf(x) is the error function. The power in various k bins can
be correlated due to the non-Gaussian nature of the 21-cm signal
(see e.g. Mondal et al. 2015). However, the current observation
is noise dominated and it is not sensitive to the non-Gaussianity
of the signal. The finite size of LOFAR stations will affect the uv
tracks and therefore correlate the data in various k-bins. However,
this effect is minor as the widths of the k-bins are large enough
to minimize the correlation between the bins. Thus, the likelihood
calculated above is mutually exclusive in each k bin. Therefore, the
total likelihood is the product of the likelihoods at various k bins
where we have observations. The likelihood of a parameter value θ

is
(
1 − ∏

i L(θ |	2
o(ki))

)
.

APPENDI X C : ROBUSTNESS O F THE
C O N S T R A I N T S O N TH E I G M PA R A M E T E R S

We presented the constraints on the IGM parameters as our main
results as the source parameters are model dependent. However,
one may worry that the derived IGM parameters could somehow
depend on the chosen source model. In this appendix, we consider
a different source model to show the robustness of the constraints
on the IGM parameters. We consider the results for the uniform
TS model as presented in Section 3.1.2. The original source model
assumed a linear relation between stellar and halo mass: M� ∝ Mhalo,
see Section 2.2. Here, we instead use M� ∝ M

β

halo where we choose
β = 1.2, keeping the normalization constant the same as before. This
source model implies that higher mass haloes contribute relatively
more to ionization than in the original source model.

We follow the same method as described in Section 2.4 to develop
separate emulators for this source model using 442 simulations and
explore the same parameter space as in Section 3.1.2. We also use
the same number of walkers and steps in the MCMC analysis. The
constraints on the source parameters and the IGM parameters from
the MCMC analysis are shown in Figs C1 and C2, respectively.

The constraints on the source parameters ζ and Mmin obviously
differ from the ones shown in Section 3.1.2. As the star formation
rate in the modified source model is higher compared to the original
one, the part of parameter space that is ruled out shifts towards
lower ζ values. However, the constraints on the IGM parameters as
shown in Fig. C2 remain similar to what we previously found (see
Fig 7). This shows that the constraints on the IGM parameters as

Figure C1. Similar to Fig. 6 but for a different source model. Here, we consider Ṅi ∝ M
β
halo with β = 1.2.
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Figure C2. Similar to Fig. 7 but for a different source model. Here, we consider Ṅi ∝ M
β
halo with β = 1.2.

obtained from the upper limit observation are indeed independent
of the source model as expected as the LOFAR observations do not
directly measure any source properties.

1The Oskar Klein Centre, Department of Astronomy, Stockholm University,
AlbaNova, SE-10691 Stockholm, Sweden
2Department of Natural Sciences, The Open University of Israel, 1 University
Road, PO Box 808, Ra’anana 4353701, Israel
3Department of Physics, Technion, Haifa 32000, Israel
4Institute for Computational Science, University of Zurich, Winterthur-
erstrasse 190, CH-8057 Zurich, Switzerland
5Max-Planck Institute for Astrophysics, Karl-Schwarzschild-Straße 1, D-
85748 Garching, Germany
6Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-
9700AV Groningen, the Netherlands
7Astronomy Centre, Department of Physics and Astronomy, Pevensey II
Building, University of Sussex, Brighton BN1 9QH, UK
8Astrophysics Group, Imperial College London, Blackett Laboratory, Prince
Consort Road, London SW7 2AZ, UK
9School of Earth and Space Exploration, Arizona State University, Tempe,
AZ, USA

10Department of Physics, University of the Western Cape, Cape Town 7535,
South Africa
11SARAO, 2 Fir Street, Black River Park, Observatory, Capetown, South
Africa
12Department of Physics, Banwarilal Bhalotia College, Asansol, West Bengal,
India
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