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Abstract. The beyond-Horndeski gravity has recently been reformulated in the dark energy
paradigm — which has been dubbed, Unified Dark Energy (UDE). The evolution equations
for the given UDE appear to correspond to a non-conservative dark energy scenario, in which
the total energy-momentum tensor is not conserved. We investigate both the background
cosmology and, the large-scale imprint of the UDE by probing the angular power spectrum
of galaxy number counts, on ultra-large scales; taking care to include the full relativistic cor-
rections in the observed overdensity. The background evolution shows that only an effective
mass smaller than the Planck mass is needed in the early universe in order for predictions
in the given theory to match current observational constraints. We found that the effective
mass-evolution-rate parameter, which drives the evolution of the UDE, acts to enhance the
observed power spectrum and, hence, relativistic effects (on ultra-large scales) by enlarging
the UDE sound horizon. Conversely, both the (beyond) Horndeski parameter and the kinetic-
ity act to diminish the observed power spectrum, by decreasing the UDE sound horizon. Our
results show that, in a universe with UDE, a multi-tracer analysis will be needed to detect the
relativistic effects in the large-scale structure. In the light of a multi-tracer analysis, the var-
ious relativistic effects hold the potential to distinguish different gravity models. Moreover,
while the Doppler effect will remain significant at all epochs and, thus can not be ignored,
the integrated Sachs-Wolfe, the time-delay and the potential (difference) effects, respectively,
will only become significant at epochs near z= 3 and beyond, and may be neglected at late
epochs. In the same vein, the Doppler effect alone can serve as an effective cosmological probe
for the large-scale structure or gravity models, in the angular power spectrum — at all z.
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1 Introduction

Observations have shown [1, 2] that the expansion of the universe at recent times is not
slowing down, as would be expected from the self-gravity of the galaxies, but is actually
accelerating. This mysterious behaviour has been eluding all possible theoretical explanations
and available technology. A key problem in cosmology therefore, is to identify the cause of
this late-time cosmic accelerated expansion. One explanation, within Einstein’s General
Relativity theory — which is widely taken as the standard theory of gravity — is that, the
acceleration is driven by a non-luminous “anti-gravity” agent called Dark Energy (DE) [3, 5–
10]. However, so far there does not appear to be a fundamental theory for DE.

Thus, given the lack of a basic understanding of DE, an alternative is that maybe DE is
not real, but that the acceleration is rather driven by a relative weakening of gravity at late
times on cosmological scales — i.e. a breakdown of general relativity in the infrared — hence,
general relativity needs modification. However, this approach has led to the proliferation of
Modified Gravity (MG) models [3, 5, 11]–[38]. (See, particularly, [11, 12] for extensive reviews
on MG models.) Among the numerous MG models, the beyond-Horndeski subclass [13–24]
have received a wide interest of recent, e.g. a so-called “unified dark energy” (UDE) model [13]
has recently been constructed from the beyond-Horndeski gravity.

The given UDE model seeks to combine — in a single description — a broad spec-
trum of the (well-known) existing models, such as the quintessence models, the scalar-tensor
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theories and their Horndeski extensions; the F (R) and the Horava-Lifshitz theories, respec-
tively. This approach allows for a unified analysis of cosmological perturbations about a
Friedmann-Lemaitre-Robertson-Walker universe, at linear order. Most importantly however,
the description of the UDE provides a means for a generalized approach to confront theoreti-
cal ideas with observations; the cosmological parameters of the given UDE may be probed and
the implication for various models is thus inferred, rather than probing the individual models.

Moreover, the upcoming surveys of the large scale structure — which will span very large
cosmic scales, to near the Hubble horizon; reaching high redshifts z — posses the potential to
provide new information on the nature of DE and MG (and in principle, will be able to test
general relativity itself on ultra-large scales). However, in order for these surveys to yield their
potential, we need to correct for relativistic effects [6–10, 25, 39]–[53] which naturally surface
in the observed overdensity in redshift space. Until recently, the relativistic effects have been
disregarded; nonetheless, they are known to become significant on the same scales and red-
shifts that will be within the reach of the upcoming surveys. Thus, including the relativistic
corrections, and understanding their imprint, will be important in the large scale analysis.

In this paper, we investigate galaxy clustering in the UDE model, by probing the angular
power spectrum of the observed galaxy source-count overdensity, on ultra-large scales (i.e.
larger than the equality scale) — while fully including relativistic corrections. The main goal
is to probe the ultra-large-scale imprint of the UDE, in the presence of relativistic effects,
on the clustering of galaxies on very large scales; whether the relativistic effects may be
important in discriminating DE and MG models. We start by describing the UDE model in
section 2. In section 3 we outline the (observed) relativistic galaxy source-count overdensity,
and give the observed galaxy angular power spectrum at various redshifts in section 4. We
probe the UDE in section 5: both the background features (subsection 5.1) and the imprint
of the relativistic corrections (subsection 5.2). We conclude in section 6.

2 The unified dark energy model

Here we outline the UDE model, as proposed by [13]. We rewrite the equations in conformal
coordinates — assuming a late-time universe dominated by matter and UDE only.

2.1 The background equations

The background energy density ρ̄A and background pressure p̄A of UDE (A=x) and of matter
(henceforth: dark plus baryonic, A=m) are related by

ρ̄x ≡ 3a−2M2H2 − ρ̄m, p̄x ≡ −a−2M2(2H′ +H2)− p̄m, (2.1)

where M is an effective mass, H= a′/a is the comoving Hubble parameter, and a= a(η) is
the cosmic scale factor; with a prime denoting derivative with respect to conformal time η.
The matter and the UDE background evolution equations, are given by

ρ̄′m + 3H(1 + wm)ρ̄m = 0, ρ̄′x + 3H (1 + wx,eff) ρ̄x = 0, (2.2)

where wA = p̄A/ρ̄A is the equation of state parameter of A, with

wx,eff = wx −
αM

3Ωx
, (2.3)
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which denotes an effective UDE equation of state parameter; αM ≡ 2M ′/(HM) is the mass
evolution rate parameter — governing the rate of evolution of M — and ΩA = ρ̄A/ρ̄ is the
energy density parameter, with ρ̄ being the total background energy density of all the species.

The evolution of the UDE equation of state parameter is given by

w′x = −3H (1 + wx,eff)
(
c2
ax − wx

)
, (2.4)

where c2
ax ≡ p̄′x/ρ̄′x is the squared adiabatic sound speed of UDE.

2.2 The perturbation equations

In this subsection we outline the relevant perturbation equations, specifying the constraint
and evolution equations. The spacetime metric, is given in Newtonian gauge by

ds2 = a(η)2
[
−(1 + 2Φ)dη2 + (1− 2Ψ)d~x2

]
, (2.5)

where Φ and Ψ are the gauge-invariant temporal and spatial metric potentials, respectively,
as given by [13] (see appendix B). The effective Poisson equation is given by

∇2Ψ =
a2

2M2

{∑
A

ρ̄A∆A −
αM

Ωx
ρ̄xHVx

}
, ∆A ≡ δA +

ρ̄′A
ρ̄A
VA, (2.6)

where ∆A is the effective comoving (energy) density contrast for A, and δA = δρA/ρ̄A is
the Newtonian-gauge energy density contrast, with VA being the Newtonian-gauge velocity
potential. (Note that we take care to use the gauge-invariant comoving overdensity ∆A, in
order to simplify Poisson equation and to define bias properly; moreover this helps avoid
any large-scale unphysical artefacts, see e.g. [39, 54].) The evolution of the spatial metric
potential is govern by the total momentum density, given by

Ψ′ +HΦ = − a2

2M2

∑
A

qA, qA ≡ (ρ̄A + p̄A)VA, (2.7)

where qA = a−1q
(phys)
A is the effective comoving momentum density; the superscript “phys”

(henceforth) denotes the physical component — as given by [13] — i.e. defined with respect to
physical time t, where dt= adη. The metric potentials are related via the constraint equation:

Ψ− Φ =
a2

M2

∑
A

σA, (2.8)

where σA = a−2σ
(phys)
A is the effective comoving anisotropic stress potential for species A.

The matter comoving velocity potential and comoving overdensity, respectively, evolve
in time according to the equations given by

V ′m +HVm = −Φ− c2
sm

1 + wm
∆m −

2∇2σm
3(1 + wm)ρ̄m

, (2.9)

∆′m − 3wmH∆m =
9

2
H2(1 + wm)

∑
A

ΩA(1 + wA) [Vm − VA]

− (1 + wm)∇2Vm +
2H
ρ̄m
∇2σm, (2.10)
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where csm is the matter physical sound speed. The physical sound speed of species A, given
by csA (which is defined with respect to the rest frame of A), measures the propagation speed
of the pressure perturbations in the given rest frame.

Similarly, the UDE comoving velocity potential evolves by

V ′x +HVx = −Φ− c2
sx

1 + wx
∆x −

2∇2σx
3(1 + wx)ρ̄x

− αMH
Ωx(1 + wx)

[
Vx −

∑
A

ΩA(1 + wA)VA

]
, (2.11)

where csx is the UDE physical sound speed, given by [13–16]

c2
sx = −2

(1 + αB)2

αK + 6α2
B

[
1 + αT −

1 + αH

1 + αB

(
2 + αM −

H′

H2

)
− 1

H

(
1 + αH

1 + αB

)′]
− (1 + αH)2

αK + 6α2
B

ρ̄m + p̄m
a−2M2H2

, (2.12)

with the parameter αB being dubbed, kinetic braiding, which measures the kinetic mixing be-
tween gravitational and scalar degrees of freedom (in the beyond-Horndeski Lagrangian); the
parameter αT is the tensor speed alteration, measuring the difference between the (squared)
speed c2

T = 1 +αT > 0 of gravitational waves (or massless gravitons) and the (squared) speed
of light; αH is the (beyond) Horndeski parameter, which measures the deviation from the
Horndeski gravity, and αK is the kineticity, which measures the kinetic energy contribution
of the scalar field [13–18]; where αK + 6α2

B > 0. Given the work by [18], we have

αB = αH

(
1− 5

Υ2

Υ1

)
, c2

T =
4α2

H + (1 + αH)Υ1

(1 + αB)Υ1
, (2.13)

where cosmological constraints are placed on the parameter governing deviations from New-
ton’s law, Υ1 = −0.11+0.93

−0.67, and the parameter governing light bending, Υ2 = −0.22+1.22
−1.19.

Clearly we see that, if αH = 0, then αB = 0 and c2
T = 1 (consequently, αT = 0); thus implying

that the Horndeski gravity (αH = 0) — as well as general relativity — restricts gravitational
waves to propagate with the speed of light. However, in beyond-Horndeski gravity (αH 6= 0),
the gravitational waves can propagate either faster (αT > 0) or slower (αT < 0) than light.

Moreover, the UDE comoving overdensity evolves by

∆′x − 3wxH∆x =
9

2
H2(1 + wx)

∑
A

ΩA(1 + wA) [Vx − VA]− (1 + wx)∇2Vx +
2H
ρ̄x
∇2σx

+
αMH

Ωx

{
V ′x −∆x +

[
α′M
αM
− 1

2
(1 + 9w − 2αM )H

]
Vx

+
∑
A

ΩA

[
∆A −

ρ̄′A
ρ̄A
VA − 3H(1 + wA)VA

]}
, (2.14)

where (2.1)–(2.14) thus constitute the relevant background and perturbations equations.
By comparing the given equations in this section with the work by e.g. [8], we see that

the UDE essentially corresponds to an interacting DE scenario in which the total energy-
momentum tensor is not conserved (there are no αM terms in all the matter evolution equa-
tions, unlike those for UDE; thus αM induces a self, non-conservative interaction in UDE).

– 4 –
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3 The observed source-count overdensity

For pure source-count surveys, the observed overdensity [6, 39]–[48] — including all relativis-
tic corrections — along a spatial direction n at redshift z, is given by

∆obs
n (n, z) = ∆std

n (n, z) + ∆rels
n (n, z), (3.1)

where the standard source-count overdensity is given by

∆std
n ≡ ∆g −

1

H
∂rV‖ +

∫ rS

0
dr (r − rS )

r

rS
∇2
⊥ (Φ + Ψ), (3.2)

with rS = r(zS ) being the background comoving radial distance at the source redshift zS ,
and V‖ ≡ −n · V = ∂rV is the line-of-sight component of the peculiar velocity — with V
being a gauge-invariant velocity potential; H=H(z) is the comoving Hubble parameter, and
∇2
⊥=∇2− ∂2

r − 2r−1∂r is the square of the image-plane Laplacian. The first and the second
terms in the right hand side of (3.2) are the comoving galaxy overdensity and the well-known
(Kaiser) redshift distortion term, respectively; the integral constitutes the weak gravitational
lensing effect. We have included the lensing in the standard contribution even though it is of
course a relativistic effect. This is because we focus on effects on ultra-large scales where the
relativistic effects appear at O(H/k) and higher. The relativistic-correction part is given by

∆rels
n = ∆Doppler

n + ∆ISW
n + ∆timedelay

n + ∆potential
n , (3.3)

with the various correction terms expressed as follows,

∆Doppler
n ≡

(
be −

H′

H2
− 2

rSH

)
V‖ +

1

H
∂r

[
c2
sm

1 + wm
∆m +

2∇2σm
3(1 + wm)ρ̄m

]
, (3.4)

where the terms in the square brackets come from the Euler equation (2.9), which arise as a
result of the redshift perturbation in the volume distortion (see e.g. [6, 8, 39, 40, 45]);

∆ISW
n ≡

(
be −

H′

H2
− 2

rSH

)∫ rS

0
dr
(
Φ′ + Ψ′

)
, (3.5)

∆timedelay
n ≡ 2

rS

∫ rS

0
dr (Φ + Ψ), (3.6)

∆potential
n ≡ (3− be)HV +

1

H
Ψ′ − 2Ψ−

(
be − 1− H

′

H2
− 2

r̄SH

)
Φ, (3.7)

where be = be(z) is the galaxy evolution bias [6, 40, 41]. In (3.4) we have the Doppler term,
which bears the effect of the motion of the source relative to the observer; (3.5) gives the inte-
grated Sachs-Wolfe (ISW) term, which measures the effect of the phenomenon of losing and
gaining energy by signals in propagating through successive potential “hills” and “wells”, from
the source to the observer; (3.6) gives the time-delay term, which measures the time delay/lag
of signals in overcoming potentials of intervening objects along the line of sight, and (3.7)
gives the potentials term — including both peculiar-velocity and gravitational potential parts
— which contains the potential-difference effect, between the source and the observer.

The galaxy and the matter effective comoving overdensities are related via the linear
galaxy bias b [6, 40, 41, 49, 50], given by ∆g = b∆m.

– 5 –
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4 The source-count angular power spectrum

Here we consider the observed source-count overdensity (3.1), for galaxy surveys; we expand
the source-count overdnesity in spherical multipoles, given by

∆obs
n (n, z) =

∑
`m

a`m(z)Y`m(n), a`m(z) =

∫
d2nY ∗`m(n)∆obs

n (n, z), (4.1)

where Y`m(n) are the spherical harmonics and a`m are the multipole expansion coefficients,
with the asterisk denoting complex conjugate. The total angular power spectrum observed
at a source redshift zS is computed by

C`(zS ) =
〈
|a`m(zS ) |2

〉
,

=
4

π2

(
43

50

)2 ∫
dk k2T (k)2PΦp(k)

∣∣∣f`(k, zS )
∣∣∣2, (4.2)

where T (k) is the linear transfer function, PΦp(k) is the primordial power spectrum, and

f`(k, zS ) = b(zS )∆̃m(k, zS )j`(krS )− j′′` (krS )
1

H
∂rṼ

‖
m(k, zS ) + j`(krS )

1

H
Ψ̃′(k, zS ) (4.3)

+ (3− be)HṼm(k, zS )j`(krS )−
(
be − 1− H

′

H2
− 2

rSH

)
Φ̃(k, zS )j`(krS )

−2Ψ̃(k, zS )j`(krS ) +
1

rS

∫ rS

0
dr j`(kr)

[
2− (r − rS )

r
` (1 + `)

](
Φ̃ + Ψ̃

)
(k, r)

+

(
be −

H′

H2
− 2

rSH

)[
j′`(krS )Ṽ ‖m(k, zS ) +

∫ rS

0
dr j`(kr)

(
Φ̃′ + Ψ̃′

)
(k, r)

]
,

where (henceforth) we assume pressureless matter, i.e. p̄m = 0 = δpm; thus we have
wm = 0 =σm and c2

sm = 0 = c2
am. For the spherical Bessel function j`, we have

j′`(x) = ∂j`(x)/∂x, with x= kr. A tilde denotes division by the gravitational potential at
the epoch of photon-matter decoupling z = zd, i.e. X̃(k, z) ≡ X(k, z)/Φd(k) for a given
parameter X, and [6–8, 55]

Φ(k, zd) =
43

50
Φp(k)T (k) ≡ Φd(k), (4.4)

where Φp is the primordial gravitational potential; X̃ essentially measures the growth function
of the associated parameter. (See e.g. [6–8] for the linear growth functions of ∆m, Vm and
Ψ. Note that in the aforementioned references, it is assumed that Φ = Ψ; dropping this
assumption leads to the factor 43/50 — in (4.2) and (4.4) — instead of 9/10 [55].)

Similarly, given (3.2), the standard angular power spectrum Cstd
` is computed follow-

ing (4.1)–(4.4). In (4.3), we used that on very large scales (which are the scales of interest

in this work) V
‖
m =V‖=V

‖
g [6, 40], i.e. glaxies flow with the underlying matter — given the

homogeneity and isotropy on the very large scales.

5 Probing the unified dark energy

We initialize all evolutions at the photon-matter decoupling epoch 1+zd = 103 = a(zd)−1; us-
ing adiabatic initial conditions (see appendix C) for the perturbations. We adopt the present-
epoch matter density parameter Ωm0 = 0.3, and the Hubble constant H0 = 67.8 km · s−1 ·

– 6 –
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Mpc−1 [56]. Moreover, we use a galaxy bias b= 1 and galaxy evolution bias be = 0 (i.e. where
galaxies do not merge with one another); we do this for simplicity as we do not focus on
specific surveys.

Although a recent detection of a source in gravitational and electromagnetic radiation
showed that the gravitational wave speed cT = 1, it is still possible that cT varies for higher
redshift sources and possibly even with frequency (see e.g. [28]). For generality, and since we
are investigating only the qualitative effects of beyond-Horndeski models on galaxy counts,
we therefore do not restrict cT to be unity. We study the behaviour of the background
parameters (subsection 5.1) and the associated large-scale effects of the relativistic corrections
in the galaxy source-count angular power spectrum (subsection 5.2).

5.1 Exploring the UDE background

For convenience we set wx,eff =−1, and given (2.4), it implies wx is a constant. Consequently,
given (2.3), we have αM ∝Ωx. The advantage of the given choice of wx,eff is that, it allows the
recovery of the standard concordance model (ΛCDM) in the background, at some regimes.
Thus for all numerical computations, we use

wx,eff = −1, αM = α0Ωx, α0 < 0.6, (5.1)

where α0 is a constant and, by using the constraint wx0<−0.8 at today (z= 0), it leads to
α0< 0.6. We fix the background at today by choosing the values of α0 so that the UDE evolves
to give the same values of Ωm0 and H0. Within constraints [18] we adopt Υ2 =−0.131 and,
given that the density of astrophysical objects decreases radially outwards from the centre
so that Υ1> 0 (< 0) implies weakening (strengthening) of gravity [18], we choose Υ1 = 0.78
(to correspond to weakening of gravity on cosmological scales, in the late-time universe).

In figure 1, we show the relevant UDE background parameters. We show (top left
panel) the behaviour of the effective mass-evolution-rate parameter αM , as a function of the
scale factor, a, with α0 = 0.03, 0.045, 0.06. (We note that αM essentially serves to drive the
UDE evolution.) We have that at early epochs z & 6, the beyond-Horndeski theory reduces
to general relativity (αM ' 0) and the two are identical in the background. However, the
beyond-Horndeski gravity deviates (αM > 0) at later epochs z < 6. Given the choices in (5.1),
the beyond-Horndeski background at z& 6 resembles ΛCDM, where the UDE equation of
state parameter wx'−1; at z < 6, the beyond-Horndeski background gradually departs from
ΛCDM (and from a generic general relativistic background), with the UDE having wx 6=−1.
Thus, the behaviour of αM may be used to alleviate the well-known coincidence problem —
in the sense that, at early epochs αM vanishes, causing the UDE equation of state parameter
to be frozen on the value wx =−1 and the UDE mimics the cosmological constant Λ (or
vacuum energy); at later epochs, αM grows with time, resulting to wx>−1 and the UDE
has a positive evolution with an increasing density. (Eventually, the UDE will act to drive
the cosmic expansion into an acceleration, at late times z. 0.5.)

The top right panel, figure 1, shows the evolution of the UDE (squared) physical sound
speed c2

sx, for the given mass parameter αM (top left panel): for Horndeski parameter
αH = 0.085 and kineticity αK = 0. Henceforth, given the values of α0, we adopt values of
αH and αK such that c2

sx≤ 1. Obviously, the behaviour of c2
sx is affected by the evolution of

αM , while the late-time amplitude is determined by the values of α0, αH and αK . We see
that when αM ' 0 we have c2

sx' 1, which is the value predicted by the standard cosmologies.
Thus during the given regime, the matter perturbations have similar behaviour as those in
ΛCDM; hence resulting in similar cosmologies — since for any model, the equation of state
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Figure 1. Top left: the plots of the mass-evolution-rate parameter αM , given by (5.1), for the
values of the proportionality constant α0 = 0.06, 0.045, 0.03 — which lead to the values of the UDE
equation of state parameter wx =−0.98, −0.985, −0.99, respectively. (Note that the evolution of αM

is independent of αH and αK , which only affect the perturbations.) Top right: the plots of the
corresponding (squared) sound speed c2sx for the given αM in the top left panel, with αK = 0 and
αH = 0.085. Bottom: the plots of c2sx for αH = 0.085, 0.088, 0.091 with α0 = 0.06 and αK = 0 (left),
and for αK = 0, 0.02, 0.04, with α0 = 0.06 and αH = 0.085 (right).

parameter and the sound speed of the given DE effectively prescribe the cosmology. (By
correctly determining these parameters, the associated cosmology is essentially determined.)
Similarly, when αM > 0 we have c2

sx. 1 for the given values of α0, αH and αK . According to
the standard cosmologies, only perturbation modes with wavelengths greater than the sound
horizon are able to cluster or grow. Thus the larger the sound speed, the more difficult it
becomes for the perturbations to cluster. It implies that the growth of αM at late times
should enable the UDE perturbations to cluster — as it decreases the sound horizon.

In the bottom left panel of figure 1, we show the plots of the UDE sound speed for three
values of the Horndeski parameter αH = 0.085, 0.088 and 0.091, with α0 = 0.06 and αK = 0.
We see that the various values of αH result in (mostly) constant separations in the amplitude
of the UDE sound speed. As the magnitude of the Horndeski parameter increases, the sound
speed decreases accordingly, c2

sx� 1. This implies that, in its strong regime, the beyond-
Horndeski gravity will diminish the sound horizon such that the UDE perturbations cluster
at low z on sub-Hubble scales. Moreover, in the bottom right panel of figure 1 we show the
plots of the sound speed for kineticity αK = 0, 0.02, 0.04, with α0 = 0.06 and αH = 0.085. We
see that the behaviour of c2

sx for the given values of αK is similar to the scenario for αH

(bottom left panel): the amplitude of c2
sx is increased or decreased according to whether the

value of αK is bigger or smaller.

– 8 –



J
C
A
P
0
1
(
2
0
2
0
)
0
3
3

Figure 2. The plots of the cosmic evolution of the ratio of the effective mass M to the stan-
dard Planck mass MPl = 1/(8πG), with G being the Newton’s gravitational constant: for the values
α0 = 0.03, 0.045, 0.06.

For completeness, in figure 2 we show the cosmic evolution of the effective mass M
— given by the ratio M/MPl — as a function of the scale factor, where MPl = (8πG)−1

is the standard Planck mass and G is the Newton’s gravitational constant (with both the
speed of light and the reduced Planck constant as unity). We plot this ratio for various
values of α0> 0. We put a constraint on the effective mass, by setting the present-day value
M(z=0) =MPl. Thus we have M <MPl at earlier epochs z > 0. We see that as α0 increases,
the amplitude of the effective mass decreases at z > 0 until matter domination epoch, where
it remains constant (for all values of α0). This is understandable given that the dominant
cosmic content during this period is pressureless, and unable to induce or drive any growth in
mass. It implies that only an effective mass smaller than MPl is needed in the early universe in
order for predictions in the given theory to match current experimental constraints. However,
it should be pointed out that, the UDE and/or the cosmic acceleration is not driven by the
amplitude of the effective mass, but by its time rate of change — governed by αM . We have
that at z < 1, the larger the value of α0, the steeper the slope of M ; consequently, a stronger
acceleration. During matter domination, although the amplitude ofM is different for different
values of α0, the expansion rate remains the same, with ∂M/∂η= 0 (so that αM = 0).

5.2 The imprint of relativistic effects

In this section, we probe the observed (relativistic) angular power spectrum. We chose only
minimal values of the UDE parameters α0, αH and αK for our analysis. We study the
large-scale effects of the relativistic corrections (3.4)–(3.7) in the angular power spectrum.

In figure 3 we show the behaviour of the full relativistic angular power spectrum C` at
various redshifts for fixed values of α0, αH and αK . We plot the C` as a function of multipole
`, at zS = 0.1, 0.5, 1 and 3 with, α0 = 0.06, αH = 0.085 and αK = 0. We see that there is a
decrease in overall angular power — consequently, in magnitude of galaxy clustering — as
redshift increases. These plots agree with already known results for standard cosmologies
by previous works (e.g. [7, 39], when the scaling factor `(`+1)/(2π) on the angular power
spectrum is taken into account). We show the extend of the cosmic variance (shaded regions),
which is the inherent statistical uncertainty in observing the universe at extreme scales. The
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Figure 3. The plots of the full relativistic angular power spectrum C`, given by (3.1)–(4.4), at the
source redshifts zS = 0.1 0.5 3: for fixed values of the parameters α0 = 0.06, αH = 0.085 and αK = 0.
The shaded regions denote cosmic variance at the given redshifts.

cosmic variance for a survey covering a fraction fsky of the sky is given by [44, 55]

σ`(z) =

√
2

(2`+ 1)fsky
C`(z), (5.2)

where 2`+ 1 counts the number of independent samples used to estimate a given C`. As we
can see from the plots, it implies that as we move from smaller scales (larger `) to larger scales
(smaller `) — being the same scales on which relativistic effects are known to be important —
cosmological measurements of galaxy clustering will incur bigger uncertainties, at all z. Thus,
in order for the relativistic effects in the large-scale structure to have significant consequence,
they will need to have amplitudes larger than the size of the cosmic variance.

In figure 4 we show the combined effect of the total relativistic corrections (3.3) in the
angular power spectrum, with respect to different values of the Horndeski parameter αH . We
give the plots of the combined relativistic effect as the percentage change in C` relative to the
standard angular power spectrum Cstd

` — given by (3.2) — at the epochs zS = 0.1, 0.5, 1 and
3; for αH = 0.085, 0.088, 0.091, with fixed mass-evolution-rate parameter amplitude α0 = 0.06
and vanishing kineticity αK = 0. The results indicate that, at a given redshift, an increase
in (the amplitude of) the Horndeski parameter will lead to a suppression of the (combined)
relativistic effects in the angular power spectrum on very large scales. However, for a given
value of (the amplitude of) αH , the amplitude of the relativistic effects does grow with
increasing redshift, for z& 1. This behaviour also conforms with the results of previous
works in the literature on the standard cosmologies.

Results for the different values of αK = 0, 0.02, 0.04 (with α0 = 0.06 and αH = 0.085),
and for the values of α0 = 0.03, 0.045, 0.06 (with αH = 0.085 and αK = 0) also behave similar
to the plots in figure 4 except that for α0, the relativistic effects become boosted with larger
values of α0; with those of αK showing similar suppression like in figure 4. Hence, the respec-
tive plots of the two scenarios are not shown in this work. Given the results in figure 1, it is
understandable to get the enhancement in relativistic effects with larger amplitude of αM : the

– 10 –



J
C
A
P
0
1
(
2
0
2
0
)
0
3
3

Figure 4. The plots of the percentage change in the full relativistic angular power spectrum C`

relative to the standard angular power spectrum Cstd
` — which is prescribed only by the density, the

redshift-distortion and the weak-lensing terms (3.2) — at source redshifts zS = 0.1 (top left), zS = 0.5
(top right), zS = 1 (bottom left) and zS = 3 (bottom right); for αH = 0.085, 0.088, 0.091 with, α0 = 0.06
and αK = 0.

UDE physical sound speed grows with higher amplitudes of αM ; as the sound speed increases,
so does the sound horizon — implying that the UDE perturbations are less able to cluster,
giving the matter perturbations room to cluster and, consequently, boosting the amplitude of
the angular power spectrum. Similarly from figure 1, as the amplitudes of both αH and αK

increase, the UDE physical sound speed diminishes, accordingly; eventually resulting in the
clustering of the UDE perturbations. The growth in the UDE perturbations will suppress
the growth in the matter perturbations; thereby diminishing the angular power spectrum —
and hence, the relativistic effects. (See appendix A for further results and comments.)

In figure 5 we examine the individual effect of each relativistic-correction term. We
do so by first computing (4.2), with all the relativistic terms (3.4)–(3.7) included, to obtain
C`; then repeating the same computation four more times, but each time, we exclude one of
the relativistic terms, to obtain Ĉ`. We compute the fractional change in Ĉ` relative to the
standard angular power spectrum Cstd

` , accordingly. Thus in figure 5, we plot the percentage

change in Ĉ` (which has the various relativistic terms individually ignored, one at a time)
relative to Cstd

` , for each of the excluded relativistic term, at different redshifts. We show the
change in C` — which has all the relativistic terms included — relative to Cstd

` , as a dashed
black line, in comparison to the changes when the various relativistic terms are excluded, as
solid coloured lines. We observe that when the potentials (difference) term (3.7) is excluded
(magenta line), the percentage change in the angular power spectrum rises above that which
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Figure 5. The plots of the percentage change in the relativistic angular power spectrum Ĉ` — with
the various relativistic terms (3.4)–(3.7) individually excluded — relative to the standard agular power
spectrum Cstd

` . Each line thus, denotes the percentage change when one of the relativistic effect is
disregarded, with the black dashed line denoting the change with all effects taken into account (which
corresponds to the green lines in figure 4). The panels show the changes at zS = 0.1 (top left),
zS = 0.5 (top right), zS = 1 (bottom left) and zS = 3 (bottom right): for the fixed values of α0 = 0.06,
αH = 0.085 and αK = 0.

has all the relativistic terms included (dashed black line) and, when the potential term is
included, the percentage change in the angular power spectrum falls below that with all
the relativistic terms included. That is we have that, including the potentials-effect term
decreases the amplitude of the angular power spectrum on very large scales and, vice versa,
ignoring this term boosts the angular power spectrum amplitude. Thus this implies that the
given relativistic effect has a negative contribution in the angular power spectrum (at all z).

At z. 1, the time-delay term (3.6) is relatively insignificant. Neither ignoring the time-
delay effect (green line) nor including it (dashed black line) makes any difference; indicating
that time delay only makes a negligible contribution in the angular power spectrum at low
z. At redshifts z > 1, the contribution of the time-delay effect gradually become substantial
— indicated by the separation between the green line and the dashed black line. Moreover,
we see that the green line drops down below the dashed black line, indicating that the time-
delay effect has a positive contribution in the angular power spectrum on very large scales,
at high z: since by ignoring time delay, we get a drop in power. This is understandable since
the time-delay effect is given by an integral, whose interval — determined by the comoving
distance along the line of sight — increases with increasing z (as z decreases, the line-of-
sight comoving distance eventually approaches zero). Similarly for the case when the ISW
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Figure 6. The plots of the percentage change in the full relativistic angular power spectrum C` rela-
tive to Ĉ` (as in figure 5). Thus each line indicates the actual large-scale effect (in percentage) owing
solely to the specified relativistic corrections, in the galaxy source-count angular power spectrum.
The panels show the effects at zS = 0.1 (top left), zS = 0.5 (top right), zS = 1 (bottom left) and zS = 3
(bottom right): for the values of α0 = 0.06, αH = 0.085 and αK = 0.

term (3.5) is excluded (blue line): the ISW effect only becomes substantial at z& 3 and,
appears to be the dominant relativistic effect at these redshifts. At all redshifts, when the
Doppler term (3.4) is ignored (red line), the percentage change falls below that which has all
the relativistic terms included (dashed black line) — indicating that the Doppler effect has a
positive contribution in the angular power spectrum, at all z. Moreover, the Doppler effect
remains significant at all z and, is the dominant effect at z < 3 (subdominant at z& 3).

Essentially, there are two key features to note in figure 5. The first is, the position
of the solid line with respect to the dashed black line — whether it is above or below.
A line rising above the dashed line indicates that the associated relativistic effect has a
negative contribution in the angular power spectrum and, conversely, by falling below the
dashed black line a solid line indicates that the associated relativistic effect has a positive
contribution: since ignoring the relativistic term leads to the boosting of the amplitude of the
angular power spectrum, while including the term results in a diminished amplitude. When
a solid line coincides with the dashed line, it suggests that the associated relativistic effect
is relatively insignificant (since whether or not it is included, the amplitude of the angular
power spectrum remains unchanged). The second feature to note is, the separation between
a solid line and the dashed black line — the size of which indicates the relative significance
of the associated term, with respect to the rest of the relativistic effects.
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Figure 7. The plots of the percentage change owing to the various relativistic effects — for different
values of the Horndeski parameter αH : 0.085, 0.088 and 0.091. The left panel shows the results at
z
S

= 1 and the right panel shows the results at z
S

= 3. The relativistic terms are individually dropped
(one at a time) in the total angular power spectrum Ĉ`, and the fractional change is calculated
accordingly from the total angular power spectrum C` which has all the relativistic terms included.
The different line styles denote the particular relativistic effects: Doppler (solid), ISW (dashed), time
delay (dot-dashed) and potentials (dotted).

In general, the results show that ignoring the potentials term (3.7) will lead to an
overestimation of the large-scale power spectrum and/or the combined relativistic effect.
Conversely, neglecting the Doppler term (3.4) will lead to a significant underestimation of
the overall relativistic effects. (It should be pointed out that larger values of α0 can force the
ISW and the time-delay effects, respectively — along with the potentials effect — to have
negative contribution in the angular power spectrum.) Unlike the Doppler term, both the
ISW term (3.5) and the time-delay term (3.6) may be ignored at z≤ 1 without resulting in
any significant deviations. At z& 3, all the effects gradually become significant and can no
longer be ignored.

In figure 6 we further probe the individual effect of the various relativistic terms (3.4)–
(3.7) in the angular power spectrum. Unlike in figure 5 where we considered the changes
relative to the standard angular power spectrum Cstd

` , here we compute the various large-scale
changes in the total angular power spectrum C` (which has all relativistic terms included)
relative to the total angular power spectrum Ĉ` (which has the various relativistic terms
individually excluded). Thus in figure 6 we give the percentage change in the total relativistic
angular power spectrum, relative to itself — after one of the relativistic terms (3.4)–(3.7) is
excluded. In the figure, we plot the change for each relativistic term being ignored, at the
epochs zS = 0.1, 0.5, 1, and 3; with α0 = 0.06, αH = 0.085 and αK = 0. The plots therefore
give the true individual effect of the various relativistic terms. The key features to note in
figure 6 are, (i) the sign of the percentage change, which indicates the kind of contribution
of the associated relativistic term in the angular power spectrum — a positive amplitude
corresponds to a positive contribution and, a negative amplitude corresponds to a negative
contribution; (ii) the relative separation of the various lines from the zero line: indicating
the relative significance of the associated relativistic term.

At all redshifts, when the potentials term (3.7) is ignored, the resulting total angular
power spectrum Ĉ` has larger amplitude on very large scales than the total angular power
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Figure 8. The plots of the percentage change owing to the various relativistic effects — for different
values of the kineticity αK : 0, 0.02 and 0.04. All notations are as in figure 7.

spectrum C` containing all the relativistic terms: the potentials effect (magenta line) di-
minishes the relativistic angular power spectrum on very large scales. This is shown by the
negative values of the change amplitude, which agrees with the results in figure 5. We see that
indeed the Doppler effect (red line) — although subdominant at z& 3 and, dominant at z < 3
— remains significant at all redshifts. This is understandable since this effect only pertains
the relative peculiar velocity between the source and the observer; at all redshifts, sources
are in constant peculiar motion owing to surrounding gravitational instabilities. Although
the Doppler effect becomes subdominant (only to time-delay effect) at z& 3, its amplitude
at these redshifts is larger than that at z < 3 and, the Doppler effect increases with increas-
ing redshift — as do the other relativistic effects. Both the ISW effect (blue line) and the
time-delay effect (green line) remain subdominant and relatively insignificant at z < 1, like
in figure 5. In general, we observed that the contribution of all the relativistic effects grow
with increasing redshifts at z& 1 — as indicated by the growing amplitude of the percentage
changes — corroborating already established results in the literature.

In figure 7 we illustrate the large-scale effect of the Horndeski parameter αH on the rela-
tivistic effects, in the angular power spectrum. We repeat the analysis of figure 6, except that
here we vary αH ; fixing αK = 0 and α0 = 0.06. We give the plots of the various relativistic
effects in percentage, on large scales — at both zS = 1 (left panel) and at zS = 3 (right panel),
respectively — for αH = 0.085, 0.088 and 0.091. Overall, the Doppler effect (solid lines) re-
main highly dominant at z = 1, and gradually become subdominant at z > 1. We see that the
time-delay effect (dot-dashed lines) only becomes significant and dominant at higher redshifts
z& 3. The ISW effect (dashed lines) become more significant at z& 3, yet subdominant —
with time delay being the leading effect. Although the large-scale effect of the potentials grad-
ually become significant at z& 3, the associated cosmological contribution remain a negative
one. At z≤ 1, we have that an increasing αH will result in the suppression of the Doppler, the
ISW and the time-delay effects, respectively; on the other hand, the potentials effect becomes
enhanced, but having negative amplitude (at all z). At higher redshifts z∼ 3, although the
ISW effect remains positive, it becomes enhanced (as is the potentials effect) with increasing
αH ; the Doppler and the time-delay effects remain positive and, become suppressed with
increasing αH . Moreover, given that the Doppler, the ISW and the time-delay terms, re-
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Figure 9. The plots of the percentage change owing to the various relativistic effects — for different
values of the mass-parameter amplitude α0: 0.03, 0.045 and 0.06. All notations are as in figure 7.

spectively have positive effects, this implies that omitting any of these terms will lead to a
decrease in the amplitude of the total angular power spectrum (and the overall relativistic
effect), on very large scales. On the other hand, excluding the potentials term will lead to
an enhancement in amplitude of the total angular power spectrum on very large scales.

Similarly, in figure 8 we illustrate the large-scale effect of the kineticity αK on the
relativistic effects, in the angular power spectrum. We have that an increasing αK will lead
to the suppression of the Doppler effect at all redshifts and, the potentials effect becomes
enhanced. On the other hand, increasing or decreasing the amplitude of αK will cause the
ISW and the time-delay effects, respectively, to oscillate: a consistent increase or decrease in
αK leads to an enhancement and then a sudden suppression, or vice versa. This may be owing
to our choice of αK and αH — as absolute constants — which may result in the UDE becoming
stiff, being restrained from seeking its natural evolution. Otherwise, the behaviour and
explanation of the various relativistic effects here follow from the discussion under figure 7.

For completeness, in figure 9 we show the large-scale effect of the mass-parameter am-
plitude α0 =αM/Ωx on the relativistic effects, in the angular power spectrum. Although the
values of the UDE parameters we chose are only representative, the results suggest that the
relativistic effects are relatively less sensitive to any amplitude variations in αM than in either
αH or αK . The changes for the different values of α0 mostly coincide with one another in the
various relativistic effects. Moreover, unlike for αK where consistent changes in value lead to
fluctuations in the ISW and the time-delay effects (see figure 8), a consistent change in αH

or α0 leads to a consistent change in all the relativistic effects: growth in αH gives suppres-
sion — except for the potentials effect which is enhanced — and, vice versa (see figure 7);
growth in α0 tends to enhance the relativistic effects and, vice versa. Both the Doppler and
the potentials effects, respectively, respond consistently to the changes in α0, αH and αK

at all redshifts: the Doppler effect becomes suppressed with increasing αH and αK and, be-
comes enhanced with increasing α0; conversely, the potentials effect becomes enhanced with
increasing αH and αK and, appears insensitive to the changes in α0 (for the given values).

In figure 10, we show the cosmic variance associated with the results in figures 4–9.
Note that the results in figures 4–9 are given as percentages; in order to compare these
results to the cosmic variance (5.2) we must also multiply the plots in figure 10 by 100. If
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Figure 10. The plot of the cosmic variance, as a ratio with the angular power spectrum — with
regards to the fractionational changes in the angular power spectrum.

the percentage change is below the cosmic variance (× 100, as given by figure 10), then the
associated relativistic effect is not measurable. This is a definite and unambiguous statement,
since we neglect noise in this analysis and so the cosmic-variance error is what is obtainable
with a perfect experiment. Thus, as shown by the figures, it implies that in a universe with
UDE all the relativistic effects will be subsumed by cosmic variance in the measurements of
the large-scale structure.

It is already well known that in general relativity, the ultra-large scale relativistic effects
in the power spectrum are below cosmic variance and therefore undetectable [57]. This feature
does not depend on the Einstein field equations, and will also persist in metric modified
gravity theories. However, if two or more tracers of the matter distribution in the same
volume of the Universe are used (the multi-tracer method), this suppresses cosmic variance
and the relativistic effects can be detected [58–60]. Once again, this feature will persist
in modified gravity. The various relativistic effects may also be isolated (individually) on
ultra-large scales via the angular correlation function [45, 46, 51–53].

In the light of a multi-tracer analysis in particular, the various relativistic effects hold
the potential to distinguish different gravity models — given the fact that the lines in e.g.
figures 7–9 spread out with the different values of the UDE parameters (αH , αK and α0) for
a particular relativistic effect. The Doppler effect appears to be the most responsive of the
relativistic effects, especially to αH and αK . This suggests that the Doppler effect, in the
observed angular power spectrum, can be used alone as an effective cosmological probe for
the large scale structure, particularly at z≤ 1.

6 Conclusion

We have presented a broad analysis of the beyond-Horndeski gravity — as recently reformu-
lated as, Unified Dark Energy (UDE). The evolution equations for the given UDE appear to
correspond to a non-conservative dark energy scenario, in which the total energy-momentum
tensor is not conserved. We investigated both the background cosmology and, the imprint
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of relativistic effects in the large-scale structure, by probing the angular power spectrum of
galaxy relativistic source counts, on very large scales.

Firstly, we study the behaviour of the UDE background parameters. The effective mass-
evolution-rate parameter αM , which drives the evolution of the UDE, can be set to recover
the value of the Planck mass at the present epoch. We found that as the amplitude of αM

increases, the amplitude of the UDE effective mass decreases. Moreover, for a given amplitude
of αM , the UDE effective mass diminishes with increasing z > 0 until the matter domination
epoch, where it remains constant regardless of the amplitude of αM . We attributed this
constancy in amplitude to the fact that matter, being the dominant cosmic component during
this period, has zero pressure; consequently, it is unable to induce any growth in mass. Also,
the decrease in amplitude with increasing z implies that only an effective mass smaller than
the Planck mass is needed in the early universe in order for predictions in the given theory
to match current experimental constraints.

Furthermore, by choosing parameters so that the UDE physical sound speed never
exceeds unity throughout the cosmic evolution history, our results showed that the behaviour
of UDE physical sound speed is strongly governed by the evolution of the mass parameter
αM . During the matter epoch, αM vanishes, owing to the UDE effective mass being constant,
resulting in the sound speed becoming unity (and decreases as we move towards the present
epoch) — which is the value typical in the standard cosmologies — with the UDE equation of
state parameter approaching negative one (wx'−1): the value in ΛCDM. Thus during this
regime the matter perturbations will have similar behaviour as those in ΛCDM. Moreover,
we found that the (beyond) Horndeski parameter αH acts to diminish the amplitude of the
sound speed. The larger the amplitude of αH , the smaller the sound speed. Similarly, the
kineticity αK induces the same kind of effect on the sound speed. On the other hand, the
mass parameter rather induces growth in the sound speed, with larger amplitude of the mass
parameter: the larger the amplitude of αM , the larger the sound speed.

We compute the galaxy source-count angular power spectrum, considering mainly the
very large (linear) scales. We took account of the full, known ultra-large scale relativistic
corrections — the Doppler, the ISW, the time-delay and the potentials (difference) correc-
tions, respectively — in the observed overdensity. We found that the (combined) relativistic
effects become boosted with larger amplitudes of αM . This happens by the fact that αM

enhances the UDE physical sound speed and, as the sound speed increases, so does the sound
horizon: implying that the UDE perturbations are less able to cluster, therefore allowing the
matter perturbations to grow. Consequently, the amplitude of the angular power spectrum
— and hence, the relativistic effects — becomes boosted. Conversely, both αH and αK act to
diminish the relativistic effects. As the amplitudes of αH and αK increase, the UDE physical
sound speed diminishes, accordingly. This eventually results in the clustering of the UDE
perturbations; consequently, suppressing the growth in the matter perturbations and, hence,
diminishing the angular power spectrum.

Our results showed that the potentials effect has a negative contribution in the angular
power spectrum at all epochs and, is insignificant at low redshifts z < 1. The time-delay
effect, being an integral effect, is insignificant in the angular power spectrum at low z < 1.
At high z > 1, the contribution of the time-delay effect gradually become substantial, with
a positive contribution in the angular power spectrum on very large scales. Similarly, the
ISW effect only becomes substantial at high z& 3. At all redshifts, the Doppler effect has a
positive contribution in the angular power spectrum; remains significant at all epochs and, is
the dominant effect at z < 3 (it becomes subdominant at z& 3). Thus neglecting the Doppler
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effect will lead to a significant underestimation of the relativistic effects in the angular power
spectrum. Conversely, both the ISW and the time-delay effects, may be ignored at low
z≤ 1 without resulting in any significant deviations in the relevant cosmological parameters.
However, at high z& 3, all the relativistic effects become significant and can no longer be
ignored. Excluding any of, the Doppler effect, the ISW effect or the time-delay effect, will
lead to a decrease in the amplitude of the observed angular power spectrum, on very large
scales; conversely, excluding the potentials effect will lead to an enhancement.

At late epochs z≤ 1, the Horndeski parameter acts to suppress the Doppler, the ISW
and the time-delay effects. On the other hand, the potentials effect becomes enhanced, at
all epochs, but having negative amplitude. At high z& 3, although the ISW effect remains
positive, it becomes enhanced — as is the potentials effect — with increasing amplitude of the
Horndeski parameter. The Doppler and the time-delay effects remain positive and, become
suppressed with increasing amplitude of the Horndeski parameter. We also found that a
growth in the amplitude of the kineticity will lead to the suppression of the Doppler effect at
all epochs and, will enhance the potentials effect. A change in the amplitude of the kineticity
will cause the ISW and the time-delay effects, to oscillate in growth: a consistent increase or
decrease in the amplitude of the kineticity will lead to an enhancement and then a sudden
suppression, or vice versa. However, both the Doppler and the potentials effects, respond
consistently to the changes in all the UDE parameter at all redshifts: the Doppler effect
becomes suppressed with growing kineticity and Horndeski parameter and, becomes enhanced
with growing mass-evolution-rate parameter. The potentials effect becomes enhanced with
growing kineticity and Horndeski parameter.

A multi-tracer analysis will be needed to detect the relativistic effects in the large-scale
structure, in a universe govern by beyond-Horndeski gravity. If two or more tracers of the
matter distribution in the same volume of the Universe are used (the multi-tracer method),
this suppresses cosmic variance and the relativistic effects can be detected. Thus in the light
of a multi-tracer analysis, the various relativistic effects hold the potential to distinguish
different gravity models. Moreover, the Doppler effect alone can be used as an effective
cosmological probe for the large scale structure and/or gravity models at late epochs z≤ 1,
in the observed angular power spectrum.
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A The standard angular power spectra

In figure 11 we see that for all the given values of α0, the standard angular power spectrum
Cstd
` is identical, with the various plots overlapping on each other; similarly for both αH and
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Figure 11. The plots of the standard angular power spectrum, as obtained from (3.2), for the
values of the mass-parameter amplitude α0 = 0.03, 0.045 0.06, with αH = 0.085 and αK = 0. at source
redshifts zS = 0.1 (top left), zS = 0.5 (top right), zS = 1 (bottom left) and zS = 3 (bottom right).

Figure 12. The plots of the standard angular power spectrum, for the Horndeski parameter:
αH = 0.085, 0.088 0.091, with α0 = 0.06 and αK = 0. The panel arrangements are as in figure 11.

αK : figures 12 and 13. This clarifies our earlier claim in the discussion of figure 4 that on
large scales the UDE parameters α0, αH and αK mainly affect the relativistic corrections. It
should be noted that the change ∆C` =C`−Cstd

` will contain both the contribution of the
individual relativistic terms and, also the contributions of their respective cross-terms with
the standard-term components (which are the most dominant components in (3.1)).
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Figure 13. The plots of the standard angular power spectrum, for the kineticity parameter:
αK = 0, 0.02 0.04, with αH = 0.085 and α0 = 0.06. The panel arrangements are as in figure 11.

B The cosmological equations

Note that all equations given in this appendix are drawn from the work by [13]; however, we
rewrite the equations with respect to conformal time.

B.1 The perturbations equations

The gravitational potential are given, via the metric (2.5), by

Φ ≡ δN +Hπ + π′, Ψ ≡ −ζ −Hπ, π = aψ, (B.1)

where π = a−1π(phys) is the comoving component, with ψ being a metric scalar potential; δN
is the metric temporal perturbation and ζ is a metric spatial potential — and the superscript
“phys” denotes the physical quantities as given by [13]. The gravitational potential equations
are given in subsection 2.2. The evolutions of the UDE momentum density and (energy)
density perturbation, are given by (which were used in obtaining (2.11) and (2.14))

q′x + 4Hqx + (ρ̄x + p̄x) Φ + δpx −
2

3
k2σx = αMH

∑
A

qA, (B.2)

δρ′x + 3H (δρx + δpx)− 3 (ρ̄x + p̄x) Ψ′ − k2qx = αMH
∑
A

δρA, (B.3)
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where qA and σA are given by (2.7) and (2.8), respectively. The UDE perturbations are

Vx ≡ −π −
2αBH
ρ̄x + p̄x

P, (B.4)

σx ≡ αMa
−2M2Hπ − αTR− αHP, (B.5)

δpx ≡
[
p̄′x + αMHa−2M2

(
2H′ +H2

)]
π − 2αMHQ+

2

3
k2σx

+

(
ρ̄x + p̄x
a−2M2

+ 6αBH2

)
P + 2αB

(
1 +

α′B
HαB

+
H′

H2
+
P ′

HP

)
H2P, (B.6)

δρx ≡ 2
(
αHR− αBa

−2M2Hπ
)
k2 − 3H [(ρ̄x + p̄x)π − 2αBQ] + (αK − 6αB)H2P, (B.7)

where

P ≡ M2

a2

(
π′ +Hπ − Φ

)
, Q ≡ M2

a2

[
Ψ′ +HΦ + (H′ −H2)π

]
, R ≡ M2

a2
(Ψ +Hπ) , (B.8)

with the parameters related to their physical counterparts by P = a−2P(phys), Q = a−1Q(phys)

and R = a−2R(phys).

B.2 The metric potentials evolution equations

The evolution equations for the metric potentials π and Ψ are given by

π′ +

(
1 +

αT − αM

αH

)
Hπ =

(
1 + αH

αH

)
Φ−

(
1 + αT

αH

)
Ψ +

a2σm
αHM2

, (B.9)

Ψ′ + (1 + αB)HΦ = αBHπ′ +
(

1 + αB −
H′

H2
− ρ̄m + p̄m

2a−2M2H2

)
H2π − a2qm

2M2
, (B.10)

where by using (B.4), and the expression for P given by (B.8), in (B.10) we get (2.7).

The second order evolution of π is given by

π′′ + (1 + γ1)Hπ′ + γ3H2π = Φ′ − γ4Ψ′ − γ5HΦ− γ6HΨ− 2γ7H
a2σm
M2

− 3γ8
a2δpm
M2H

, (B.11)
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where have defined the parameters

γ0 ≡ αK +6α2
B, (B.12)

γ1γ0 ≡ (3+αM )γ0 +
α′K
H

+(6α2
B +2αK−6αB)

[
H′

H2
−1

]
+6αB

[
α′B
H
− ρ̄m+ p̄m

2a−2M2H2

]
, (B.13)

γ2γ0 ≡ −3αB
a3p̄′m
M2H3

+6

[
α′B
H

+(1+αB)

(
H′

H2
−1

)
+

ρ̄m+ p̄m
2a−2M2H2

](
H′

H2
−1

)
−2k2

H2

[
1+αT +αB(1+αB)−(1+αH)(1+αM )+(1+αB−αH)

(
H′

H2
−1

)
+
α′B−α′H
H

+
ρ̄m+ p̄m

2a−2M2H2

]
, (B.14)

γ3 ≡ γ1 +γ2 +
H′

H2
, (B.15)

γ4 ≡ 6γ−1
0

[
α′B
H

+(1+αB)

(
H′

H2
−1

)
+

ρ̄m+ p̄m
2a−2M2H2

]
+

2αH

αK +6α2
B

k2

H2
, (B.16)

γ5γ0 ≡ −(3+αM )γ0−
α′K
H

+6(1−αB)
α′B
H

+2(αH−αB)
k2

H2
+3(1+αB)

ρ̄m+ p̄m
a−2M2H2

+
[
6α2

B +2αK−12αB−6
](

1− H
′

H2

)
, (B.17)

γ6 ≡
2k2

γ0H2

[
αM +αH(1+αM )−αT −

α′H
H

]
, (B.18)

γ7 ≡
αB

αK +6α2
B

k2

H2
, γ8≡

αB

αK +6α2
B

. (B.19)

Note that the various γi (with i= 0, 1, 2, · · · ) are not the same as those in e.g. [13, 16].
Moreover, by taking the time derivative of (B.9), we use (B.10) and (B.11) to get

Φ′ + (1 + λ1)HΦ = λ2HΨ + λ3H2π − λ4
a2qm
2M2

+ λ5H
a2σm
M2

− 3λ6
a2δpm
HM2

, (B.20)

where we defined the parameters

λ1 ≡ αT + αH(γ5 − γ4) + αB(1 + αT − αHγ4)−
α′H
HαH

− β2

(
1 + αH

αH

)
, (B.21)

λ2 ≡
α′T
H
− (1 + αT )

α′H
HαH

− αHγ6 − β2

(
1 + αT

αH

)
, (B.22)

λ3 ≡ β3 + β2

(
αM − αT

αH
− 1

)
, λ4 ≡ 1 + αT − αHγ4, (B.23)

λ5 ≡ αM +
α′H
HαH

− σ′m
Hσm

− 2
(

1 + αHγ7

)
+
β2

αH
, λ6 ≡ αHγ8, (B.24)

and we have

β2 ≡ αT + αBλ4 − αM − αHγ1, (B.25)

β3 ≡ (αM − αT )
α′H
αHH

+ (αH − αM + αHγ4 − 1)
H′

H2
+
α′T − α′M
H

−αHγ3 + λ4

(
1 + αB −

ρ̄m + p̄m
2a−2M2H2

)
. (B.26)
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C Adiabatic initial conditions

We use the Einstein de Sitter initial condition Ψ′(zd) = 0 at the decoupling epoch z = zd,
given that Ωx(zd) � 1. Moreover, adiabatic initial conditions are usually imposed by the
vanishing of the relative entropy perturbation Sxm (see e.g. [6–9]), given by

Smx(zd) = 0, Smx ≡ 3H
(
δρm
ρ̄′m
− δρx

ρ̄′x

)
. (C.1)

Then by choosing the velocities to be equal,

Vx(zd) = Vm(zd), (C.2)

and noting ∆A in (2.6), we obtain

∆x(zd)

1 + wx,eff(zd)
=

∆m(zd)

1 + wm(zd)
. (C.3)

Together with (2.6) and (2.7), we get the initial fluctuations at zd, given by

Vmd(k) =
−2

3H (1 + Ωmwm + Ωxwx)
Φd(k), (C.4)

∆md(k) =
1 + wm

1 + Ωmwm + Ωxwx,eff

[
αMHVxd(k)− 2k2

3H2
Ψd(k)

]
, (C.5)

where Φd is given by (4.4), and given (B.9) and π′(zd) = 0 = σm(zd), we have

Ψd(k) =
1 + αH

1 + αT
Φd(k) +

αM − αT − αH

1 + αT
Hπd(k), (C.6)

and from (B.4), with P being given by (B.8), we have

πd(k) = − 1

λ7
Vxd(k) +

2αB

3λ7(1 + wx)HΩx
Φd(k), (C.7)

with the parameter λ7 ≡ 1 + 2αB/[3(1 + wx)Ωx]. (Note that throughout this appendix, all
the background parameters are also evaluated at z = zd.)
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