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Intelligent sociotechnical systems are gaining momentum in today’s information-
rich society, where different technologies are used to collect data from such systems and
mine this data to make useful insights about our daily activities. These systems range
from driver-assistance systems, to medical-patient monitoring systems, to emotion-aware
intelligent systems, to complex collaborative robotics systems. They are built around
(i) intrusive technologies such as physiological sensors, used for example in EEG, ECG,
electrodermal activity and skin conductance and (ii) nonintrusive technologies that use
piezo-vibration sensors, facial images, chairborne differential vibration sensors and bed-
borne differential vibration sensors. However, despite their undisputable advantages in
our daily lives, there are a number of issues relating to the design and development of such
systems, as they rely on emotion and stress classification from physiological signals. These
issues can be viewed from various perspectives including: (a) quality and reliability of
sensor data; (b) classification performance in terms of accuracy, precision, specificity, recall
and F1-measure; (c) robustness of subject-independent recognition; (d) portability of the
classification systems to different environments and (e) the estimation of the emotional
state for dynamic systems.

This book emerging from the Special Issue of the Sensors journal on Emotion and
Stress Recognition Related Sensors and Machine Learning Technologies emerges as a result
of the crucial need for massive deployment of intelligent sociotechnical systems. Such
technologies are being applied in assistive systems in different domains and parts of the
world to address challenges that could not be addressed without the advances made in
these technologies. The Special Issue includes 25 papers submitted in response to the call
for papers. The high number of submissions to the Special Issue is an indication of the
momentum of the current research in this field. This momentum is driven not only by
technological development, but also the need for assistive technologies. The Special Issue
includes impactful papers that present scientific concepts, frameworks, architectures and
ideas on sensing technologies and machine-learning techniques. These are relevant in tack-
ling the following challenges: (i) the field readiness and use of intrusive sensors systems
and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems
and Electrodermal activity sensor systems; (ii) the quality assessment and management of
sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals;
(iv) the field readiness and use of nonintrusive sensor technologies, including Visual sen-
sors, Acoustic sensors, Vibration sensors and Piezo-electric sensors; (v) emotion recognition
using mobile phones and smartwatches; (vi) body area sensor networks for emotion and
stress studies; (vii) the use of experimental datasets in emotion recognition, including
datasets generation principles and concepts, quality insurance and emotion elicitation
material and concepts; (viii) machine-learning techniques for robust emotion recognition,
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including Graphical models, Neural network methods, Deep learning methods, Statisti-
cal learning and Multivariate empirical mode decomposition; (ix) subject-independent
emotion and stress recognition concepts and systems, including Facial expression-based
systems, Speech-based systems, EEG-based systems, ECG-based systems, Electrodermal
activity-based systems, Multimodal recognition systems and Sensor fusion concepts and
(x) emotion and stress estimation-and-forecasting from a nonlinear dynamical system’s
perspective.

In general, these papers are grouped into four categories/groups:

1. Stress level recognition
2. Wearable body sensors
3. Dermatological sensors
4. Facial expression recognition

1. Stress Detection

Addressing the issue of stress as a naturally occurring psychological response, identifi-
able by several body signs, [1] proposed a novel way of discriminating between acute stress
and relaxation by using movement and posture characteristics of the foot. The authors
used several machine-learning techniques to build models that were used to assess the
validity of their method based on data collected from 23 participants performing tasks that
induced stress and relaxation. Data collected from an additional sample of 11 participants
were used to test their models, with results demonstrating replicability and an overall
accuracy of 87%. External validity was also demonstrated by conducting a field study with
10 participants that revealed the robustness of the results.

The research in [2] contributed to bridging the gap between laboratory experimen-
tation and daily life activities. The authors used a laboratory experiment and ecological
momentary assessment-based data collection with smartwatches in daily life to propose a
stress level detection system. The system pre-processes noisy physiological signals, extracts
features and applies machine-learning techniques to classify the levels of stress. The study
revealed that the accuracy of the system when tested in daily life improved significantly
when machine-learning models were trained in the laboratory instead of with data from
daily life.

In [3], regression and classification models were compared for stress detection using
both personal and user-independent models’ experimentation. The paper used the stress-
detection dataset AffectiveROAD, which contained data gathered using Empatica E4 sensor
and also continuous target variables—a feature that is missing in the other stress-detection
dataset. The two classification models used for stress detection were Random Forest and
Bagged tree based ensemble. From conducted experiments and using the AffectiveROAD
dataset, the study revealed that regression models outperform classification models when
classifying observations as stressed or not-stressed.

The research done in [4] revisited stress by using EEG as an objective measure for
cost-effective and personalized stress management in situations where mental health
facilities are not available. The study conducted by the paper considered: (i) a scenario in
which- long-term stress was classified with machine-learning algorithms using resting
state EEG signal recordings and (ii) the labelling for the stress and control groups was
performed using two currently accepted clinical practices: the perceived stress scale score
and expert evaluation. Support vector machine was found by the authors to be the most
suitable classification algorithm for long-term human stress when used with the alpha
asymmetry feature.

2. Wearable Body Sensors

The main contribution of [5] was to study electroencephalography (EEG) and galvanic
skin response (GSR) together for boredom classification, with the objective of using the
potential features of the associated data for emotion classification. The authors investigated
the combined effect of these features on boredom classification by: (i) collecting EEG
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and GSR data from 28 participants using off-the-shelf sensors; (ii) labelling the collected
samples using the participants’ questionnaire-based testimonies of the various boredom
levels experienced; (iii) using the collected data to initially train 30 models with 19 machine-
learning algorithms and select the top three candidate classifiers and (iv) tuning the
hyperparameters and validating the final models through 1000 iterations of 10-fold cross
validation to increase the robustness of the test results. The work revealed the relative
efficiency of multilayer perceptron compared to other machine-learning techniques. It also
showed the correlation between boredom and the combined features of EEG and GSR.

The research in [6] addressed the issues of features extraction from Electroencephalog-
raphy (EEG) signals and emotional aspects by considering both intra-subject and inter-
subject approaches to EEG-based affect detection. Using three public repositories, the
paper analysed both modelling approaches and showed that the subject’s influence on the
EEG signals is substantially higher than that of the emotion, thus (i) the subject’s influence
on the EEG signals should be accounted for and (ii) a data transformation that seamlessly
integrates individual traits into an inter-subject approach should be performed to improve
the classification process.

In [7], the authors suggested a better classification method for detecting stressed states
based on raw electrocardiogram (ECG) data and a method for training a deep neural
network (DNN) with a smaller data set. The work built an end-to-end architecture to detect
stress using raw ECGs, using a multistage architecture that includes convolutional layers.
Two kinds of datasets were used to train and validate the model, which were: a driving
dataset and a smaller mental arithmetic dataset. A transfer learning method was then used
to train the proposed model with a small dataset. It is shown in the paper that: (i) based on
receiver operating curves, the proposed model performs better than conventional methods
and (ii) compared with other DNN methods using raw ECGs, both the proposed model
and the transfer learning method improves accuracy. These findings revealed that the
proposed model can significantly contribute to mobile healthcare for stress management in
daily life.

The issue of recognizing mental stress with deep ECG-respiration network was ad-
dressed in the workplace by proposing a novel stress-detection algorithm that uses multiple
physiological signals, such as electrocardiogram (ECG) and respiration (RESP) signals to
achieve end-to-end deep learning in [8]. The study mimicked workplace stress by using
Stroop and mathematical tasks as stressors, with each stressor being followed by relax-
ation task(s). It also provided experimental results demonstrating its superiority over
conventional machine-learning models.

The authors in [9] focused on the field readiness of low-cost wearable devices, which
are increasingly being used in research as well as for personal and private purposes. The
goal was to evaluate the accuracy of these devices in comparison to well-calibrated, high-
quality devices used in laboratory experiments for physiological and medical research. The
study demonstrated an approach for quantification of the accuracy of low-cost wearables in
comparison to high-quality laboratory sensors by developing a benchmark framework for
physiological sensors. The benchmark covered the entire workflow from sensor data acqui-
sition to computation and interpretation of diverse correlation and similarity metrics. The
study showed that the benchmarked wearables provide physiological measurements, such
as heart rate and interbeat interval, with an accuracy close to those of the professional/high-
end sensors. It was also revealed that accuracy varied more for parameters such as galvanic
skin responses.

In [10], the issue of remote patient monitoring was revisited with the perspective of
developing a wearable device that was low cost, single channel, dry contact and suitable
for in-ear EEG for nonintrusive monitoring. The paper covered all aspects of the designs,
engineering and experimenting. By applying machine learning for emotion classification,
it was revealed that the proposed device was able to classify basic emotion with results
that were comparable to those measured from the more conventional EEG headsets at T7
and T8 scalp positions.
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In [11], a deep analysis of features proposed to extract information from the electrocar-
diogram, thoracic electrical bioimpedance and electrodermal activity signals was carried
out with a focus on activities such as neutral, emotional, mental and physical. The study
tested a total of 533 features for activity recognition. A comprehensive study was then
performed taking into consideration the prediction accuracy, feature calculation, window
length and type of classifier. This study enabled the determination of the ideal number of
features and the best subset of features among those proposed in literature to obtain good
error probability while avoiding over-fitting.

3. Dermatological Sensors

The association between the physiological responses of a driver and driving stress
was addressed in [12], where the relationship between driving stress and traffic conditions,
and driving stress and road types, respectively, was quantified through research. The study
used electrodermal activity (EDA) signals for a male driver collected in real road-driving
conditions for 60 min a day and over a 21-day period. Two separate models were used that
incorporate the statistical features of the EDA signals, one for traffic conditions and the
other for road types to classify the levels of driving stress (low vs. high). The classification
results of the two models indicated that the traffic conditions and the road types were
important features for driving stress and its related applications.

The work done in [13] addressed the issue of Active and Assisted Living environ-
ments for elderly and/or disabled people and the subjectivity of results when training
a machine-learning model on a specific group of people while testing on a totally new
group of persons. The study relied on electrodermal activity sensors to collect emotions
and used a Convolutional Neural Network (CNN) architecture to provide promising
robustness-related results for both subject-dependent and subject-independent human
emotion recognition. The results revealed that by solely using the nonintrusive EDA
sensors, a robust classification of human emotion was possible even without involving
additional/other physiological signals.

The research in [14] presented the identification of the level of arousal in older people
by monitoring their electrodermal activity (EDA) through a commercial device. The
objective was to use the notion of familiarity with a musical genre on emotional induction
in order to recognize arousal changes and hence create future therapies that can help older
people to improve their mood. This can ultimately contribute to the reduction of depression
and anxiety. Using methods based on the process of deconvolution of the EDA signal,
two different studies were carried out, the first being a purely statistical study based on
the search for statistically significant differences for a series of temporal, morphological,
statistical and frequency features of the processed signals. The second study was a machine-
learning study using a wide range of classifiers to analyse the possible correlations between
the detection of the EDA-based arousal level compared to the participants’ responses to the
level of arousal subjectively felt. While the first study revealed that Flamenco and Spanish
Folklore presented the highest number of statistically significant parameters, the second
study showed that the best classifiers are the support vector machines, with 87% accuracy
for Flamenco and 83.1% for Spanish Folklore, followed by K-nearest neighbours.

Motivated by the limitations of emotion recognition systems in terms of lack of sys-
tematic analysis in literature regarding the selection of classifiers to use, sensor modalities,
features and range of expected accuracy, and many other limitations, the work in [15]
contributed to the body of work in machine learning by presenting a systematic study
across five public datasets commonly used in Emotion Recognition (ER) with the objective
of evaluating emotion in terms of low/high arousal and valence classification through
Supervised Learning (SL), Decision Fusion (DF) and Feature Fusion (FF) techniques using
multimodal physiological data, namely Electrocardiography (ECG), Electrodermal Activity
(EDA), Respiration (RESP) or Blood Volume Pulse (BVP). The work considered: (i) Classifi-
cation performance analysis of ER benchmarking datasets in the arousal/valence space; (ii)
Summarising the ranges of the classification accuracy reported across the existing literature;
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(iii) Characterising the results for diverse classifiers, sensor modalities and feature set
combinations for ER using accuracy and F1-score; (iv) Exploration of an extended feature
set for each modality and (v) Systematic analysis of multimodal classification in DF and
FF approaches. The study revealed that FF is the most competitive technique in terms of
classification accuracy and computational complexity.

Moving away from the affective computing research that has mostly used nonim-
mersive two-dimensional (2D) images or videos to elicit emotional states, [16] adopted an
immersive virtual reality (VR) approach. This allowed the researchers to simulate various
environments in controlled laboratory conditions with high levels of sense of presence
and interactivity. The paper presented a systematic review of the emotion recognition
research undertaken with physiological and behavioural measures using head-mounted
displays as elicitation devices. The results highlighted the evolution of the field, gave a
clear perspective of the use of aggregated analysis and revealed the current open issues
and guidelines for future research works.

Focusing on affecting computing, which is an artificial intelligence area of study
that recognizes, interprets, processes and simulates human affect computers, a survey
of the pertinent scientific literature on affecting computing from 2015 to 2020 was
presented in [17]. The paper presented trends and compared algorithm applications
in new implementations from a computer science perspective. The survey provided
an overview of datasets, emotion elicitation methods, feature extraction and selection,
classification algorithms and performance evaluations.

4. Facial Expression Recognition

Building upon deep transfer learning techniques, facial expression recognition (FER)
was addressed in [18]. The authors tackled the challenging issues of: (i) diversity of factors,
which are unrelated to facial expressions (ii) the lack of training data for FER and (iii) the
intrinsic imbalance in existing facial emotion datasets. The deep transfer contribution to
FER was complemented by a novel loss function called weighted-cluster loss used during
a fine-tuning phase of the model.

In [19], the authors revisited the analysis of pain-related facial expressions by propos-
ing an end-to-end approach based on attention networks for the analysis and recognition of
pain-related facial expressions. The method proposed by the authors combined both spatial
and temporal aspects of facial expressions through a weighted aggregation of attention-
based neural networks’ outputs that use sequences of Motion History Images (MHIs) and
Optical Flow Images (OFIs). A combination of Convolutional Neural Network (CNN) and
Bidirectional Long Short-Term Memory (BiLSTM) Recurrent Neural Network (RNN) was
used to achieve pain recognition.

Building around a human-computer interaction (HCI) setting, [20] addressed the
challenging issue of induction of dialog-based HCI relevant emotional and cognitive load
states by presenting a multimodal dataset for affective computing research. The dataset
used an experimental mobile and interactive scenario design that was implemented based
on a gamified generic paradigm. The work consisted of six experimental sequences
inducing Interest, Overload, Normal, Easy, Underload and Frustration.

Facial-landmark detection was revisited in [21] in a multistage architecture. At the first
stage, the goal was to obtain local pixel-level accuracy for local-context information. The sec-
ond stage was concerned with integrating obtained information with knowledge of spatial
relationships between each key point in a whole image for global-context information. The
paper considered a pipeline architecture consisting of two main components: (i) a deep net-
work for local-context subnet used to generate detection heatmaps via fully convolutional
DenseNets with additional kernel convolution filters and (ii) a dilated skip convolution
subnet consisting of a combination of dilated convolutions and skip-connections networks
used to robustly refine the local appearance heatmaps.

Building around the Child–Robot Interaction (CRI), [22] proposed a system for emotion
recognition in children by recording facial images using both visual (RGB—red, green and
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blue) and Infrared Thermal Imaging (IRTI) cameras. Building upon the Viola–Jones algorithm
on colour images to detect facial regions of interest (ROIs), the paper proposed as a novel
contribution the computation of the error probability for each ROI located over thermal
images, using a reference frame manually marked by a trained expert, in order to choose that
ROI better-placed according to the expert criteria. The results: (i) show that the proposed
approach for ROI locations may track facial landmarks with significant low errors with
respect to the traditional Viola–Jones algorithm and (ii) suggest that the proposed system be
integrated to a social robot to infer child emotions during a child–robot interaction.

A comparison of machine-learning algorithms applied to the recognition of emotion
intensities was proposed in [23] as a solution to the lack of encoding the intensity of
observed facial emotion and multifacial behaviour in existing emotion recognition systems.
The work compared several algorithms, include (i) Gabor filters, a Histogram of Oriented
Gradients (HOG), and Local Binary Pattern (LBP) for feature extraction and (ii) Support
Vector Machine (SVM), Random Forest (RF), and Nearest Neighbour Algorithm (KNN) for
classification. The experiment suggested that the comparative study could be further used
in real-time behavioural facial emotion and intensity of emotion recognition.

A transfer learning approach was adopted for mouth-based emotion recognition
in [24]. The study was predicated on the fact that there were only a few datasets available
in practice and most of them included emotional expressions simulated by actors, instead
of adopting real-world categorisation. By enabling the image of the mouth to be available,
even when the whole face was only visible from an unfavourable perspective, the transfer
learning approach allowed the authors to use fewer training data. This minimized the effort
of training a whole network from scratch and resulted in an improved dynamic emotion
recognition when taking into account not only new scenarios but also modified situations
to the initial training phase. As presented in the paper, the transfer learning approach and
the underlying method proved the relevance of mouth detection in the complex process of
emotion recognition.

The authors in [25] proposed a multimodal approach to emotion recognition in the
aviation domain with the goal of filling some of the gap between pilots’ emotions and their
bioreactions during flight procedures such as take-off, climbing, cruising, descent, initial
approach, final approach and landing. Building around a sensing architecture and a set of
simulated flight experiments, the study showed that it was indeed possible to recognize
emotions from different pilots in flight, combining their present and previous emotions.

As we alluded to in our introduction, assistive technology is a research field with a
number of open challenges. Some of those are present in this Special Issue, which we think
will foster more research. Other fields were not covered, hence leaving room for new ideas
to be discovered in this field.
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