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ABSTRACT

Aims. I aim to investigate whether the photometric variability in the candidate host star CVSO 30 can be explained by starspots.
Methods. The Transiting Exoplanet Survey Satellite (TESS) light curve of CVSO 30 is separated into two independent non-sinusoidal
periodic components. A starspot modelling technique is applied to each of these components.
Results. Combined, the two model light curves reproduce the TESS observations to a high accuracy, obviating the need to invoke
planetary transits to describe part of the variability.
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1. Introduction

The T Tauri star CVSO 30 was discovered by Briceño et al.
(2005). Van Eyken et al. (2012) analysed extensive Palomar
Transit Factory observations of the star and found periodic low-
amplitude depressions in the light curve with durations of ∼2 h.
These were ascribed to planetary transits. A second planetary
candidate (CVSO 30c), found by direct imaging, was announced
by Schmidt et al. (2016) (but see Lee & Chiang 2018, for a dif-
ferent interpretation). The possible association of planets with
CVSO 30 is of particular interest due to the young age of the
star (∼2.6 Myr; Briceño et al. 2005). Other authors who have
obtained further observations of periodic flux dips, or who pro-
posed detailed models for these, include Raetz et al. (2016),
Barnes et al. (2013), Kamiaka et al. (2015), Yu et al. (2015),
Koen (2015), Howarth (2016), Onitsuka et al. (2017), and
Tanimoto et al. (2020).

Koen (2015) pointed out that the periodic flux dips discov-
ered by Van Eyken et al. (2012) may simply be part of a com-
plex variation pattern of the star. This theme was elaborated on
by Koen (2020) and Bouma et al. (2020), who independently
came to the conclusion that the star was a binary T Tauri with
no overt planetary companions. The light variations of both stars
are thought be complex, showing dips. This Letter confirms that
finding and presents models for both sets of variations.

A variety of explanations for complex light curves in young
late-type stars have been discussed in the literature, for example
in Stauffer et al. (2017, 2018), Zhan et al. (2019), and Günther
et al. (2020). Here, it is shown that the variations could be due to
dark features on the surfaces of the stars. The modelling method-
ology is very similar to that in Koen (2021).

2. The starspot model

The fundamental equations describing the flux variations due to
the rotation of a spotted star are

I(ψ) =

[∫
all

F∗h(µ)µ dS −
∫

spots
(F∗ − Fs)h(µ)µ dS

]

I0 =

∫
all

F∗h(µ)µ dS = π(c0 + 2c1/3 + c2/2)F∗

h(µ) = c0 + c1µ + c2µ
2, (1)

where: ψ is the rotational phase; I(ψ) and I0 are, respectively,
the observed luminosity and the luminosity that would have
been observed from an unspotted stellar surface; F∗ and Fs are,
respectively, the fluxes from unspotted and spotted surface areas;
the function h(µ) describes limb darkening; and µ = cos γ,
where γ is the angle between the surface normal and the line
of sight towards the observer (see e.g., Dorren 1987, and refer-
ences therein). Equation (1) is a slight generalisation of Eq. (1)
in Koen (2021) to quadratic, rather than linear, limb darkening;
regarding the usual coefficients a and b (e.g., Claret 2017),

c0 = 1 − a − b c1 = a + 2b c2 = −b.

It follows from this Letter’s Eq. (1) that

I(ψ)/I0 ≈ 1−
∫

spots
(1−Fs/F∗)h(µ)µ dS

/
[π(c0+2c1/3+c2/2)]. (2)

Koen (2021) showed that by discretising the integral, Eq. (2) can
be approximated by the linear regression equation

y = Gz + e. (3)

In Eq. (3), y is a column vector with elements

y` = [I0 − I(ψ`)]/I0 ` = 1, 2, . . . , L.

Each entry in the vector z corresponds to a particular small sur-
face element:

z j = 1 − Fs( j)/F∗ j = 1, 2, . . . , p, (4)

that is, z j = 0 if pixel j is unspotted. Entries in the L× p matrix G
depend only on the limb darkening coefficients and on the angle
γ j between the local surface normal and the line of sight. The
vector e models noise.
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Constraints need to be placed on z in order to make the
regression problem tractable. Using the notation

||z||n ≡

∑
j

|z j|
n

1/n

for the norm-n of z, a simple constrained form of Eq. (3) is

min
z

[
1
2
||y −Gz||22 + λ||z||n

]
, (5)

where the constant λ determines the relative importance of the
model fit and the parsimony of the non-zero components of z.
The cases n = 1 and n = 2 are known, respectively, as ‘lasso’ and
‘ridge’ regression in the literature (e.g., Hastie et al. 2009). Both
lasso and ridge regression favour small values of z j (i.e. small
deviations from the undisturbed photospheric flux). In the case of
lasso regression, a premium is placed on zero values, that is, the
regression can be seen as providing an optimally parsimonious
model with a minimum number of pixels that have depressed
fluxes. The quadratic programming problem (5) can easily be
solved using software such as CVX (e.g., Grant & Boyd 2020).

A standard regression goodness of fit statistic is the ‘coeffi-
cient of determination’,

R2 = 1 −
∑
`

ε2(ψ`)
/∑

`

[
m(ψ`) − m

]2 ,

where

ε(ψ) = m(ψ) − m̂(ψ),

m(ψ) and m̂(ψ) being, respectively, the observed and the pre-
dicted magnitudes at phase ψ. Here, R2 measures the fraction
of the observed variability of m explained by the model. In addi-
tion to R2, which is not very sensitive to locally poor fits, two
other useful statistics are

d = max
`
|ε(ψ`)|

σε =

 1
L

∑
`

ε2(ψ`)

1/2

. (6)

Values of d and σε will be given as percentages of the peak-to-
peak observed magnitudes in what follows.

Because of the particular formulation of the problem, only
two physical quantities (the inclination angle and limb dark-
ening) need to be specified. Results are not very sensitive to
the inclination angle i; a few different values were tried, and
those giving the smallest prediction errors were adopted. If it
is assumed that the two stars making up the binary system are
fairly similar, with Teff ≈ 3400 K (Briceño et al. 2019; Koen
2020) and log g = 4.5, then typical limb darkening coefficients
for the Transiting Exoplanet Survey Satellite (TESS) filter are
a = 0.18, b = 0.44 (Claret 2017).

Clearly, for dark starspots, 0 ≤ z j ≤ 1 for all j. The
upper limit can be sharpened by noting that for a stellar tem-
perature ∼3400 K, starspot temperatures will generally be about
400 K lower (see Fig. 7 in Berdyugina 2005). Assuming black-
body radiation and using the TESS filter transmission function1,
Fs/F∗ ≥ 0.49 or z j = 1 − Fs/F∗ ≤ 0.51.

1 See e.g., https://heasarc.gsfc.nasa.gov/docs/tess/
the-tess-space-telescope.html#bandpass
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Fig. 1. Norm-1 model fits (dots) to the phased TESS light curves of the
two components of CVSO 30 (solid lines). Top panel: 0.4991 d period-
icity. Bottom panel: 0.4486 d periodicity.

Table 1. Details of the spot models.

Star Norm λ i f σε d
(deg)

1 1 1E−7 60 0.05 0.045 0.133
2 1E−4 60 0.48 0.165 0.309

2 1 1E−9 70 0.37 0.264 0.790
2 1E−7 70 0.66 0.243 0.648

Notes. Peak-to-peak amplitudes are 0.099 and 0.037 mag for stars 1 and
2, respectively. The ‘filling factor’ f is the fraction of the 20 000 coef-
ficients z j that are larger than 0.01 (i.e. notably non-zero). The statistics
σp and d are defined in Eq. (6) and are given as percentages of the peak-
to-peak amplitudes.

One mathematical constant, λ, must be specified. This
parameter controls the tradeoff between the goodness of fit of the
model and the number of surface elements with Fs , F∗ required
to achieve the fit. The largest values that still gave excellent
global fits (R2 = 1) were chosen. The surface of each star was
subdivided into p = 20 000 elements of equal area (2.06 deg2).

3. Results

TESS (Ricker et al. 2015) observed CVSO 30 for 21.8 d at a
two-minute cadence. The data are available from the Mikulski
Archive for Space Telescopes (MAST) portal2. Koen (2020) and
Bouma et al. (2020) argue that the light curve is the sum of con-
tributions from two different stars. Because they are periodic,
Fourier methods make short work of separating the two indi-
vidual light curves. The larger amplitude variation has a base
frequency of 2.0038 d−1 (period 0.49905 d), with at least two har-
monics also evident in a periodogram of the observations. The
second light curve is much more complex, showing power up to
the seventh harmonic of the fundamental frequency 2.2292 d−1

(period 0.44859 d).
The two light curves are plotted in Fig. 1 (solid lines). The

figure also shows norm-1 model fits (dots), which are indistin-
guishable from the observations on the scales of the diagram.
Details of the two models are listed in Table 1, which also gives

2 https://mast.stsci.edu/portal/Mashup/Clients/Mast/
Portal.html
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Fig. 2. Spot configurations giving rise to the model light curves in Fig. 1
(see Table 1 for further details). The colour coding indicates the ratio of
local flux to the unspotted photospheric flux, i.e. it equals zero (one) for
a completely dark (unspotted) area.
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Fig. 3. Same as for Fig. 2, but for norm-2 models. The different intensity
scales in the two panels should be noted.

parameters for norm-2 models. Spot patterns can be seen in
Figs. 2 and 3.

A comparison of the combined model light curves and the
TESS observations is given in Fig. 4. It is clear that the overall
description of the data is very good. The residuals are dominated
by two short stretches of systematic deviations visible towards
the ends of the second and the last panels of Fig. 4. If they are
excluded (spans of ∼0.15 and ∼0.47 d, respectively), the largest
peak in the residual amplitude spectrum has a height of 2.8 milli-
magnitudes (at a period ∼7.4 d). This can most likely be ascribed
to systematics in the TESS observations and/or typical T Tauri
variability.

4. Conclusions

It should be noted that starspot models based on photometry
through a single filter are not unique, as is made abundantly
clear by comparing Figs. 2 and 3 (see also e.g., Vogt 1981; Basri
& Shah 2020). Multi-filter light curves and time series spec-
troscopy will go some way towards ameliorating this problem.
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Fig. 4. Two-minute TESS measurements of CVSO 30 (shown with dots)
and the sum of the two model light curves plotted in Fig. 1 (shown
with the solid line). The width and height of each panel are 5.7 d and
0.24 mag, respectively. The total duration of the TESS run was 21.8 d.

Nonetheless, it has been demonstrated that starspot models have
the potential to accurately reproduce the variability in CVSO 30
without invoking additional sources of variability, such as plan-
etary transits.
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