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A B S T R A C T

Detecting and mapping the occurrence, spatial distribution and abundance of Alien Invasive Plants (AIPs) have
recently gained substantial attention, globally. This work, therefore, provides an overview of advancements in
satellite remote sensing for mapping and monitoring of AIPs and associated challenges and opportunities.
Satellite remote sensing techniques have been successful in detecting and mapping the spatial and temporal
distribution of AIPs in rangeland ecosystems. Also, the launch of high spatial resolution and hyperspectral re-
mote sensing sensors marked a major breakthrough to precise characterization of earth surface feature as well as
optimal resource monitoring. Although essential, the improvements in spatial and spectral properties of remote
sensing sensors presented a number of challenges including the excessive acquisition and limited temporal re-
solution. Therefore, the use of high spatial and hyperspectral datasets is not a plausible alternative to continued
and operational scale earth observation, especially in financially constrained countries. On the other hand,
literature shows that image classification algorithms have been instrumental in compensating the poor spatial
and spectral resolution of remote sensing sensors. Furthermore, the emergence of robust and advanced non-
parametric image classification algorithms have been a major development in image classification algorithms.
Therefore, to address the inevitable challenges arising with satellite sensor development technology it is ne-
cessary to explore the use of robust and advanced non-parametric image classifiers with data provided by the
new generation of multispectral sensors with improved spatial and spectral resolutions. This will promote long-
term and large scale mapping of AIPs, especially in financially constrained countries.

1. Introduction

Globally, Alien Invasive Plants (AIPs) pose significant threats to,
among others, natural ecosystems (Gurevitch and Padilla, 2004), bio-
diversity (Gaertner et al. 2009; Higgins et al. 1999), forests (Peerbhay
et al. 2016a), rangelands and agricultural productivity (Pimentel et al.
2005). Furthermore, AIPs are known to reduce native plant species
richness (Gaertner et al. 2009), alter fire regimes and soil properties
(Pejchar and Mooney, 2009) and homogenize biodiversity (Peerbhay
et al. 2016c; Kimothi and Dasari, 2010; Joshi et al. 2004) of invaded
landscapes. Experimental studies have reported excessive economic
losses as a result of alien invasion (Karki, 2009; Ayele, 2007). For in-
stance, in the United States alone, the environmental impacts of the
alien invasion were estimated to be approximately 120 billion US

dollars per annum (Pimentel et al. 2005). In Australia, parthenium in-
vasion in prime grazing land costs the government about 16.8 million
US dollars annually, while in India, forty percent crop production losses
are attributed to AIPs (McConnachie et al. 2011). Lowe et al. (2000)
presented a list of invasive species around the world. The list comprises
of Caulerpa Seaweed (Caulerpa taxifolia), Siam weed (Chromolaena
odorata), Strawberry guava (Psidium cattleianum), Tamarisk (Tamarix
ramosissima) and the Yellow himalayan raspberry (Rubus ellipticus).
Several other AIPs with global distribution like parthenium (P. hyster-
ophorus) (Nigatu et al. 2010), Bugweed (Solanum mauritianum)
(Peerbhay et al. 2015), Tamarix spp (Swayne et al. nd), Bracken fern
(Pteridium) (Matongera et al. 2017; Singh et al. 2013) and Pinus spp
(Forsyth et al. nd) have also been reported.

To mitigate AIPs spread, timely and accurate information on spatial
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and temporal distribution, as well as abundance is required (Peerbhay
et al. 2016a). This information is necessary to enhance the under-
standing of trends and patterns in AIPs spread for improved decision-
making, optimal resource management and stewardship. Traditionally,
field surveys and aerial photographs have been used to collect data on
AIPs (Zuberi et al. 2014; Ayele, 2007; Foxcroft et al. 2008; Crossman
and Kochergen, 2002; Everitt et al. 1996). However, many studies (e.g.
Peerbhay et al. 2016c; Evangelista et al. 2009) noted that such ap-
proaches are not sustainable due to excessive capital, time and labor
required, especially for large-scale applications. Furthermore, the use of
traditional approaches like surveys are hampered by accessibility to the
regions of interest, particularly in remote areas (Matongera et al.
2016a, 2016b; Curatola Fernández et al. 2013). Satellite remote sen-
sing, on the other hand, has increasingly gained popularity as a plau-
sible alternative in AIPs mapping (Dorigo et al. 2012; Aitkenhead and
Aalders, 2011; Gómez-Casero et al. 2010). Unlike traditional ap-
proaches, satellite remotely sensed data and techniques can be applied
on large and remote geographical locations (Huang and Asner, 2009).
Similarly, the repeated coverage possible with satellite remote sensing
approaches allows for detection of plant phenology which is necessary
for the detection of AIPs spread (Flood, 2013).

Numerous studies (e.g. Matongera et al. 2016a; Peerbhay et al.
2016c; Niphadkar and Nagendra, 2016; Rocchini et al. 2015; Bradley,
2014; Boyd and Foody, 2011; Huang and Asner, 2009; Lass et al. 2005;
Joshi et al. 2004) have explored remote sensing approaches to optimize
the detection and mapping of AIPs. For instance, Huang and Asner
(2009) provided an overview of spatial, spectral and temporal sensor
resolutions for the detection of AIPs based on structural and functional
traits at various canopy levels. Similarly, Peerbhay et al. (2016c) ex-
plored the value of multisource remotely sensed data for optimal de-
tection of structural and functional properties of AIPs in commercial
forests, while Bradley (2014) investigated the value of spectral, struc-
tural and phenological attributes in detecting AIPs. Lass et al. (2005),
on the other hand, explored the use of hyperspectral dataset in de-
tecting AIPs. To the best of our knowledge, there is no study that has
tried to understand the use of improved resolution data provided by the
new generation multispectral sensors in concert with advanced and
robust image classification algorithms for detection of AIPs. In our
opinion, it is necessary that future studies examine this relationship to
improve large-scale and long-term mapping of AIPs in developing
countries, currently constrained by existing acquisition costs of high
spatial and hyperspectral remote sensing data.

The present study explores the importance of using the advanced
and robust non-parametric image classification algorithms on freely
available improved spatial and spectral resolution data provided by the
new generation of multispectral sensors to promote AIPs mapping at an
operational scale. Firstly, this paper provides a background on the
ecology, as well as the spatial distribution of AIPs around the world.
Secondly, the paper discusses sensor vegetation spectral properties
necessary for discriminating AIPs as well as other remote sensing
techniques used in the identification of AIPs from native vegetation.
Thirdly, the review explores the applications of different satellite re-
mote sensing techniques, such as multispectral, hyperspectral and
multisource dataset in detection and mapping of AIPs as well as their
financial implication in relation to scale of application and mapping
accuracy. Fourthly, the paper outlines the importance of image classi-
fication with a detailed comparison of parametric and non-parametric
or advanced robust machine learning algorithms in enhancing the de-
tection of AIPs using remotely sensed data. Furthermore, the paper also
draws a synergy between the type of remotely sensed data and a chosen
image classifier. Lastly, the paper highlights the challenges of using
remote sensing in the detection and mapping of AIPs and suggests di-
rections for future research.

2. The ecology and spatial distribution of AIPs

Broadly, the term AIPs is used to refer to plant species or sub-plant
species growing outside their naturally occurring habitats, with a strong
ability to survive, reproduce, disperse and subsequently displace native
flora (Kimothi and Dasari, 2010; Shezi and Poona, 2010; Mack et al.
2000). Generally, AIPs have identical functional features, such as
competitive aggression and increased encroachment on disturbed en-
vironments. In these areas, AIPs take advantage of reduced interspecies
competition as soils are either left bare or the native flora are still at an
early stage of rejuvenation (Le Maitre et al. 2002). Studies have noted
for instance that parthenium establishes and naturalize on empty niches
along roadsides, railway tracks, fallow agricultural lands and around
buildings (McConnachie et al. 2011). Similarly, Peerbhay et al. (2015)
reported that the exotic Bugweed invades pasture lands, river-banks,
forest margins and plantations. Other studies e.g. Curatola Fernández
et al. (2013) have also reported that areas disturbed by fire are often
preferred by the Bracken fern while Dark (2004) found that areas close
to roads have a high density of noxious species in California.

Furthermore, studies have shown that AIPs have the engineering
ability to modify their newly invaded habitats (Peerbhay et al. 2016b;
Bax et al. 2003), thereby making it more suitable for their exponential
growth and distribution. For instance, the allelopathic chemicals pro-
duced by parthenium not only displace indigenous plants but also
transform river banks, grasslands, floodplains and woodlands into
monocultural shrublands (McConnachie et al. 2011). Nigatu et al.
(2010), for instance, found that the allelopathic chemicals produced by
AIPs can inhibit germination and growth of indigenous plant species,
which can change the structure and type of vegetation, fauna and local
climate. Also, the literature shows that invaded landscapes are more
likely to remain dominated by one individual species for a very long
time (Huang and Asner, 2009). Although literature highlights some
positive ecological and economic impact of AIPs, such as the provision
of habitat to local fauna (Matongera et al. 2016a) and provision of
fuelwood and carbon assimilation (Shackleton et al. 2007), the re-
corded ecological destruction as a result of the alien invasion is far-
reaching. For instance, AIPs out-compete the indigenous plants for
available natural resources (i.e. water, sunlight, nutrients, space),
which are integral to growth and distribution (Dark, 2004). Further-
more, the literature shows that AIPs are unpalatable to livestock and
game grazing (Everitt et al. 1995; Pyšek, 1998).

According to Kalusová et al. (2013) and Pyšek (1998), plant species
that are highly invasive have their origin in Europe. Mack et al. (2000),
attribute this to the early (1500s) European voyages that contributed
significantly to the human-driven dispersion. Blossey and Notzold
(1995), for instance, reported that the Purple loose strife (Lythrum
salicaria L.), native to Eurasia, was introduced in North America during
the 1800s. Turbelin et al. (2017) presents a global distribution of in-
vasive species in two various ways, the actual number (Fig. 1a) and the
normalized value of invasive species per country (Fig. 1b). Findings
from their work shown that the economically developed countries (i.e.
United States, Alaska, New Zealand and Australia) along with newly
industrialized countries (i.e. South Africa, Brazil, India and China) are
significantly invaded by exotic species. These findings concur with
Mack's et al. (2000) argument that human-beings are the major agents
of AIPs dispersion. Generally, the developed and developing areas are
characterized by large volumes of in-migration (Todaro, 1969), espe-
cially for tourism and economic destinations hence facilitating the in-
troduction of AIPs (see Fig. 2).

On the other study, Richardson and Rejmanek (2011) reported that
Australia, southern Africa, North America, Pacific Islands, Europe and
New Zealand are the regions highly colonised by one or more of these
invasive woody species, Acacia farnesiana, A. mearnsii, Ailanthus altis-
sima, Lantana camara, Leucaena leucocephala and Ricinus communis.

Despite the human-driven invasions i.e. migration and transporta-
tion of goods (Mack et al. 2000), studies have shown that AIPs can
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spread and invade new habitats through watercourses (Dorigo et al.
2012) and birds dispersal. However, Joshi (2006) and Mack et al.
(2000) noted that the human-driven invasion still remains the greatest
contributing factor towards dispersion of exotic plant species globally.
Dispersion of AIPs by humans can be either accidental or purposeful.
Purposefully, people can introduce exotic plants in new regions for
controlling other problematic species, to improve agricultural pro-
ductivity, economic value and for ornamental reasons (Goodwin et al.
1999). The South American miconia (Miconia calvescens) for instance
was introduced intentionally to the island of Tahiti in 1937 for orna-
mental reasons (Lowe et al. 2000). Other studies have recognized the
impact of changing climatic conditions, as well as physiographic factors
to induce invasion processes (Dark, 2004; Kriticos et al. 2003). Apart
from the aforementioned forms of dispersion, the invasiveness and
spreading of AIPs, generally, increases with time of habitation since
their first introduction in a community (Howison, 2016).

3. Spectral properties of AIPs in remote sensing

The rapid spread of AIPs across the landscape renders the adoption
of traditional methods of mapping AIPs such as field surveys and
modelling to manage the encroachment of such species implausible,

hence the need for alternative methods (Peerbhay et al. 2016c;
Evangelista et al. 2009; Lass et al., 1996). Until recently, the viable
alternative for detecting and mapping the spatial and temporal dis-
tribution of AIPs has relied on observing and detecting differences in
their spectral reflectance using remote sensing techniques (Strand,
2007; Joshi, 2006). Several AIPs have been discriminated from their co-
existing vegetation based on estimated spectral variances. These in-
clude the Bracken fern (Matongera et al. 2017; Singh et al., 2013),
Bugweed (Peerbhay et al. 2015, 2016a, 2016b), Mesquite (prosopts
spp.) (Robinson et al. 2016), Broom snakeweed (Gutierrezia sarothrae)
(Peters et al. 1992a) and the Tickberry (Lantana camara) (Oumar 2016).
Studies have revealed that plants, either alien or native, have different
spectral reflectance within different regions of the electromagnetic
spectrum, attributable to dissimilar biophysical (e.g. texture, canopy,
leaf structure and orientation) and biochemical (e.g. chlorophyll and
water content) properties of the plant ((Matongera et al. 2016a; Zhao
et al. 2009). This can best be demonstrated in Fig. 1 where the thick-
ened and succulent leaves of the Iceplant (Carpobrotus edulis) in-
creased the absorption of its spectra around 0.9 μm (see the up pointed
arrow) while the dry foliage of Jubata grass (Cortaderia jubata) in-
creased its spectral reflection around 0.55 μm (see the down pointed
arrow) (Strand, 2007). In these regions, the distinctiveness of spectral

Fig. 1. Global distribution of AIPs as presented in the Global Invasive Species Database and the CABI Invasive Species Compendium of 2016 (Turbelin et al., 2017).
Shown are (a) the total number of recorded AIPs per country and (b) the normalized value of AIPs by the land area of each country (Turbelin et al., 2017).
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reflectance for the two AIPs has necessitated their spectral separation
from native plants using remote sensing techniques.

Like any other vegetation species, the spectral reflectance of AIPs is
discreet in specific spectral wavebands in different seasons of the year
especially in subtropical and temperate climatic regions (Matongera
et al. 2017). For instance, a study by (Holland and Aplin, 2013) re-
vealed that the spectral reflectance of invasive species such as bracken
fern makes it difficult to discriminate bracken fern from grass during
the summer season. The confusion between AIPs and grass during the
summer season is due to the fact that in the visible region of the elec-
tromagnetic spectrum, most AIPs have similar reflectance with other
vegetation species, which reach their peak in summer. In winter, the
spectral reflectance of bracken fern is distinct from other indigenous
vegetation species. A study by Page (2010) highlighted that the winter
colours exhibited by bracken fern are distinct, therefore differentiating
bracken fern from other vegetation types. The higher reflectance values
of the majority of AIPs in winter are more evident in the red part of the
spectrum due to its richness in dead material (Matongera et al. 2016a).
The works of Oumar (2016) assessed the utility of SPOT 6 Sensor in
detecting and mapping lantana camara in South Africa, the study re-
vealed low reflectance in the visible spectrum and an increase in the
NIR region. The low reflectance in the visible was attributed to the
ability of the plant to absorb energy from the sun unlike the near-in-
frared region, which increases in reflectance because of low absorption.

According to Blossey and Notzold (1995), AIPs are often more
vigorous and taller than co-existing vegetation due to disproportionate
resource allocations. The improved physical development (i.e. vigor
and height) of AIPs facilitates their discrimination from coexisting
species, especially with active remote sensing sensors such as Light
Detection and Ranging (LiDAR), which can effectively detect the three-
dimensional aspect of a feature on the ground. In an attempt to un-
derstand the invasiveness of exotic species with recognizable biological
features to identify such plants, Goodwin et al. (1999) reported that
differences in stem heights and flowering periods can be valuable in
distinguishing AIPs from native plant species. Similarly, Everitt et al.
(1995) reported that measuring plant species spectral reflectance at
canopy level has been beneficial in delineating AIPs. Peerbhay et al.
(2016a,b,c) further noted that AIPs often form dense infestation stands
in their new habitats, facilitating their discrimination using remote
sensing techniques. Generally, the phenology of AIPs is different from
the indigenous plants that they normally outcompete and invade. For

instance, a study by Ustin and Santos (2010) established that fennel was
successfully detected and mapped when it was encroaching into
grassland because the timing of its phenology was different from the
grasses.

4. Multispectral remote sensing of alien invasion

The development of broadband remote sensing sensors such as
Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM
+), Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) and Satellite Pour l'Observation de la Terre
(SPOT) marked the beginning of a new era in remote sensing of alien
invasion (Lass et al. 2005). Generally, multispectral remote sensing
sensors provide data collected between 10 and 100m spatial resolution
and in less than 20 bands (Huang and Asner, 2009). Many studies (e.g.
Evangelista et al. 2009, Savage and Lawrence, 2010 and Viana and
Aranha, 2010) have mapped and monitored AIPs using broadband
coarse to medium spatial resolution data. As indicated in Table 1, the
importance of these sensors includes not only the provision of large
swath-width data but also repeated and free to the cost-effective dataset
(Mutanga et al. 2016; Matongera et al. 2016a) which can be archived to
support multi-temporal remote sensing applications. Wilfong et al.
(2009), for instance, used Landsat TM images captured in November
2005 and June 2007 together with a Landsat ETM+ image captured in
January 2002 to detect the Amur honeysuckle (Lonicera maackii (Rupr.)
Herder) in the Northeast of United States. Similarly, Evangelista et al.
(2009) detected Tamarisk along the Arkansas River in Colorado using
Landsat ETM+ scenes acquired in April, May, June, August, Sep-
tember, and October.

The increased repeatability of earth observation using high tem-
poral resolution sensors allows discerning vegetation types at different
growth stages. Studies have shown that the use of images captured at
different plant growing seasons is crucial for a precise detection and
monitoring of changes in those plant species and in their coexisting
vegetation (Hamilton et al. 2006; Joshi et al. 2004). Also, AIPs are
characterized by distinctive contextual and structural features such as
flowering colour and canopy structures at various phenology, which
can best be detected using images taken over time. For instance, the
distinctive orange-brown colour of the Chinese tamarisk (Tamarisk
chinensis), before leaf shading, aided its discrimination from neigh-
boring vegetation (Everitt et al. 1995). Furthermore, the acquisition of

Fig. 2. Spectral signatures for different Alien Invasive Plants (AIPs). Adapted from Strand (2007).
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images at different plant growing seasons offer a great opportunity to
compare images taken at different sun's azimuth, reducing the impact of
topography and cloud shadows (Matongera et al. 2016a). In some cases,
AIPs obscure background of natural vegetation particularly at early
stages of their growth (Peerbhay et al. 2015). Under such conditions,
images acquired over time (e.g. during non-flowering and flowering
seasons) facilitate reliable mapping (Huang and Asner, 2009). On the
other hand, the long-term and seasonal mapping of AIPs are vital to
understand inter and intra annual distribution and abundance of such
species. In addition, given that cloud cover is a challenge to satellite
remote sensing, the use of multi-temporal remote sensing can optimize
the acquisition of cloud-free images.

The launch of high spatial resolution multispectral sensors such as
IKONOS, WorldView-2 and Quickbird are regarded a significant step
towards the development of broadband sensor technology for improved
detection and mapping of AIPs. For instance, Ngubane et al. (2014)
reported an improved (91.67% overall accuracy) detection of Bracken
fern in Durban, South Africa, using the high spatial resolution Word-
View-2 than the medium spatial resolution SPOT-5 (72.22% overall
accuracy). In addition, the Pinus spp. was successfully (84% overall
accuracy) mapped by Forsyth et al. (2014) in mountainous regions of
the Western Cape, using SPOT-6 imagery. Other studies that have re-
ported an improved discrimination of vegetation types using high
spatial resolution multispectral sensors include Oumar (2016),
Peerbhay et al. (2016b), Li et al. (2016), Gómez-Casero et al. (2010),
and Lawrence et al. (2006a). The strategically positioned bands in high
spatial resolution multispectral sensors have significantly improved
their performance in discrimination of vegetation types as compared to
low spatial resolution multispectral sensors. Despite the improved
spatial discrimination of features, literature shows that the utility of
multispectral sensors in vegetation monitoring is still impeded by the
poor spectral resolution (Ngubane et al., 2014).

5. Hyperspectral remote sensing of AIPs

To compensate for the poor spectral resolution that characterizes
multispectral sensors, hyperspectral sensors emerged with hundreds of
narrow contiguous spectral bands to distinguish subtle inter and intra-
species spectral variations (Atkinson et al. 2014; Cho et al. 2012).
Generally, the hyperspectral dataset is collected at 2–16 nm spectral
bandwidth across hundreds of spectral bands (Lass et al. 2002) and has
been used to overcome the saturation problem commonly experienced
with the adoption of multispectral sensors (Mutanga and Skidmore,
2004). This has been demonstrated by Hunt et al. (2007), who tested
the potential of Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) with two broadband sensors (Landsat ETM+ and SPOT-4) to
discriminate the Leafy spurge (Euphorbia esulaL.) near Devils Tower
National Monument in Crook County, Wyoming, USA. Their findings
showed a superior classification accuracy of 74% when using the hy-
perspectral AVIRIS in comparison to Landsat ETM+ and SPOT-4, which
yielded 49% and 48% overall accuracy, respectively.

Furthermore, the improved spectral resolution possible with hy-
perspectral dataset allows a superior classification of AIPs based on
their biochemical and structural properties (Atkinson et al. 2014). With
the improved spectral resolution that characterizes hyperspectral sen-
sors, it has been possible to discern AIPs with superior accuracy, even
on heterogeneous landscapes (Lawrence et al. 2006b). Other studies
that have explored the utility of hyperspectral remote sensing in de-
tection and mapping of AIPs include Peerbhay et al. (2015), He et al.
(2011), Andrew and Ustin (2009), Hestir et al. (2008), Asner et al.
(2008), Underwood et al. (2003) and Lass et al. (2002). Although the
use of hyperspectral remote sensing has been essential in vegetation
monitoring, the issue of small swath-width and high acquisition cost, as
shown in Table 1, remains a challenge. Also, the huge amount of
spectral information provided by hyperspectral sensors increases data
dimensionality and redundancy, thereby reducing classificationTa
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accuracy when mapping AIPs (Peerbhay et al. 2016b).

6. The use of multisource dataset for detection of AIPs

Data fusion or multisource dataset is increasingly being adopted for
detection and mapping of AIPs using remote sensing approaches (e.g.
Asner et al., 2008). Data fusion involves the integration of datasets from
two or more remote sensing sensors, with various strengths and lim-
itations (Huang and Asner, 2009). The fusion of multiple spectral,
spatial and temporal properties in the same classification process push
the limits of current remote sensing techniques. Peerbhay et al.
(2016a), for instance, fused an AISA Eagle airborne hyperspectral da-
taset and a high spatial resolution WorldView-2 with LiDAR data to
detect Bugweed in commercial plantation forests of KwaZulu-Natal,
South Africa. Superior classification accuracies (78% for AISA with
LiDAR) and (74% for WorldView-2 with LiDAR) were obtained with the
integration of these datasets compared to 68%, 63% and 64% produced
by AISA, WorldView-2 and LiDAR datasets alone. Similarly, Kimothi
et al. (2010) optimized the detection of the Lantana camara in the Rajaji
National Park of India using three Indian remote sensing sensors (IRS
LISS-IV, LISS-IV and Cartosat-1) fused or in isolation. Whereas Cartosat-
1 produced a poor classification accuracy of 65% when used alone, its
accuracy was significantly improved to 96.4% and 92.9% when fused
with IRS LISS-IV and LISS-IV, respectively.

However, the full potential of data fusion for optimal detection and
mapping of AIPs has not been adequately explored. Whereas, studies
have shown the success of this method in detection of tree species from
rangelands environment (Ghosh et al. 2014; Naidoo et al. 2012; Cho
et al. 2012), the high-performance computing power required to pro-
cess fused remotely sensed data makes the approach costly, especially
for large-scale mapping purposes (Huang and Asner, 2009). Further-
more, data fusion for detection of AIPs has mainly been dominated by
the integration of either hyperspectral or multispectral dataset with
LiDAR, which is costly, hence not a viable alternative for large-scale
and continuous monitoring of AIPs. On the other hand, Peerbhay et al.
(2016a) suggest that the impact of Bidirectional Reflectance Distribu-
tion Function (BRDF) still needs to be addressed to minimize false
classifications that can, potentially, arise because of differences in solar
and sensor geometry when using multisource data.

7. Parametric and non-parametric image classifiers for invasive
alien plants

Despite the above-mentioned factors that may influence mapping
accuracy, classification algorithms remain a major factor in landscape
mapping and output reliability (Lu and Weng, 2007). Broadly, image
classification processes are performed using either supervised or un-
supervised classification approaches (Strand, 2007; Lass et al. 2005).
Image classifying algorithms could also be categorized based, among
others, on either the obtainable information from the sensor, nature of
the training dataset, on the basis of various parameters (Nath et al.
2014). The later could be subdivided to parametric and non-parametric
image classifiers. The parametric image classifiers such as the Max-
imum Likelihood (MLH), Minimum Distance to Mean (MDM) and
Spectral angle mapper (SAM) have been popular to enhance the dis-
crimination of AIPs on the landscape and to reduce redundancy in re-
motely sensed data (Lu and Weng, 2007). The advantage of these al-
gorithms includes not only the easily accessible with almost every
image classifying software but also the unsophisticated nature in the
application. Although the application of these image classifiers has been
successful (e.g. Ngubane et al. 2014; Curatola Fernández et al. 2013;
Peters et al. 1992b), numerous challenges are reported to impair their
performance. For instance, parametric image classifiers provide classi-
fication output at a pixel level (Curatola Fernández et al. 2015) and that
significantly compromise the classification accuracy, especially with
coarse to the medium spatial resolution multispectral dataset (Kumar

and Min, 2008). Also, parametric image classifiers assume that the
chosen dataset for training the classification process represents an ideal
(100%) cover of the feature or surface (Mather and Tso, 2009; Campbell
and Wynne, 2011; Carson et al. 1995). Furthermore, parametric clas-
sifiers suffer from mixed pixel problem which is increased on hetero-
geneous landscapes (Matongera et al. 2016a; Lass et al. 2005), Hughes
curse of dimensionality, Gaussian distribution of data, as well as the use
of statistics to calculate class separation (Lu and Weng, 2007).

On the other hand, the non-parametric classifiers such as the
Support Vector Machine (SVM), Random Forest (RF) and Artificial
Neural Networks (ANN) have emerged with improved capabilities to
retrieve biophysical features in vegetation. Odindi et al. (2014), tested
the performance of the RF on two multispectral datasets (WV-2 and
SPOT-5) with an overall classification accuracy of 84.72 and 72.22% for
WV-2 and SPOT images respectively. Gavier-Pizarro et al. (2012),
successfully employed the SVM to analyse the expansion of glossy
privet (Ligustrum lucidum) using Landsat data in Córdoba, Argentina.
Similarly, Jay et al. (2009) classified patches of the Leafy spurge in a
heterogeneous rangeland of Montana in the United States, using RF
classifier on a single date and time-series, with a classification accuracy
varying between 72% and 95%. The main advantage of non-parametric
image classifiers is the ability to treat individual pixels as mixtures of
pure materials and end-members in the classification process (Curatola
Fernández et al. 2013). In this process, the classifiers sub-divide each
individual pixel data to increase the spectral variance of different fea-
tures within the pixels for superior and meaningful land cover com-
position as well as improved classification accuracy (Kumar and Min,
2008). As opposed to parametric classifiers that use statistics, non-
parametric image classifiers such as ANN are not driven by statistical
properties of the data and they are effective in extracting vegetation-
type information even in heterogeneous landscapes (Gil et al. 2011).
Generally, the non-parametric classifiers are suitable for classifying
change than the parametric (Gavier-Pizarro et al. 2012).

8. The use of vegetation indices for detection of AIPs

Besides, vegetation indices, which are a ratio or linear band com-
binations, have been very instrumental in the mapping of AIPs (Lass
et al. 2005; Gómez-Casero et al. 2010). Commonly used vegetation
indices with AIPs mapping include the Normalized Difference Vegeta-
tion Index (NDVI) (Savage and Lawrence, 2010; Underwood et al.
2003), Principal Component Analysis (PCA) (Carson et al. 1995), En-
hanced Vegetation Index (EVI) (Wilfong et al. 2009), Tasseled Cap
(TCap) (Savage and Lawrence, 2010), Simple Ratio Nigatu et al.
(Wilfong et al. 2009), Soil Adjusted Vegetation Index (Waser et al.,
2008) Visible Atmospherically Resistant Index (VARI) and Normalized
Difference Moisture Index (NDMI) (Wilfong et al. 2009). Wilfong et al.
(2009), tested the capabilities of six vegetation indices (EVI, TCAP, SR,
SAVI, VARI and NDMI) against Landsat TM and Landsat ETM+’s tra-
ditional bands in predicting the Asian Amur honeysuckle invasion in
the southwest of Ohio and eastern Indiana, United States. In the study, a
superior classification model (coefficient (R2) of 0.75 for quadratic re-
gression and 0.65 for linear regression) were achieved using NDVI.
Similarly, the incorporation of the NDVI in the classification of Bracken
fern on Landsat 8 and Worldview-2 images significantly improved the
mapping accuracy from 76.02% to 82.93%–80.08% and 87.8% for
Landsat 8 and WV-2 respectively (Matongera et al. 2017). Although
vegetation indices are valuable for minimizing the spectral variability
caused by differences in sun viewing angles, atmospheric conditions,
soil background. Mutanga and Skidmore (2004), noted that some in-
dices such as the NDVI are affected by saturation problem, especially in
high canopy densities.
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9. Relationship between classification algorithms and remote
sensing dataset

Based on research, there is a limited literature to clearly show the
synergies between the type of remotely sensed data used in conjunction
with a chosen image classification algorithm. However, Nath et al.
2014, highlight that many image classification algorithms perform well
on medium resolution multi-temporal data. For instance, Robinson
et al. (2016), detected the invasive mesquite (Prosopis spp.) in the north-
western Pilbara, Australia using the multispectral WV-2 imagery with
80.7% overall classification accuracy. Although sensor resolutions,
especially spectral and spatial, are a significant factor when dis-
criminating vegetation types (Oumar 2016), image classification algo-
rithms also allow the appreciation of precise separation among different
plants even from averaged resolution data. For instance, Matongera
et al. (2017) compared the performance of two different sensors with
various spatial and spectral properties (i.e. high spatial WV-2 and
medium spatial Landsat 8 OLI) in detecting Bracken fern using Dis-
criminant Analysis. Despite the difference in resolutions of these two
datasets, obtainable results reveal an insignificant or negligible differ-
ence in overall classification accuracy (80.08% and 87.80% for Landsat
8 OLI and WV-2). The chosen image classifier significantly improved
the capabilities of the medium spatial resolution Landsat 8.

Therefore, the emergence of the new generation of multispectral
sensors (e.g. SPOT-6 and Sentinel-2) is believed to further improve the
detection of AIPs even by resource-limited region. This improvement in
detection of AIPs will not only be due to improved sensor resolutions
but rather the large swath-width and cost-effectiveness that allows re-
peated and operational scale monitoring of AIPs. Also, the application
of robust and advanced non-parametric image classification algorithms
can significantly improve the performance of these recently launched
multispectral sensors. To demonstrate the role of non-parametric image
classifiers over parametric classifiers, Gil et al. (2011) tested the per-
formance of two parametric (Mahalanobis Distance and Maximum
Likelihood) and non-parametric (SVM and ANN) image classifiers in
assessing the potential of high-resolution satellite imagery in vegetation
mapping. Although the Maximum Likelihood performed well (76.93%)
the Mahalanobis Distance performed badly with an overall accuracy of
66.04%. On the other hand, both the non-parametric classifiers were
successful (76.25% and 76.95% for ANN and SVM, respectively) in
spectral separation between different vegetation classes. Furthermore,
the SAM performed poorly when used to classify Leafy spurge on
AVIRIS, Landsat ETM+ and SPOT-4 data with overall accuracies of
74%, 49% and 48% for AVIRIS, Landsat ETM+ and SPOT-4 respec-
tively.

10. Challenges in remote sensing of alien invasive plants

As aforementioned, the success of remote sensing of alien invasion
relies on the identification of their unique spectral signatures facilitated
by differences in biophysical and biochemical characteristics
(Matongera et al. 2016a). However, when differences in these proper-
ties are not sufficiently pronounced to increase spectral variance, er-
roneous spectral resemblance will be recorded by the sensor for dis-
similar plant species, reducing mapping accuracy of target AIPs. This is
common when using broadband coarse to medium spatial resolution
sensors (Huang and Asner, 2009). Also, because AIPs often grow in a
mix of co-existing vegetation, their detectability can be considerably
compromised, especially with averaged spectral and lower spatial re-
solution datasets (Matongera et al. 2016a; Huang and Asner, 2009). The
large pixel sizes coupled with averaged spectral properties offered by
the freely available sensor products, large swath-width and high tem-
poral resolution sensors (see Table 1), highlights that their adoption for
AIPs mapping is limited to homogenous landscapes (Hamilton et al.
2006; Carson et al. 1995; Cardina et al. 1997). Carson et al. (1995), for
instance, recommends that infestation stands should be large enough or

dominate the canopy to compensate for the poor spatial and spectral
resolution of these sensors. Hamilton et al. (2006), indicated that a
precise detection of Russian olive (Elaeagnus angustifolia L.) in central
Utah was influenced by patch sizes, with small patches being under-
estimated or even entirely missed. According to Peerbhay et al. (2016c),
the uniformity and extensiveness required when detecting the dis-
tribution of AIPs, especially with poor spatial and averaged spectral
resolution datasets, is not always attainable in the newly invaded
landscapes. Although these sensors provide time-series data for multi-
temporal AIPs mapping, valuable for improved detection (Jay et al.
2009), the success of discerning AIPs use images taken during different
plant phenology depends on the availability of clear or cloud-free skies
(Huang and Asner, 2009) and a precise core-registration (Singh, 1989).

Moreover, studies show that the development of satellite sensor
technology is caught between balancing improvements in sensors re-
solutions and reducing acquisition cost while simultaneously achieving
large-scale mapping of vegetation (Mutanga et al. 2016). Besides the
improved mapping accuracy possible with fine resolution sensors, their
value for precise mapping at an operational scale has not been fully
explored (Lu and Weng, 2007). More so, the excessive acquisition costs
for high spatial and hyperspectral resolution imagery is prohibitive for
long-term and continuous monitoring of AIPs in countries and institu-
tions with limited resources. The swath-width or area coverage and the
application scale of fine spatial resolution multispectral and hyper-
spectral sensors are given in Table 1. Studies have shown that hyper-
spectral sensors suffer from effects of multicollinearity and multi-
dimensionality (Gómez-Casero et al. 2010) and hence not the ultimate
solution to the currently high AIPs classification accuracy problem.
Therefore, it can be concluded that the current research focus of ve-
getation monitoring on exploration and utility of high spatial resolution
and hyperspectral dataset prevent great opportunity to appreciate
large-scale and long-term management of AIPs. This is likely due to the
associated cost of acquiring these datasets and their small area cov-
erage. The insignificance of this is increasingly being a problem, par-
ticularly for rangelands monitoring which is broad and extensive in
extent. More so, the integration of data from different sensors does not
address the small swath-width dataset provided by high spatial re-
solution and hyperspectral image data.

11. Possible directions of future research

Whereas there is considerable progress in the detection and map-
ping of AIPs using remotely sensed data, the full potential of this
technology in estimating and mapping of AIPs has not been adequately
explored. This has been demonstrated by the current trade-offs in
sensor developments (i.e. resolution and acquisition costs) and appli-
cation scale (Mutanga et al. 2016). Also, numerous attempts in detec-
tion and mapping of AIPs are increasingly dominated by the utility of
high spatial and hyperspectral dataset (e.g. Peerbhay et al. 2016b;
Peerbhay et al. 2015; Curatola Fernández et al. 2013). The acquisition
costs of such dataset are prohibitive to repeated and large-scale esti-
mation and monitoring of AIPs, particularly in countries and institu-
tions with limited capital. Also, recent developments in remote sensing
sensors technology (i.e. unmanned aerial vehicle) do not address the
aforementioned issue of costs in relation to the scale of application. To
optimize detection and mapping of AIPs in these regions, it is necessary
to explore the capabilities of the freely available and improved spatial
and spectral resolution multispectral datasets such as SPOT 6 and 7 as
well as Sentinel-2 in concert with robust and advanced machine
learning algorithms. The newly launched SPOT 6 and 7 provide daily
coverages with improved spatial resolution (i.e. 6m, see Table 1), va-
luable for multi-temporal vegetation monitoring. On the other hand,
the Sentinel-2 offers large area coverages captured at 10m by 10m
spatial resolution, necessary for an improved operational approach in
vegetation monitoring. Equally important, the advanced and robust
machine learning algorithms have been valuable for vegetation
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monitoring as well as detection of AIPs. Advanced and robust machine
learning algorithms such as RF and SVM can offer superior classifica-
tion accuracies when mapping AIPs. However, these classifiers have not
been tested with improved spatial and spectral dataset for large-scale
mapping purposes. The RF and SVM have shown good mapping ac-
curacies (93.07% and 91.80%, respectively) in mapping patterns and
spatial distribution of land-use and cover types in a heterogeneous
coastal landscape using RapidEye dataset (Adam et al. 2014). There-
fore, it is necessary that future research endeavours focus on testing the
potential of these classifiers with the recently launched multispectral
dataset that is freely provided with improved spatial and spectral
properties for operational scale mapping of AIPs.

12. Conclusions

The current study reviewed existing literature on the adoption of
remotely sensed data and image classification techniques for optimal
and continuous detection of AIPs at the landscape scale. The use of
traditional remote sensing techniques, such as aerial photographs and
averaged spectral and poor spatial resolution sensors in mapping AIPs
encroachment has proved to be insufficient for improve AIPs detection
and for natural resource monitoring. Equally, the use of high spatial and
hyperspectral datasets does not permit long-term and wall-to-wall ap-
plications for optimal resource monitoring. Therefore, it is necessary
that future studies digress slightly from the current focus on sensor
spectral and spectral properties and investigate the role of image clas-
sification algorithms to improve classification output. With the launch
of improved resolution data provided by the new generation multi-
spectral sensors (i.e. Sentinel-2) and the development of non-para-
metric image classification algorithms (i.e. RF and SVM), optimal de-
tection of AIPs is attainable even by resource-constrained regions. The
major challenges in detection and mapping of AIPs established in this
review include heterogeneity in infested landscapes, causing spectral
confusion during classification and trade-offs in satellite sensor devel-
opments (i.e. costs, scale of application and accuracy) to achieve af-
fordable wall-to-wall and continuous landscape monitoring. This tech-
nique can be tested both on single date and on time-series analysis to
improve the detection of AIPs.
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