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Testing two methods for mapping water hyacinth
(Eichhornia crassipes) in the Greater Letaba river system,
South Africa: discrimination and mapping potential of the
polar-orbiting Sentinel-2 MSI and Landsat 8 OLI sensors
Kgabo Humphrey Thamaga a and Timothy Dube b

aDepartment of Geography and Environmental Studies, University of Limpopo, Polokwane, South Africa;
bDepartment of Earth Sciences, University of the Western Cape, Bellville, South Africa

ABSTRACT
Early detection and mapping of the spatio-temporal distribution of
invasive water hyacinth (Eichhornia crassipes) in inland hydrologi-
cal systems are vital for a number of water resource management-
related reasons. Field surveys and current climate change projec-
tions (associated with longer dry spells, and shortened rain sea-
sons) have shown that climate change and the rapid spread of
aquatic invasive species are increasingly affecting inland surface
water availability in semi-arid regions of Southern Africa. It is upon
this premise that accurate, reliable, and timely information on the
spatio-temporal distribution and configuration of water hyacinth is
required in tracing their evolution and propagation in affected
areas as well as in potential vulnerable areas. This work, therefore,
attempts to test two robust push-broom multispectral sensors:
Landsat 8 Operational Land Imager (OLI) and Sentinel-2
MultiSpectral Instrument (MSI) in identifying, detecting, and map-
ping the spatial distribution and configuration of invasive water
hyacinth in a river system. The results of the study show that water
hyacinth in small reservoirs can be mapped with an overall accu-
racy of 68.44% and 77.56% using Landsat 8 and Sentinel-2 data,
respectively. The results further demonstrated the blue, red, red
edge (RE) 1, short-wavelength infrared (SWIR)-1, and SWIR-2 of
both satellite data sets as the critical and outstanding spectral
regions in detecting and mapping water hyacinth from other
land-cover types. Overall, the study highlights the unexploited
prospects of the new noncommercial multispectral sensors in
monitoring invasive species infestation from inland surface water-
bodies in semi-arid regions (i.e. smaller reservoirs).
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1. Introduction

Sub-Saharan Africa and other parts of the developing world currently face the largest
wave of urban growth and industrial revolution in history (Mendes, Bertella, and Teixeira
2014). Amongst other factors, the fast urban growth, together with the rural-to-urban
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migration, generates continuous expansion of slums (e.g. approximately 70% of African
urban dwellers live in slums) which cannot cope with the provision of proper sanitation
infrastructures (Potts 2013; Krishna, Siram, and Prakash 2014; Rigg, Nguyen, and Luong
2014; APHRC 2014). Chawira, Dube, and Gumindoga (2013) noted that rural-to-urban
migration and uncontrolled city growth have led to heavy urban water pollution
(microbial and nutrient) via the discharge of poorly treated municipal wastewater
in the freshwater ecosystem. Microbial and chemical freshwater pollution end up
being deposited in surrounding waterbodies leads to water eutrophication and the
proliferation of aquatic weeds. Previous work shows that the spread of aquatic weeds
in most freshwater bodies is linked to a number of land management practices (e.g.
fertilizers or nutrients), as well as poor and uncontrolled discharge of sewage to river
systems that create a conducive breeding ground for the growth of undesirable species
(Chawira, Dube, and Gumindoga 2013; Giardino et al. 2015). In addition to nutrient
concentrations, the spatial distribution and spread of these species are also influenced
by environmental factors, such as depth of the river, topography, type of soil substrates,
water turbidity, as well as exposure to wind (Pearsall 1920; Rorslett 1984; Harvey, Pickett,
and Bates 1987). Any changes in climatic conditions are most likely to alter the plant
distribution and function (Shoko and Mutanga 2017).

Aquatic weed infestation is one of the major environmental challenges globally, threa-
tening the integrity and functioning of most hydrological ecosystems (Cheruiyot et al. 2014).
Moreover, the current projected climate change associated with longer dry spells and
shortened rain seasons coupled with the rapid spread of aquatic invasive species is likely
to make inland water reservoirs in Southern Africa even much drier and scarce (Midgley
et al., 2015). Continuous observation and monitoring of the proliferation of aquatic weeds
are thus essential for proper water resource management and for the development of
appropriate weed control strategies and prioritizations of most infested areas (Albright,
Moorhouse, and McNabb 2004). To date, this environmental problem has received limited
attention from the responsible hydrologists, environmentalists, and researchers, due to
either limited financial resources or the lack of technical expertise (Dube, Gumindoga, and
Chawira 2014), assurance in product accuracy and high-resolution satellite data continuity,
and, in some instances, the lack of government will or prioritization.

Despite the presence of these barriers, there are clear breakthroughs or inroads in
remote-sensing applications in water quality-related studies (Bresciani et al. 2011;
Bonansea et al. 2015; Masocha et al., 2016), wetland vegetation mapping (Huang et al.
2014; Li et al., 2005; Jin et al. 2017), and aquatic invasive alien species, especially in large
reservoirs (Dronova, Gong, and Wang 2011). Unlike conventional field surveys, remotely
sensed data are the key primary data source for mapping and monitoring the functioning
and rate of invasion of hydrological systems, as well as identifying potential vulnerable
areas, especially in developing countries, given the scarcity in ground data or lack of data
access, due to institutional restrictions. Although there is limited appreciation of this
technology by policy and decision-makers in Africa, its relevance remains unquestionable.

Developing accurate, spatially explicit, fine-scale records on rates of invasions is a high
priority (Panetta and Lawes 2005). Therefore, remote-sensing technologies emerge as a
reliable approach in studying aquatic ecosystems. The availability of satellite data provides
great potential for the spatial and temporal monitoring of aquatic weeds in a timely and
cost-effective approach. Recent studies utilized remotely sensed data in monitoring lake
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conditions, due to their expansive nature (McCullough et al., 2012; Hou et al. 2017).
Broadband multispectral sensors have demonstrated success in monitoring these areas
(Dube, Gumindoga, and Chawira 2014; Giardino et al. 2015; Shekede, Kusangaya, and
Schmidt 2008). However, little consideration has been paid in monitoring invasive water
hyacinth in complex environments, such as smaller rivers, using these sensors. Satellite
remote sensing of small freshwater systems has been limited by the sensing character-
istics, in terms of spectral, radiometric, temporal, and more importantly spatial (Hestir et al.
2015). Past noncommercial satellite missions could not provide appropriate measurement
resolutions needed to fully resolve freshwater ecosystem properties and processes (Hestir
et al. 2015). Due to the presence of mixed or ecological overlap of plant species in aquatic
ecosystems, discriminating aquatic weeds from other aquatic plants remains a challenge,
as it requires moderate to high spatial and spectral resolutions, in both visible and
shortwave infrared regions (Hestir et al. 2008). This problem is also supported by
Cheruiyot et al. (2014) who stated that although multispectral remote sensing has the
capability to detect and map alien plants, the weeds are often obscured in a backdrop of
natural vegetation, making it difficult to be detected or even mapped at a fine-scale. In
this case, sensors with high spatial, spectral, temporal, and radiometric resolutions are
needed on a broader scale for accurate ecological monitoring to understand water
hyacinth distribution and to enhance management practices on both open and complex
environments.

Although the previous satellite products have been associated with limitations in
mapping aquatic invasive species, new crop of noncommercial sensors, e.g. Landsat 8
Operational Land Imager (OLI) and Sentinel-2 MultiSpectral Instrument (MSI), with
improved sensing characteristics has demonstrated promising prospects in vegetation
mapping (Fu 2003; Zhang et al. 2016). These sensors also show some potential for land-
use and land-cover mapping (Kaufmann and Stern 1997; Hassan et al. 2016), biomass
estimation (Yavaşl 2016), and plant and crop disease monitoring (Hillnhutter
and Mahleni 2008; Dhau et al. 2017). For instance, Shoko and Mutanga (2017) demon-
strated the unique capability of the newly launched Sentinel-2 MSI sensor in detecting
and discriminating subtle differences between C3 and C4 grass species with an overall
classification accuracy of 90.41%. These sensors are, therefore, perceived to provide new
and invaluable opportunities for detecting, mapping, monitoring, and understanding
the proliferation of water hyacinth in smaller reservoirs – a previously challenging task
with broadband multispectral satellite data. Refined sensing characteristics, which
include the high spatial resolution (±10 m) and the presence of new and strategically
positioned spectral waveband red edge (RE), previously a characteristic of high-resolu-
tion commercial sensors, e.g. Worldview 2, IKONOS etc., bring with its unique improve-
ments that could enable subtle detection and discrimination of aquatic weeds often
obscured in the backdrop of natural vegetation. Besides, the greater and free availability
of remotely sensed data at higher spatial and spectral resolutions coupled with the
development of machine-learning algorithms could potentially improve classification
accuracies which maybe a great step towards water resource management (Peerbhay,
Mutanga, and Ismail 2016). Therefore, this study sought to test the capability of Landsat
8 OLI and Sentinel-2 MSI sensors in detecting and mapping the spatial distribution and
configuration of invasive water hyacinth (Eichhornia crassipes) in the Greater Letaba river
system in Tzaneen, South Africa.
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2. Materials and methods

2.1. Study area

The study was conducted at the Greater Letaba river system in Tzaneen, South Africa.
The area is located at −23° 39.036′S, 31° 9.006ʹE (Figure 1). The Greater Letaba river
system is the main freshwater supply for the neighbouring communities and farmlands
in Tzaneen area. The river system has been affected by a widespread invasion by water
hyacinth (E. crassipes) and has deteriorated by continuous accretion of fertilizers from
the surrounding farmlands carried out through run-off and disposal of raw sewage from
the surrounding urban areas. The area has a mean annual temperature of 28°C and
mean annual precipitation of 612 mm (DEAT 2001). The main land-cover types within
the study area include croplands, grasslands, fruit trees, built up, roads, and plantation
(DEAT 2001). Commercial farming is the dominant human activity in the area.

2.2. Field survey and preprocessing

The capability of Landsat 8 OLI and Sentinel-2 MSI was tested in discriminating
water hyacinth from other coexisting land-cover types, such as bare land, planta-
tion, and riparian vegetation, other vegetation, water, as well as built up. Field data
collection was conducted to record the location of water hyacinth and other land-
cover classes, at sub-metre accuracy, using Global Position System (GPS). Field data
were collected from 24 June to 26 June 2017. Field data collection was achieved,
using randomly generated sampling points across the river system, using the
Hawths Analysis Tool in ArcGIS 10.4 software (ESRI, Redlands, CA, USA). A total of

Figure 1. Map showing location of the study area.
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329 points (47 points per land-cover type) were generated, and these were used to
discriminate water hyacinth from other land-cover types. Ground-truthing measure-
ments coinciding with satellite image acquisition period were used. In the present
study, correspondence principle for image acquisition and ground-truthing mea-
surements was set to 3 days. The period allows for adequate matchups between
ground-truth data and satellite imagery (Sriwongsitanon, Surakit, and Thianpopirug
2011; Tebbs, Remedios, and Happer 2013; Lamaro, Mariñelarena, and Torrusio.
2013). Sites of recorded land-cover types, using GPS, were then imported into
ArcGIS 10.4 software environment for classification purposes.

Pre-processing
-Geo-processing
-Atmospheric correction
-Resampling (nearest neighbour)

Remotely Sensed data
-Sentinel-2 MSI
-Landsat OLI

Composite bands/ Stacking
Landsat: BGR NIR SWIR-1 SWIR-2

Sentinel: BGR NIR RE1 RE2 RE3 NIR-narrow 
SWIR-1 SWIR-2

Masking of the study area

Image classification
-Discriminant Analysis &
-Maximum likelihood classifier

Land cover maps

Sentinel-2 MSILandsat 8 OLI

Field data collection
-24 to 26 June 2017

XY coordinates of 8 land cover types

Extraction of spectral bands extracted 
from Landsat 8 OLI & Sentinel-2 OLI

Accuracy assessment 

Training & testing dataset

Vegetation Indices
Spectral profile

Figure 2. Flow chart of method.
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2.3. Remote-sensing data acquisition and preprocessing

Sentinel-2 MSI and Landsat 8 OLI remotely satellite imageswere acquired to test the sensors’
capability in discriminating water hyacinth from other vegetation cover types. Detailed
spectral and spatial information on the satellite images used for analysis are presented in
Table 1. Both cloudless satellite images covering the Greater Letaba river system were freely
acquired from the online Landsat and Sentinel series archive manned by the United States
Geological Survey (USGS) website. The satellite images were acquired between 24 June and
26 June 2017with two tiles of Landsat 8 OLI and six tiles of Sentinel-2MSI covering the study
area. Satellite images were then atmospherically corrected using Dark Object Subtraction
(DOS1) model under Semi-Automated Classification (SCP) embedded in Quantum GIS (QGIS
Development Team, Amsterdam, Netherlands) 2.18.03 software. Preprocessing was done,
using QGIS software to convert all the image bands into reflectance. We then resampled
spectral bands of Sentinel-2 MSI from 20 m to 10 m using nearest neighbour resampling
method. All tiles in both sensors were mosaicked using ArcGIS 10.4 to cover the extent of
the study area. The 329 field-sampled points were then overlaid on the layer-stacked
reflectance images to extract the corresponding reflectance values. The extracted reflec-
tance values per spectral band were then exported as a table in Microsoft excel. The data
were then used to calculate spectral vegetation indices (Table 2). The selected indices were
chosen based on their capabilities in improving vegetation spectral responses (Pahlevan
and Schott 2013; El-Askary et al. 2014). For classification accuracy assessment, there is a
disagreement between proportions of testing and training sets of land-cover types. Before
proceeding with the analysis, the extracted spectral reflectance was randomly divided into
30% testing and 70% training sets, which is a requirement for all machine-learning algo-
rithms (Adjorlolo et al. 2013; Adelabu et al. 2014; Sibanda, Mutanga, and Rouget 2015).

2.4. Water hyacinth mapping using the discriminant analysis (DA)

A variety of classification algorithms have been developed and used to map the spatial
distribution of invasive water hyacinth in the freshwater ecosystem. In this study, we
used DA to test the capability of new-generation sensors Landsat 8 OLI and Sentinel-2
MSI data in mapping water hyacinth radiance from other land-cover types. The choice of
the model was based on its performance in classification as reported in previous studies

Table 1. Sensors spectral and spatial characteristics of Landsat OLI and Sentinel-2 MSI.
Landsat 8 OLI Santinel-2 MSI

Band Band width Resolution (m) Band Band width Resolution (m)

Blue 0.45–0.52 30 Blue 0.49 10
Green 0.53–0.60 30 Green 0.56 10
Red 0.63–0.68 30 Red 0.67 10
NIR 0.85–0.89 30 RE 1 0.71 20
SWIR-1 1.56–1.66 30 RE 2 0.74 20
SWIR-2 2.10–2.30 30 RE 3 0.78 20

NIR 0.84 10
SWIR-1 0.16 20
NIR narrow 0.87 20
SWIR-1 0.16 20
SWIR-2 0.22 20

NIR: near infrared; SWIR: shorter wave infrared; RE: red edge.
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(Sibanda, Mutanga, and Rouget 2015; Matongera et al. 2017; Shoko and Mutanga 2017).
Fernandez (2002) describes DA as multivariate statistical classifier used to model group
discrimination based on observed predictor variables of remote sensing in each obser-
vation into one of the groups. DA uses a linear function (assumes multivariate normality
with equivalent covariance matrices) for classification criterion derived from individua-
lities within a set group of covariance matrices. The observations classified within the
group discriminate land-cover types into categories based on a measure of generalized
squared distance. The algorithm was, therefore, used to classify and derive confusion
matrices from the derived water hyacinth maps. The model converts reflectance data of
land-cover types at each waveband into several components that account for the
difference in reflectance amongst land-cover types (Sibanda, Mutanga, and Rouget
2015). The classification accuracy is formulated (confusion matrix) using an error matrix
of predicted (classified) versus known (reference) occurrences of a target (Congalton
1991). Confusion matrix yields estimates of an overall accuracy, user accuracy, and
producer accuracy and may also be used to calculate statistical measures of accuracy
(i.e. kappa statistics) (Congalton and Green 1999; Foody 2004). To test the capability of
sensors in detecting spatial distribution of water hyacinth, Table 3 and Figure 2 illustrate
analysis procedures that were implemented in this study. For example, three analytical
experiments, (i) spectral bands; (ii) spectral vegetation indices; and (iii) combined

Table 2. Landsat 8 OLI and Sentinel-2 MSI spectral bands and vegetation indices.
Index Formula Reference

NDVI (NIR − Red)/(NIR + Red) Tucker (1979)
NDWI (Green − NIR)/(Green + NIR) McFeeters (1996)
EVI 2.5 ((NIR − Red)/(1 + NIR + 6Red − 7.5Blue)) Huete et al. 1997
SRI (NIR/Red) Jordan (1969)
SAVI ((NIR − Red) (1 + L))/(NIR2 + Red + L) Huete (1988)
GI Green/Red Zarco-Tejeda et al., 2005
GNDVI (NIR − Green)/(NIR + Green) Gitelson, Kaufman, and Merzlyak (1996)
Clgreen (NIR/Green) − 1 Gitelson et al., 2002
ARVI (NIR − (2(Red − Blue)))/(NIR + (2 (NIR − Blue))) Kaufman and Tanré 1992
TVI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NIR� Redð Þ= NIRþ Redð Þ þ 0:5Þp

Deering et al. 1975
OSAVI (NIR − Red)/(NIR + Red + 0.16) Rondeaux, Steven, and Baret 1996
RDVI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDVIð Þ DVIð Þp

Roujean and Breon 1995
VGI (Green − Red)/(Green + Red) McFeeters (1996)
NG Green/NIR + Red + Green Sripada et al. 2006
DVI NIR − Green Tucker 1979

NDVI: normalized difference vegetation index; NDWI: normalized difference water index; EVI: enhanced vegetation
index; SRI: Simple Ratio Index; SAVI: Soil-Adjusted Vegetation Index; GI: greenness index; GNDVI: green normalized
difference vegetation index; Clgreen: Chlorophyll Index Green; ARVI: Atmospherically Resistant Vegetation Index; TVI:
Transformed Vegetation Index; OSAVI: optimized soil-adjusted vegetation index; RDVI: renormalized difference
vegetation index; VGI: vegetation greenness index; NG: normalized green; DVI: Difference Vegetation Index.

Table 3. Landsat 8 OLI and Sentinel-2 MSI experiments for water hyacinth.
Data type Sensor Spectral information Analysis

Spectral bands (SB) Landsat 8 Blue, green, red, NIR, SWIR-1, and SWIR-2 I
Sentinel-2 Blue, green, red, red edge(RE) 1, RE 2, RE 3, NIR, NIR narrow, SWIR-1,

and SWIR-2
Spectral vegetation
indices (SVIs)

Landsat 8 NDVI, NDWI, EVI, SRI, SAVI, GI, GNDVI, Clgreen, ARVI, RVI, TVI, OSAVI,
RDVI, VGI, NGI, and DVI

II
Sentinel-2

SB + SVIs Landsat 8 6 bands + 16 SVIs III
Sentinel-2 10 bands + 16 SVIs
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spectral and vegetation indices, were applied in Microsoft XL STAT 2013 to generate
classification accuracies (overall, user, and producer accuracy).

2.5. Statistical data analysis

Prior to statistical analysis, exploratory data analysis was done to understand the data.
Analysis of variance (ANOVA) was used to identify spectral separability of water hyacinth
amongst other land-cover types. We conducted ANOVA to test if there is significant
difference (α = 0.05) between water hyacinth and other land-cover types based on the
derived spectral data for the two sensors. Windows of spectral separability based on
both Landsat 8 OLI and Sentinel-2 MSI were used to test which band(s) can optimally
discriminate water hyacinth from other land-cover types.

3. Results

3.1. Discriminating water hyacinth from other land-cover types

Figure 3 illustrates the derived spectral profiles for water hyacinth and other land-cover
types considered in this study. The spectral profiles were derived using averaged
Sentinel-2 MSI- and Landsat 8 OLI (Figure 3(a,b))-derived spectral information. Overall,
the results show that water hyacinth can be discriminated from other land-cover types
using the SWIR-2 spectral regions of Landsat 8 and blue, SWIR-1, as well as SWIR-2 of
Sentinel-2. Sentinel-2 illustrates a clear window of spectral separability on the following
bands: blue, RE 1, SWIR-1, and SWIR-2 compared to Landsat 8 OLI.

3.2. Image classification accuracies

3.2.1. Analysis I: water hyacinth classification using raw spectral data
Figure 4(a,b) illustrates classification accuracies of water hyacinth from other land-cover
types derived from Sentinel-2 MSI and Landsat 8 OLI data sets. It was observed that the
Sentinel-2 MSI outperformed Landsat 8 OLI in discriminating water hyacinth producing
an overall accuracy of 73% when compared to Landsat 8 OLI which yielded a slightly
lower overall accuracy of 63.34%, with a deviation of 9.66% (Table 4). Furthermore,
Sentinel-2 produced good user and producer accuracies when compared to Landsat 8
OLI. For water hyacinth, Sentinel-2 yielded user accuracy of 78.56% and producer
accuracy of 57.89% (Figure 4) when compared to Landsat 8 OLI that yielded low
classification accuracies with user accuracy of 20% and producer accuracy of 35.67%
(Figure 4). In comparison to other land-cover types, the plantations produced low
accuracy with 36.41% in Sentinel-2. Overall, Landsat 8 had the lowest user and producer
accuracies as compared to Sentinel 2 sensor.

3.2.2. Analysis II: water hyacinth classification using Landsat 8- and Sentinel-2-
derived vegetation indices
Water hyacinth classification accuracy using different spectral vegetation indices demon-
strated that the difference in sensors slightly improved performances when compared to
the use of raw spectral bands. Figure 5(a,b) shows that Sentinel-2 outperformed Landsat
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8 in discriminating water hyacinth from other land-cover types producing an overall
accuracy of 73.31% (Figure 6). On the other hand, Landsat 8 OLI-derived spectral
vegetation indices yielded overall accuracy of 65.53%. Compared to the first analysis
(I), Landsat 8 OLI overall accuracy increased by 2.19% (Table 4) and by 0.31% for
Sentinel-2. Furthermore, user and producer accuracies increased in both sensors, respec-
tively (Figure 5). Regardless of the increase in user and producer accuracy of water
hyacinth in both sensors, Landsat 8 OLI yielded lower accuracies with user accuracy of
40% and producer accuracy of 47.64%. When compared to other land-cover types,
plantation and shrub land produced higher classification of 100%.

3.2.3. Analysis III: water hyacinth classification using combined Landsat 8- and
Sentinel-2-derived spectral bands and spectral vegetation indices
Figure 7 illustrates the classification accuracy ofwater hyacinth based on integrated data sets
of spectral bands and spectral vegetation indices derived from Landsat 8 and Sentinel-2,
respectively. The combination of spectral bands and spectral vegetation indices produced
satisfactory results for both sensors. For example, Sentinel-2 yielded an improved overall
classification accuracy of 77.56% (Figure 6) and, when compared to analysis I, displays an
overall improvement in accuracy of 4.56% and 4.25% from analysis II (Table 4). Although

Figure 3. Averaged spectral reflectance for eight land-cover types using: (a) Landsat 8 OLI and (b)
Sentinel-2 MSI sensors.
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overall classification accuracy of Landsat 8 increasedby 5.07% fromanalysis I and 2.88% from
analysis II, the combined data sets producedoverall accuracy of 68.41% (Figure 6). Integrated
data sets produced user accuracy of 89.30% and producer accuracy of 61% for water
hyacinth. When compared to analysis I, user accuracy increased by 10.74% whereas the
producer accuracy increased by 3.11%; furthermore, when compared to analysis II, user and
producer accuracy dropped by 3.11%. From the observation, water hyacinth produced
lowest classification accuracies with user accuracy of 44% and producer accuracy of 50%
using Landsat 8 OLI. Additionally, we compared the overall classification performance of the

Table 4. Deviation of classification accuracies between Sentinel-2 MSI and Landsat 8 OLI.

Sensor Parameter Accuracy (%)

Deviations in terms of accuracy (%)

I II III

Landsat 8 OLI Bands 63.34 - −2.19 −5.07
VIs 65.53 ±2.19 - −2.88

Bands + VIs 68.41 ±5.07 ±2.88 -
Sentinel-2 MSI Bands 73 - −0.31 −4.56

VIs 73.31 ±0.31 - −4.25
Bands + VIs 77.56 ±4.56 ±4.25 -

Figure 4. Classification accuracies of water hyacinth and other land-cover types derived from (a)
Sentinel-2 and (b) Landsat 8 spectral data set. Dotted line represents good classification accuracies
above 65% (Shoko and Mutanga 2017).
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two sensors in mapping water hyacinth using t-test, and the results derived from t-test
showed that there was significant difference (t = 6.313, p < 0.04) in their performances. The
10 m Sentinel-2 across all the analysis stages (I, II, and III) outperformed the 30 m Landsat 8
sensor.

Figure 6 illustrates the overall classification accuracies using a combined data set
(spectral bands and spectral vegetation indices) derived from Landsat 8 OLI and
Sentinel-2 MSI imagery.

3.3. Capability of Landsat 8 OLI and Sentinel-2 sensors in mapping the spatial
distribution of water hyacinth and other land-cover types

Figure 8(a,b) illustrates the derived thematic maps showing land-use and land-cover
revealing water hyacinth within the study area, using Landsat 8 OLI and Sentinel-2 MSI.
Sentinel-2 MSI was capable of detecting and distinguishing most river portions affected
by water hyacinth from other land-cover types. On the other hand, 30 m Landsat 8 OLI
comparatively to Sentinel-2 MSI did not detect and map certain area infested with water
hyacinth.

Figure 5. (a) Sentinel-2 and (b) Landsat 8 classification accuracies (%) for water hyacinth and other
land-cover types using derived vegetation indices.
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Figure 6. Combined spectral bands and spectral vegetation indices overall classification accuracies
derived from Sentinel-2 MSI and Landsat 8 OLI.

Figure 7. (a) Sentinel-2 and (b) Landsat 8 classification accuracies (%) for land-cover types using
combined spectral bands and spectral vegetation indices.
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4. Discussion

The main aim of the study was to test the capability of new multispectral satellite data,
Landsat 8 OLI and Sentinel-2 MSI sensors, in detecting and mapping the spatial dis-
tribution of water hyacinth in freshwater ecosystem. However, the study proved that
Sentinel-2 MSI outperformed Landsat 8 OLI in discriminating water hyacinth from other
land-cover types, such as water, plantation, built-up areas, riparian vegetation, other
vegetation, shrub land, as well as bare land. Besides, detecting and mapping the spatial
distribution of water hyacinth are of importance in understanding its spatial pattern and
extent before removal and management practices can take place. This information is
critical to aquatic scientists, environmentalists, and hydrologists, as well as catchment
managers, especially in complex environments. Management practices include biologi-
cal control; furthermore, derived information will guide managers on how and where to
start applying practices.

The outcome of this study confirmed the capability of newly launched Sentinel-2 MSI
in detecting and mapping water hyacinth in freshwater system on a river scale, when
compared to Landsat 8 OLI. Using spectral band data sets of both sensors, Sentinel-2
achieved an overall classification accuracy of 73%, whereas Landsat 8 had an accuracy of
63.34%. Statistically, when compared to Sentinel-2, Landsat 8 had a magnitude of 9.66%,
which clearly demonstrates the sensor’s poor performance in mapping water hyacinth
from riverine and other related plants. The observed performance of Sentinel-2 MSI also
confirmed by the recent study by Shoko and Mutanga (2017) where they discriminated
C3 and C4 grass functional types in the Drakensburg with high accuracy (85.45%). In
their study, they concluded that the overall high classification was primarily attributed to
the presence of more spectral bands, which provided more windows for spectral
separability of specified land-cover types. In contrast to other bands, the blue, red, RE,
and SWIR spectral regions played a key role in boosting spectral separability of water
hyacinth from other land-cover type. The selection of these bands can be attributed to
the improved and unique sensitivity to plant biophysical and chemical properties (Dube
and Mutanga 2015).

Figure 8. (a) Strength of Landsat 8 and (b) Sentinel-2 in mapping the spatial distribution of invasive
water hyacinth and other land-cover types.
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Furthermore, findings of this study showed that spectral vegetation indices derived from
both sensors outperformed the overall performance of raw spectral bands in discriminating
water hyacinth. For instance, the use of spectral vegetation indices for Sentinel-2 MSI yielded
an overall accuracy of 73.31%, whereas Landsat 8 OLI had an accuracy of 65.53%. More
interestingly, Sentinel-2 MSI accuracy increased by 0.31% and by 2.19% for Landsat 8 OLI
when compared to raw spectral band reflectance. These findings are in line with various
observations from literature (Motangera et al., 2017; Shoko and Mutanga 2017), which shows
that satellite-derived vegetation indices provide one of the best possible ways to obtain the
subtle vegetation biophysical parameters. Good classification accuracies from the use of
spectral vegetation indices maybe linked to the strength of the normalized difference
vegetation indices (NDVI). Liu and Huete (1995), Díaz and Blackburn (2003), and Sibanda,
Mutanga, and Rouget (2015) reported that the performance of vegetation indices like NDVI
could be attributed to its ability to suppress background effects much better than individual
spectral bands. Such background effects include atmospheric impurities, soil or shadow
backgrounds, as well as zenith angle of the sensor. Moreover, the outstanding performance
of Sentinel-2 MSI may be attributed to its spatial resolution, a unique spectral band setting,
which together with spectral vegetation indices offers an advantageous alternative than
available broadband and low spatial resolution sensors, such as Landsat data.

The combined data sets (i.e. spectral bands and spectral vegetation indices) further proved
its capability in discriminating water hyacinth from other land-cover types. Although
Sentinel-2 showed the supremacy in the discrimination process, both sensors produced
overall classification accuracy within the range of 68.41–77.56%. Generally, Sentinel-2 MSI
outperformed Landsat 8 OLI by a huge margin of 9.66%. The decrease in Landsat 8 OLI with
9.66% can be attributed to the sensor’s challenges emanating from the spectral confusion of
water hyacinth with other land-cover types within the study area. Considering its 30m spatial
resolution requirements in a river scale (width between 8 and 60m), the sensor was incapable
of classifyingwater hyacinth fromother land-cover types in narrow environments. In contrary,
width of the river and spatial resolution of Landsat 8 OLI resulted in the sensor’s low
sensitivity to water hyacinth, hence slightly lower discrimination capabilities. Therefore, the
observed capability of the newly launched Sentinel-2 MSI makes it a better and future
alternative in discriminating and monitoring aquatic vegetation, especially in a river system.

Overall, classification accuracies in both images increased, and this was influenced by
integration of spectral bands and spectral vegetation indices. Besides, combined data
set from the 10 m Sentinel-2 MSI spatial resolution enhanced the sensor’s potential to
discriminate water hyacinth in the river systems. In this regard, results achieved in this
study concur with research finding published by Matongera et al. (2017) who reported
that combining spectral bands and spectral vegetation indices significantly improved
the discrimination of bracken fern weeds. In addition, the work by Sibanda, Mutanga,
and Rouget (2015) also pointed on the value of combining spectral bands with spectral
vegetation indices obtained from Sentinel-2 in quantifying grass above ground biomass
treated with different fertilizer treatments. High results produced are due to the
increased numbers of variables sensitive to plant biophysical properties.

Spatially, Sentinel-2 managed to depict the spatial distribution of water hyacinth along the
course of river (upper, mid-, and lower stream). Furthermore, it can be seen in the Sentinel-2
image that in the upper and mid-stream, water hyacinth has clogged this freshwater ecosys-
tem. Thesefindings are in linewith the observed land-use patternswithin the areawhere it can
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be observed that alongside these selected sections of river there are commercial agricultural
farms practising intensive farming. However, nutrients from commercial farms contribute in
eutrophication that creates a very conducive breeding ground for invasive species to thrive
(Aboyeji 2013; Galadima et al. 2011; Carpenter and Biggs 2009). Furthermore, the wide spread
ofwater hyacinth can be influencedby nutrientswashed intowater system through run-off, as
well as sewage disposal from upstream townships (Dube et al., 2017). Sewage spillage into
open waterbodies proliferates the biological oxygen strains to such a high level that all the
available oxygenmaybe removed; subsequently, aquatic animals and even aquaticweeds can
thrive or vice versa, creating momentous distraction in the food chain (Aboyeji 2013).

5. Conclusion

In this study, we tested two robust push-broom multispectral sensors: Landsat 8 and
Sentinel-2 in identifying, detecting and mapping the spatial distribution and configuration
of invasive water hyacinth in a river system. The findings of the study derived using DA
demonstrated that newly launched Sentinel-2 outperformed Landsat 8 OLI in mapping
water hyacinth, producing an overall classification accuracy of 77.56% compared to 68.44%
for Landsat 8. Improved water hyacinth classification results were further observed from the
integration of Sentinel-2 spectral bands and vegetation indices. Furthermore, the variable
importance results demonstrated selected blue, RE 1, SWIR-1, and SWIR-2 bands as themost
critical and outstanding spectral regions for detecting and mapping water hyacinth from
other land-cover types. The newly launched 10 m spatial resolution Sentinel-2 MSI sensor
showed enhanced capability in detecting, mapping, andmonitoring the spatial distribution,
configuration, and invasion magnitude of invasive water hyacinth in a river scale.
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