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The extraction of information from the results of a chemi-
cal experiment most often involves the analysis of a consid-
erable number of variables. Not infrequently a small number
of these may contain most of the chemical information, while
the majority add little or nothing that is interpretable in
chemical terms. The decision—as to which variables are

important and which are not—is often made on the basis of
chemical intuition or experience, i.e. subjective criteria,
rather than on more objective ones. This approach, instead
of resulting from ill will on behalf of the chemist, is generally
dictated by practical considerations, since the analysis of
multidimensional data via standard techniques—such as

scatter plots or correlation coefficients—often represents
considerable hurdles.

Consider, for example, a chemical experiment that aims to
investigate the effect of variations in molecular geometry on
solubilities across a series of solutes and solvents. Such an

experiment would necessarily involve correlating many dif-
ferent variables with one another: interatomic distances and
angles, polarities, dielectric constants, temperatures, solubi-
lities, molecular weights. Any attempt to seek correlations
between these variables by means of scatterplots, say, would
have the effect of (subjectively) collapsing an n-dimensional
problem (where n represents the number of variables) onto
two dimensions, with the consequent loss of all information
not associated with these two. In many cases this may be an

appropriate simplification, although it clearly cannot be so
in general.

The problem faced by the chemist is therefore twofold.
First, how can we avoid subjectively carving up the data into
two-dimensional subsets, i.e., how can all n variables be
analyzed simultaneously in order to reveal correlations be-
tween them? Second, how can the dimensionality of the
problem be objectively reduced in order to interpret and
visualize these correlations?

Multivariate statistical techniques that are suitable for
these purposes have been developed and extensively applied
in the social sciences, but their application to chemical prob-
lems has been mainly limited to analytical chemistry. The
two most commonly applied methods are those of factor and
cluster analysis. Factor analysis essentially searches for cor-
relations among all variables simultaneously, extracting lin-
ear combinations of highly correlated variables that de-
scribe, in turn, the greatest amount of sample variance, the
second greatest, and so on. Its main use therefore lies in
dimensionality reduction. Cluster analysis represents a com-

plementary technique that groups together similar points in
the multidimensional data space, thereby yielding clusters
or clouds of data points that are often useful in classifying
the data. Used in conjunction the two methods afford the
chemist an excellent means of visually representing the main
characteristics of the data distribution in an objective way.

A recent analysis of crystallographic data on the molecular
geometries of 196 five-coordinate d8 metal complexes (1)
affords a good example where a multidimensional treatment

has yielded more clarity than previous investigations did.
Five-coordinate complexes typically adopt either trigonal
bipyramidal (TBP) or square-based (or rectangular) pyra-
midal (SQP) conformation, whereby the “typical” SQP has
defied definition.2 Cluster analysis of the data revealed that
the complexes clustered about three archetypal—or “avera-
ge”—conformations: the (expected) TBP, and two kinds of
SQP that differ from one another in the amount by which
the metal atom is displaced from the basal plane. The geom-
etries of these three “average” conformations could be deter-
mined, and it was shown that the more “flattened” SQP
(fSQP)—with its metal atom close to the basal plane—was
characterized by an angle of 171“ between pairs of ligand
atoms trans to one another in this plane, while in the more
“elevated" SQP (eSQP) this angle had a value of 163°. The
results of a factor analysis suggested that this difference may
be significant, since it was revealed that only the eSQP—and
not the fSQP—is capable of distorting toward a TBP via the
well-known Berry mechanism (2). The multidimensional
analysis therefore enabled a more complete classification of
five-coordinate conformations than had previously been
possible, and it moreover revealed chemically meaningful
results that had not been accessible by other means.

This tutorial is intended to introduce factor and cluster
analysis at a level that will afford a senior student—and the
practicing chemist, for that matter—some insights into the
workings of the computer packages employing these meth-
ods, without overwhelming him or her with mathematical
detail in the process.3 ****We shall attempt this by first intro-
ducing some basic statistical concepts and terms, thereafter
touching on the philosophical basis of factor analysis. Its
mathematical basis will be sketched in broad outlines only.
Cluster analysis will be similarly presented with an emphasis
on its philosophical and qualitative aspects, rather than its
quantitative mathematical detail. Both methods are demon-
strated by the analysis of a simple, hypothetical three-di-
mensional data set chosen so as to enable anybody with a

rudimentary understanding of matrix algebra and a working
knowledge of a hand calculator to follow the calculations.
Finally, the results of the analysis will also be graphically
interpreted in order to illustrate the graphical use to which
factor and cluster analysis may be put.

1 Present address: Princeton University, Princeton, NJ 08544.
2 The typical TBP geometry is defined by its point group symmetry,

Dih, while the point group symmetry of the SQP (C4j nonetheless
allows it a degree of freedom with respect to its pyramidality, i.e., the
elevation of the metal atom out of the plane defined by the four basal
ligands (the square base of the pyramid).

3 The application of factor analysis to analytical chemistry has
been outlined by Malinowski and Howery (3), while Massart and
Kaufman have described the use of cluster analysis (4). Both tech-
niques are now commonly available in most statistical computer
packages such as BMDP, SPSS, and CLUSTAN (5), and their usage is
adequately described in manuals to such packages.
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Basic Concepts and Terms

The Data Matrix
To start with, the data consisting of n readings or mea-

surements on m objects are considered to constitute an m X
n data matrix D, the elements of which are di; (where d(J is
the value of the ,/th variable for the ith object) and the
columns of which list the variables (1,2,. ,j,... ,n).

D = objects

;
d,j

n

d\n

Hence object i can be thought of as being represented by a

row vector d, = (dn, of,2. • •  » din) called the pattern or re-

sponse vector, which essentially defines a representative
point for object i in the n-dimensional space spanned by the
n variables.

Standardization and Scaling
In chemical problems units of measurement are usually

chosen on the basis of availability and convenience and to a

large extent depend on the gradation of the instruments one
is using. They seldom, however, bear much relation to the
natural or inherent variation of the characteristic being mea-
sured. In the description of molecular geometry, for exam-

ple, changes of the order of 1 A in interatomic distances
might be relatively more important than changes of the
order of 10° in interatomic angles. Similarly, two angle vari-
ables might have identical (or nearly so) means of 120°, say,
while their ranges vary from 90° to 150°, and from 110° to
130°, respectively. The purpose of standardization and scal-
ing is to express each observation in terms of the inherent
variations of the system.

Although there are a number of techniques for standard-
ization and scaling, we will concentrate on the so-called z

transformation (4). This transformation expresses an obser-
vation as the number of standard deviations from the mean
and leads to a matrix Z consisting of z scores

where

1
m

(2)
1=1

and

1
m

(3)
i=I

Here dj is the sample mean of the jth variable while sj is
the sample variance, or the square of the standard deviation
(sj, or sometimes also of) of the sample. An important prop-
erty (which will be illustrated later) of the z,j values is that
their covariance matrix is the same as the correlation matrix
of the dif s.

Measures of Similarity
In order to group together observations (representative

points) some criterion of “similarity” will obviously need to
be developed. Each object in the n-dimensional space will
need to be compared with every other object in order to
group together into the same cluster those that are “similar,”
while assigning dissimilar ones to different clusters. Two
such measures will be considered here.

Covariance and Correlation. If the mXn data matrix D is

premultiplied by its n X m transpose DT, after subtracting
the mean of each variable, an n X n square matrix is ob-
tained. After dividing its elements by the number of objects
minus 1 it is called the covariance matrix C.

An element of this matrix is given by

1
m

c«“^rLrEw'>-a*)W«-3') (4)
m — 1 -—*

1-1

where

l4=4 y dlkm *—«
1-1

The matrix can be written as

C = —[ D1D - — DTiiTD
m —

11_ m

where i is a vector whose components are all 1.
It should be noted, firstly, that the diagonal elements of

this matrix are equal to the variances of the n variables and,
secondly, that the matrix is symmetric about the diagonal.
Moreover, the sum of the diagonal elements, or the trace of
C, is equal to the total variance in the data set. ci:i is large and
positive when for most objects the values of variables k and l
deviate from the mean in the same direction. The covariance
Cki of the two variables is therefore a measure of their associ-
ation. This covariance or correlation between the two vari-
ables is often also expressed by the correlation coefficient rki
where

sf, and si are the standard deviations of variables k and l,
respectively, and r,::; is hence a standardized covariance that
lies between —1 and +1. For each element Cki of the covari-
ance matrix a correlation coefficient can be derived, and the
covariance matrix C may consequently be transformed into
a correlation matrix R. The covariance and/or correlation
matrices almost invariably represent the basis of departure
for the subsequent factor and cluster analyses.

Distance Measurements. In some cases, especially in clus-
ter analysis, it may prove convenient to express the similar-
ity of two observations in terms of the distance between the
two representative points in the n-dimensional parameter
space. Thus, the Euclidean distance Xki between two points
k and l in n-dimensional space is given by

4, = f (dkj ~

d^)2 = (d* - d,) • (d* - d,)T (6)
i= 1

where (d* — d/) is the difference vector between the pattern
vectors dt and d; for objects k and l, respectively, while (d;,- —

d;)T is its transpose.
Massart and Kaufman (4) have shown, however, that cor-

relation between variables in the n-dimensional space re-
sults in a distortion of the relation between the representa-
tive points, so that the Euclidean distance is an insufficient
measure of similarity. The Mahalanobis distance, on the
other hand, tends to compensate for this effect of correlation
by incorporating the inverse of the covariance matrix (C-1)
into the distance equation

4 = (d*-di)-C-1.<d*-d()T (7)

The Mahalanobis distance measures the distance between
two objects in terms of the inherent variation and covaria-
tion of the characteristics used to describe the system under
consideration. It might also be thought of as the multivariate
generalization of the z transformation in the following man-
ner: The Mahalanobis distance from the ith object to the
centroid, d, of the data or observations is
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Figure 1. Diagram showing the relation between data distribution and (a)
variable axes x and y and (b) factors f 1 and f2. Note that the origin of the factor
space actually lies at the midpoint of the data distribution; the factor axes in (b)
are merely intended to emphasize the directions of variance.

x'f = (d - d) • C '
  (d, - d)T

where the centroid d is the vector of means taken over all
objects. This distance is the number of “standardized units”
that the ith object is from the centroid d. It should be noted,
that, if the covariance matrix C (and hence also its inverse)
happened to be the identity matrix I, then the Mahalanobis
distance reduces to the Euclidean distance. This is seen

immediately on substituting I in place of C in eq 7. Seen in
this perspective, the Mahalanobis distance has similar ap-
peal as does the z transformation while the Euclidean dis-
tance appears rather forced and unnatural. Most cluster
analysis computer packages offer the option of using this
distance measure rather than the straightforward Euclidean
distance.

Factor Analysis4

The Philosophical Basis

Essentially factor analysis involves the transformation of
the n orthogonal axes (representing the variables) that span
the parameter space into n new axes (representing linear
combinations of the variables), such that these new axes lie
along the directions of maximum variance. This basic con-

cept can easily be visualized with the help of a two-dimen-
sional example. Consider the distribution depicted in Figure
1(a).

It is obvious from Figure 1(a) that the direction of maxi-
mum variance lies neither along the x axis nor along the y
axis, but rather along some direction between them, i.e.,
along some combination of x and y. Similarly, the axis de-
scribing the direction of the second greatest amount of varia-
tion away from the principal direction of variance is coinci-
dent neither with x nor with y. Figure 1(b) depicts the identi-
cal distribution to that of Figure 1(a), but referred to a new
set of axes fi and fo, such that fi represents the direction of
greatest variance and f2 that of the greatest variance orthog-
onal to fj. Now, if the variation along f2 is minimal compared
to that along fi, then it could justifiably be argued that the
combination of x and y represented by fi is adequate in
describing the distribution of the data points in the two-
dimensional space spanned by x and y. In other words, a
reduction in the dimensionality of the data point distribu-
tion from two to one has been achieved.

In the case of an n-dimensional problem what factor anal-
ysis therefore yields are up to n orthogonal factors (linear
combinations of the original variables) lying along, respec-
tively, the axis of largest variance, the axis of second largest
variance, of third largest variance, and so on. Often the
number of factors needed to describe, say, 90% of the sample
variance is less than n, so that factor analysis essentially

4 In this paper we follow the BMDP manual (see ref 5) in the use of
the term "factor analysts”. It has been argued that the term "principal
component analysis" might be more appropriate for the technique
used here. See Chatfield, C., Collins, A. J. Introduction to Multivariate
Analysis-, Chapman and Hall: London, 1980.

affords one a technique whereby the dimensionality of the
parameter space can be reduced, i.e., it is a dimension reduc-
tion method.

However, factor analysis offers a second important tool for
multidimensional analysis that derives, in fact, from its orig-
inal application in the social sciences and from which it took
its name. Consider, for example, a hypothetical survey of
lung cancer sufferers. These might be asked to complete
questionnaires in which, among many other items, they are
asked to indicate whether they are male or female, what the
color of their hair is, how many cigarettes they smoke daily,
what their incomes are, and so on. When the results of such a

survey are subjected to factor analysis, what would very
conceivably arise is a situation whereby one factor would be
seen to account for most of the variance in the sample popu-
lation, with other factors adding very little additional infer*
mation. If this principal factor were examined for the com-
ponents of the original variables present in it, it is very likely
that the number of cigarettes smoked would feature as one of
the components, while sex, for example, would not. The
conclusion then would be that smoking is one of the “fac-
tors” that is correlated with lung cancer!

In other words, factor analysis can also reveal those under-
lying factors or combinations of the original variables that
principally determine the structure of the data distribution
and that not infrequently are related to some real influenc-
ing factor in the sample population. The task of the chemist,
in our case, would then be to interpret in chemical terms
those underlying factors extracted out of the data matrix by
factor analysis.

The Mathematical Basis
The descriptive approach outlined by Murray-Rust in a

series of papers on computer analysis of molecular geometry
(6) will be used here. Essentially the mathematical basis of
factor analysis rests on eigenanalysis of the covariance or
correlation matrix (3, 4). Eigenanalysis of a matrix M in-
volves finding unique pairs of vectors e, and scalars X,, called
eigenvectors and eigenvalues, respectively, such that the
following equation is satisfied

M • e, =
X,

  I   e,

where I is the identity matrix.
Since the covariance matrix C is symmetrical about its

diagonal, it will have real and nonnegative eigenvalues X;,
and corresponding eigenvectors e, can hence be obtained.
Thus, eigenanalysis of an n X n covariance matrix, say, will
yield n pairs of eigenvalues Xj, X2,..., X,, and eigenvectors
ei, e2,,,., e;l. The n factors are then obtained from

F = E • Al/2 (8)

where F is the n X n matrix of the factors, E is the n X n
matrix whose columns are the eigenvectors, and A1/2 is the n
X n diagonal matrix composed of the square roots of the
eigenvalues. Ordinarily the matrix E is composed of the
normalized eigenvectors, i.e., eigenvectors whose lengths
have all been normalized to unity, since, if this is the case,
then

C = F • Ft
i.e., there is a check offered of whether the factors extracted
from C are the correct ones, in that multiplying the factor
matrix F by its transpose FT ought to again yield the original
covariance matrix C. (This point is explained in more detail
in the Appendix).

The factors appear as linear combinations of the original
variables in the form

f = a,x, + a2x2 + ... + no-

where Xi represents the original variables, while the coeffi-
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cients eq, a2,..., a, give an indication of the relative impor-
tance of the corresponding variable in the factor. These
coefficients are often called loadings.

A further important point to note is that the X’s represent
the proportion of the total sample variance which the corre-

sponding eigenvectors (factors) account for. Thus the factor
with the largest eigenvalue will be the most important, or

principal factor, and will lie along the axis of maximum
variance of the data.5

The factors f„ obtained from the columns of the factor
matrix F are sometimes called abstract factors if they do not
relate directly to any chemical information, but represent
rather a composite mixture of the original variables. In order
to obtain chemically meaningful factors, the abstract factor
matrix F may be transformed or rotated into chemically
meaningful data. This is accomplished using a n X n rotation
matrix A such that the new factors g are obtained from

G = FA

simple analysis. Starting with the data matrix D with the 12
cases of measurements of three variables x, y, and z.

Essent ially such a rotation corresponds to a rotation of the
axes representing the abstract factors in the factor space
until they become coincident with a set of chemically mean-

ingful “chemical” factor axes in that space. There are two
methods for doing this. The first, orthogonal rotation, pre-
serves the orthogonal relation of the abstract factor axes on

rotation, while the second, oblique rotation, does not. How-
ever, since rotation may lead to a subjective interpretation of
the results of factor analysis, it needs to be treated cautious-
ly, as has been pointed out repeatedly by Murray-Rust (6c,
6d).

Finally, in order to analyze graphically the results of factor
analysis it is necessary to convert the original data matrix D
(or the matrix Z of z scores in the case of standardized data)
into a matrix S of factor scores

S = D - F (9)

The factor scores for a given observation simply represent
the coordinates of its representative point in the n-dimen-
sional space spanned by the n factors, in much the same way
as the values of the variables represent the coordinates for
the data point in the original data space. The representative
point in the original data space is therefore simply trans-
formed into a new one as the original data space is trans-
formed into the new factor space.

A Worked Example
In order to demonstrate some of the statistical techniques

outlined above, a simple and hypothetical three-dimension-
al data set consisting of 12 observations will be subjected to a

5 The philosophical relation between eigenanalysis and factor anal-
ysis is premised, in fact, on the definition of an eigenvector e of a
matrix M as a vector that is transformed into a multiple of itself by M,
i.e.

M • e = XI • e

where X is a scalar called the eigenvalue of M and I is the identity
matrix. Suppose a covariance matrix C can be obtained from a given
data set D, i.e., a matrix that describes the covariance between the
variables describing D. Suppose further that some given linear combi-
nation e of these variables describes the axis of maximum variance in
D. Now, if more data taken from the same parent population as D
were added to D, then this should not seriously influence the axis Of
maximum variance, since the axes of maximum variance of any
subset D of the parent population should be similar. All that this
additional data added to D should do, if indeed the axis found repre-
sented the vector of maximum variance, is to reinforce this vector. In
other words, neither the direction of e nor its length should vary
greatly. Consequently e, In fact, represents an eigenvector of the
covariance matrix C, since it can only be transformed into a multiple
of itself by C, while its direction remains unchanged.

where the means d and sample variances s2 are obtained as
shown in eqs 2 and 3.

The corresponding covariance matrix C as obtained from
eq 4 is

c"it[dTd-^dI'"i'd]"(_1''1
18.45 >

64 6.15
11.09 -4.79 10.15/

and the corresponding correlation matrix R as obtained
from eq 5 is

/ 1.00
R = 0.81 1.00

V-0.81 -0.61 1.00,

The matrix Z of z scores obtained from the data matrix D
according to eq 1 is

The corresponding covariance matrix C, is

/ 1.00

C, = — ZT • Z = 0.81 1.00
11 V-0.81 -0.61 1.00

which is identical to the correlation matrix R of the unstan-
dardized data matrix D, as was pointed out above.

From the values of the correlation coefficients r in the
matrix R, it becomes obvious that there is a high degree of
correlation between x, y, and z and, furthermore, that any
pair of variables can describe between 37% and 66% of the
variance of the sample. This may be gleaned from the
squares of the correlation coefficients which each represent
the proportion of the variance that can be explained by the
linear relatedness of the two parameters involved.

Since in this case both the scale and the range of the raw
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data values are almost identical for each variable, no scaling
or standardization will be employed for the subsequent fac-
tor analysis. It must be pointed out, however, that this is bad
practice if the variables have different units. Moreover, the
covariance matrix will be used as the point of departure.

In order to extract from the covariance matrix C the eigen-
values X and the corresponding eigenvectors e (and hence
the factors), it is necessary to solve the following equation for
X

Ic - Xll = 0

where I is the identity matrix with diagonal elements equal
to unity and the off-diagonal elements equal to zero and the
vertical lines indicate that the determinant of the difference
matrix between the lines should equal zero.

The above equation can be readily solved using standard
matrix algebra and formulas for the solution of cubic equa-
tions.6 In this case the roots extracted from C are Xi = 30.17,
X2 = 3.22, and X3 = 1.36, i.e., these are the eigenvalues of the
covariance matrix.

In order to obtain the corresponding eigenvectors e the
following equation needs to be solved for the various X’s

(C - XI)   e = 0

where e is the column vector of the three variables x,y, and z.

Hence, the product of the difference matrix in brackets with
the three-dimensional column vector e must equal zero.

On solution, the three eigenvalues yield eigenvectors
/ 2.03\ /0.39\ /-0.84\

ei = 1.00 e2 = 1.00 e3 = 1.00 I

\—1.36/ \1.31/ V—0.51/

for Xj, X2, and X3, respectively.
The eigenvectors are ordinarily normalized, which in this

case yields
/ 0.77\ /0.23\ /—0.60\

ej = 0.38 e2 = 0.59 e3 = 0.71 I

\—0.52/ \0.77/ V—0.36/

The matrix of eigenvectors E is hence

/ 0.77 0.23 —0.60\
E = I 0.38 0.59 0.71 )

\—0.52 0.77 -0.36/
and that of the square roots of the eigenvalues is

/5.49 0 0 \
A1/2 =

| 0 1.79 0 I

\0 0 1.17/
When these two matrices are combined as in eq 8, the factor
matrix F emerges.

F = E   Al/2 =

/ 0.77 0.23 —0.60\ /5.49 0
0.38 0.59 0.71 I • I 0 1.79

V—0.52 0.77 -0.36/ V 0 0
/ 4.23

= I 2.09
V—2.86

0.41 —0.70\
1.06 0.83
1.38 -0.42/

Consequently the three factors constituting the factor ma-

trix are

f, = 4.23* + 2.09y - 2.86z

f, = 0.41x + 1.06y + 1.38z

f;) = —0.70x + 0.83y - 0.42z

A check on whether the correct eigenvalues have been
found is afforded by a comparison of the sum of the X’s with
the sum of the variances of the original variables. These
should obviously be equal, since the total variance in the

6 Any introductory text on matrix algebra will illustrate how to find
eigenvectors and eigenvalues for simple 3X3 matrices.

sample should be the same both before factor analysis and
after. In this case the variances of the variables add up to
34.75 (= 18.45 + 6.15 + 10.15) as indeed do those of the
factors (30.17 4- 3.22 4- 1.36) also! Furthermore, the propor-
tion of the sample variance explained by each factor can be
estimated from its eigenvalue. Thus, f| has X = 30.17, which
represents ((30.17/34.75) X 100) percent of the variance.
Hence fj, f2, and f3 describe respectively 86.8, 9.3, and 3.9%
of the sample variance.

As pointed out earlier multiplication of the factor matrix
F by its transpose FT affords a means of checking whether
the correct factors have been extracted from the covariance
matrix C, since

C = F • Ft
if the eigenvectors making up F have been normalized.

In this case

/ 18.55
F-Ft = I 8.69 6.18

V—11.25 -4.88 10.21

which is very close to the original covariance matrix ob-
tained. Hence in this case the factors obtained are the cor-
rect ones within the limits of accuracy of these calculations,
and we can therefore say that the first or principal factor
adequately describes the variance in the sample. A reduction
of dimensionality from three to one has consequently been
achieved. As it is, these factors have no real significance, and
rotation would thus be meaningless.

However, a graphical analysis of the results of the factor
analysis might prove instructive. In order to accomplish this,
it is necessary to transform the data matrix D into a factor
score matrix S that represents the projection of each of the
original observations onto the factor axes. This is done as in
eq 9 and yields

Case
1 /-29.0
2 / -26.7
3 / -29.7
4 # -32.5
5 I -11.3

8 I 21.8
9 1 25.5

10 \ 28.2
11 \ 46.0
12 \ 47.5

fa f.)

The correlation matrix corresponding to S is

/ 1.00
R = 0.01 1.00

\—0.06 0.05 1.00,

Thus, within the context of the eigenanalysis performed
and the truncation of numbers, the three factors are for all
intents and purposes orthogonal to each other and conse-

quently independent and uncorrelated, whereas the original
variables x, y, and z were highly correlated. This emerges
very clearly from an examination of Figures 2 and 3.

Figure 2 represents plots of the original variables against
each other, and it reveals the approximately linear correla-
tions between them. It is also easy to see, furthermore, that
the data actually represent two clusters. Further informa-
tion, however, cannot be gleaned from these plots.

Figure 3 represents plots of the factor scores against one
another. From the scatter of the data points it becomes
immediately obvious that fi, fj, and f3 are not correlated.
Moreover, in Figure 3(a) and (c) the two clusters of points
are very nicely separated, and it is this feature that makes
factor analysis such a useful tool in more general and real
cases. Additionally, both Figures 3(a) and (b) reveal two
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a c
a c <1

b

Figure 2. Scatterplots of data lor worked example. Axes used are original
variable axes.

Figure 3. Scatterplots of factor scores for data of worked example.

possible outliers (observations 2 and 12). An examination of
the data matrix reveals, in fact, that cases 2 and 12 (and
possibly 11) are slight outliers.

In summary then, factor analysis is a method for mathe-
matically, i.e., objectively, exploring the possibility of reduc-
ing the dimensionality of the problem being investigated,
and it offers a useful graphical technique for the representa-
tion of both clusters and outliers in the sample. This point
can also be intuitively appreciated as follows: consider two
clusters of points. If the separation is sufficiently pro-
nounced, then the line joining the two centroids will tend to
become the major axis of variation, i.e., the principle compo-
nent in the factor analysis. Projection onto that axis would
help identify the two clusters.

Factor analysis of a more general n-dimensional data ma-
trix would involve eigenanalysis of the n X n covariance or
correlation matrix, and hence necessitate the solving of an

equation of the nth power. The mathematical algorithms
which have been developed for this purpose incorporate
least-squares methods whereby the eigenvectors are consec-

utively calculated so as to minimize the residual error in each
step. Thus each successive eigenvector accounts for a maxi-
mum of the variation in the data.

The procedure involves essentially the following steps.
One, the eigenvector associated with the largest eigenvalue is
orientated in the factor space so as to account in a least-
squares sense for the greatest possible variance in the data.
Two, the second eigenvector associated with the second larg-
est eigenvalue is directed orthogonally away from the first
and in the direction of maximum variance. These steps are
then repeated for the n — 2 eigenvectors left, each step being
subject to the conditions (1) that the eigenvector be orthogo-
nal to each preceding one and (2) that it account for the
maximum variance possible. In this way each eigenvector (or
factor) that emerges from the iteration is orthogonal to all
the previous ones and is oriented in the direction that maxi-
mizes the sum of squares of all projections onto that axis
(factor) (3).

Since each successive eigenvector accounts for a smaller
fraction of the total variance in the data, it often occurs that
the first four factors, say, describe up to 90% of the variance,
the last 10% being accounted for by the other n — 4 factors.
In order, therefore, to know how many factors are necessary,
some tests have been devised. For example, Kaiser’s criteri-

on, which has been incorporated into the BMDP factor anal-
ysis program, retains factors whose eigenvalues are greater
than unity. An alternative criterion might be to retain all
those factors that collectively account for, say, 90% of the
variance and discard all others.

If the data were free of experimental error or superfluous
information, then factor analysis would yield only c eigen-
vectors, one for each of the controlling “chemical” factors,
where c is less than n. The computer algorithms cannot
decide, however, which of the n eigenvectors have physical
meaning. All that they can do is reject some of the more

insignificant factors according to some pre-set condition. It
would then be the task of the chemist to examine the results
of the computer iteration judiciously and to interpret these
according to his or her understanding of the chemical basis
underlying the analysis.

Cluster Analysis

The Philosophical Basis
What all clustering algorithms essentially do is to cluster

together similar or neighboring points into clusters in the n-

dimensional space. Their differences lie mainly in the crite-
ria used for establishing similarity and in the rationale ac-

cording to which clusters are fused together. Generally, two
types of algorithms are distinguished, these being hierarchi-
cal and nonhierarchical or relocation clustering. Both meth-
ods require the calculation of a similarity matrix, which
contains a number indicating the “similarity” between each
pair of observations of the original data set. This similarity,
which is really a measure of the proximity of the pair of
observations in the n-dimensional space, is usually ex-

pressed in terms of either the Euclidian or the Mahalanobis
distance between the two points. Once this similarity matrix
has been established the various clustering techniques can

be applied to it.

Clustering Techniques
Hierarchical Clustering Methods. There are two opposing

approaches to hierarchical clustering, these being agglomer-
ative and divisive procedures. In agglomerative clustering
each observation in a data set is initially considered as a
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cluster on its own, and the hierarchical classification is built
up by a series of linkages in which the most similar pairs of
clusters are merged until all of the compounds are in a single
cluster. Conversely, the divisive algorithm begins by placing
all the observations into one cluster, which is then progres-
sively subdivided into smaller ones until, finally, each obser-
vation is again in a cluster of its own. This approach may,
consequently, be dubbed a “top down” technique, while the
agglomerative algorithm represents a “bottom up” tech-
nique.

Nonhierarchical (Relocation) Clustering. Relocation (or
partitioning) methods attempt to partition a data set into
some number of disjoint clusters such that related or similar
compounds fall into the same cluster, with compounds unre-
lated to that cluster being distributed among the other, well-
separated clusters in the set (4, 7). In general, the algorithm
will generate a particular partition or clustering, determine
the “goodness” of fit in some statistical sense and then
relocate individual observations among the clusters until an

optimum fit has been achieved. Since all the clusters are

generated simultaneously, the resulting classification is non-
hierarchical. Either the number of clusters to be generated
can be specified in advance, or it may be optimized by the
algorithm itself according to certain criteria.

Linkage Criteria
There are a large number of different criteria that have

been developed to decide which individual elements and/or
clusters should be merged together and in which way the
similarity between a newly obtained cluster and other clus-
ters or objects is defined. It is important to realize that the
same algorithm may well give different results for a given
data set depending on what linkage and similarity criteria
are used. It is therefore important to apply different tech-
niques or to complement the clustering method with graphi-
cal techniques (such as factor analysis) wherever possible.

Single linkage is the oldest and simplest procedure, and in
it the distance between objects and/or clusters is simply
considered to be equal to the shortest distance between two
individual elements, one from each cluster.

Complete linkage is the opposite of single linkage, in that
the distance between two clusters is now considered to be
equal to the largest distance between two individual ele-
ments, one from each cluster.

Average linkage defines the intercluster distance as the
average distance between all pairs formed by elements from
each of the two clusters, respectively.

Centroid linkage focuses on the distance between the cen-
troids of two clusters, or between the centroid of a cluster
and an object outside of it.

Figure 4 shows graphically three of the linkage criteria
outlined above.

The K-means clustering method has been devised for use

with relocation algorithms exclusively, in contrast to the
previous four linkage methods. Essentially this technique

Figure 4. Diagram showing (a) single linkage, (b) centroid linkage, and (c)
complete linkage.

involves locating K centroids within the data space such that
the sum of the distances from the data points to each nearest
centroid is minimized. Obviously this will need to be done
via an iterative procedure, since the first, usually randomly
chosen distribution of the centroids is unlikely to correspond
to that of the true centroids of the clusters in the data space.
Depending on the algorithm used, however, the original K
centroids can be specified or the number of clusters to be
determined may be specified if there is some a priori notion
of what the distribution is likely to be. The advantage of this
method lies, of course, in lower computation times, although
it would seem to be unfeasible for large data sets, unless
these are highly ordered and the number of clusters is rea-

sonably low. It must be emphasized, though, that different
algorithms can yield different clusterings and that the re-
sults of a cluster analysis are therefore not necessarily unam-

biguous and, consequently, need to be supported by at least
one other technique.

A Worked Example
Two of the clustering techniques outlined in the previous

section will be applied to a cluster analysis of the hypotheti-
cal data set used in the earlier worked example in order to
demonstrate simply how the algorithms work. The two
methods to be used are, firstly, agglomerative or “bottom
up” clustering using the single linkage (nearest-neighbor)
criterion and, secondly, divisive or “top down” clustering
employing the complete linkage (furthest neighbor) criteri-
on. The latter is of academic interest only at this stage,
having never before been applied to a chemical analytical
problem.

For both types of algorithms the point of departure is the
similarity matrix. This has been established according to eq
6, and it contains simply the Euclidian distance between
every pair of the 12 observations in the three-dimensional
data space:

Case
Case

1

2

3
4

5
6
7

8
9

10
11

12

1

0
4.2
1.7
4.1
3.3
4.6
8.6
9.4

10.3
10.9
13.6
14.4

8 9 10 11 12

0
4.6
5.4
5.4
4.6

10.5
10.6
11.5
11.7
13.6
13.5

0
2.4
3.5
4.2
8.8
9.5

10.2
10.6
13.7
14.5

0
5.1
4.9
9.8

10.5
10.7
11.2
14.5
15.1

0
2.4
5.4
6.2
7.2
7.5

10.4
11.4

0
5.4
6.5
6.2
6.4
9.9

10.3

0
1.7
3.0
3.2
5.1
6.5

0
3.9
2.2
5.0
7.0

0
3.0
4.1
4.6

0
4.2
6.4

0
2.8

From a cursory examination of the similarity matrix the
following becomes obvious. First, the minimum distance be-
tween case 2 and any other member of the data set is 4.2,
whereas most others have minimum distances considerably
smaller than this, i.e., case 2 may be regarded as an outlier.
Second, by a similar argument cases 11 and 12 (when taken
as a pair) may be seen to be outliers, although they lie in close
proximity to each other. Third, the data fall into two diffuse
clusters, i.e., observations 1 to 6 and 7 to 12 in general being
less than 5 units apart, with the elements of each cluster
generally separated by more than 7 units. Indeed, a three-
dimensional representation of the data distribution con-
firms these results as is shown in Figure 5, where it can be
seen that the cases 1 to 6, with the exception of 2, fall into a

quite different octant from those of cases 7 to 12.
Unfortunately, though, in practice the situation is seldom

as unambiguous or as simple as this, and usually a skillful
blend of cluster analysis, factor analysis, and graphical inter-
pretation is required.
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Figure 5. Diagram of the three-dimensional data space of the hypothetical data
set used.

Single-Linkage Agglomerative Clustering. This tech-
nique begins by considering each observation initially to be
in a cluster on its own, subsequently seeking to cluster to-
gether those compounds and/or clusters nearest to one an-
other, until only one cluster remains. Applying this algo-
rithm to the similarity matrix, it may be seen that observa-
tions 1 and 3, and 7 and 8, form the closest pairs (1.7 units)
and will thus be first to be clustered together,7 Thereafter
case 10 is joined to the cluster (7,8), since its distance from 8
(2.2 units) is now the shortest distance between any pair of
elements of the data set. At the next stage, the fourth level of
the clustering process, case 4 will be joined to the cluster (1,
3), since its distance to one of the elements (3) of that cluster
is shorter than the distance between any other pair of obser-
vations and/or clusters at that stage.

This procedure is then repeated for a total of 11 stages,
until all the elements have been joined together to form one

cluster. The history of this clustering process is best repre-
sented in the form of a dendrogram, as shown in Figure 6.

Three important points emerge from the dendrogram.
Firstly, observation 2 is only merged to the cluster (1, 3,4, 5,
6) at the penultimate level of clustering (p - 10), thus easily
identifying it as an outlier. Secondly, cases 11 and 12, joined
together at the sixth level, are finally only joined to cluster
(7, 8, 9, 10) at p = 9, thus also indicating that they may be
treated as outliers of sorts. These observations echo the
results obtained during the factor analysis of this data set,
where these cases were also clearly identifiable as outliers
from the plot of factor 2 against 3 and, more clearly, from
that of factor 1 against 2 (Figures 3(b) and (a), respectively).
Finally, the dendrogram graphically illustrates the notion
that the data consist of essentially two clusters (1,2,3,4,5,6)
and (7,8,9,10,11,12), since the elements of both are kept
separate from each other until the final cluster is formed.

In the general case of a data set with m observations there
would be (m — 1) levels of clustering, and the algorithm
would have difficulty in deciding at which stage to stop the
process, i.e., at which stage are the clusters formed “mean-
ingful” or “significant”. In order to avoid confusion between
this concept and that of “statistical significance” Massart
(8) introduced the term “robust” cluster.

There have been some attempts at defining criteria for
establishing the “correct” number of clusters. These are

usually based on plots of some statistical or semistatistical
measure, such as the average within-cluster distance, as a
function of the number of clusters. Breaks in this curve are

interpreted as indicating the emergence of robust clusters, or
of the “correct” number of clusters. It must be pointed out,

2 1 3 4 S 6 7 B 10 9 11 12

Figure 6. Dendrogram illustrating agglomerative clustering of the hypothetical
data as a function of the intercluster distance <d>. The level of clustering (p) at
which a given cluster is formed is shown by the numbers within the dendro-
gram.

0 2 4 6 B 10

P —

Figure 7. Plot of nearest-neighbor distance (NND) versus level of clustering (p).

however, that this approach has been the subject of some
debate (4, 8) and does not yet seem to have been resolved.
Nevertheless, this method has been used successfully (1, 4,
9) and will therefore be demonstrated on this example. The
measure chosen to indicate the break between “insignifi-
cant” and robust clusters is, for simplicity’s sake, the nearest
neighbor distance, since this would be expected to increase
dramatically as the algorithm begins to cluster together ro-

bust, well separated clusters.
Figure 7 shows how the nearest-neighbor distance varies

with the level of clustering p. Although the plot is not very
striking, a discontinuity at the p = 10 level can be seen,
implying that when the last two (= 12 — 10) clusters are

joined there is an increase in “heterogeneity” since the clus-
ters joined are relatively far apart. It could similarly be
argued that there is a slightly less obvious break in the graph
at the level p = 8, suggesting that there are four (= 12 — 8)
clusters, these being the clusters (1, 3, 4, 5, 6), (7, 8, 9, 10),
(11,12) and (2). In this case, therefore, it would appear as if
the “correct” number of clusters is either two or four.

Complete-linkage divisive clustering. In this approach
the data points are initially all assumed to be in one (all
embracing) cluster, and in subsequent steps the algorithm
seeks to split those elements which are furthest apart from
each other in any given cluster. The two resulting clusters

7 Assuming that this algorithm is only capable of clustering two
observations and/or clusters together at each level of clustering, this
stage will necessitate two clusterings, i.e., the first level of clustering
(p = 1) and the second (p = 2).
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are then formed by the elements closest to those which were
originally split apart.

From the similarity matrix it may be seen that cases 4 and
12, in fact, have the largest distance (15.1) between them.
The algorithm will search the matrix for those elements
closest to cases 4 and 12, respectively, and will then divide
them up into two clusters according to their proximity. At
the first stage this will therefore result in two clusters (1,2,3,
4,5, 6) and (7, 8, 9,10,11,12).

At the second stage the algorithm searches for the largest
distance among the various pairs of elements in the two
clusters and then splits that cluster which contains the most
separated pair of elements. In this case it is observations 8
and 12, which are 7.0 units away from each other. The algo-
rithm thus splits the cluster containing these two elements
in such a way as to cluster around case 8 those elements
closest to it, and similarly for case 12. Two clusters (7, 8, 9,
10) and (11,12) emerge.

At the third stage the cluster (1, 2, 3, 4, 5, 6) is split, since
two of its members (2 and 4) are now farthest apart (5.4
units). This division gives rise to the clusters (2,6) and (1, 3,
4,5).

This stepwise subdivision of the data set can again be
summarized in the dendrogram shown in Figure 8.

The two dendrograms, the bottom-up and the top-down
ones, offer interesting comparisons. For example, comparing
the clusters at the eighth level in the former with those at the
third level in the latter, i.e., where there are four clusters in
both cases, one can see quite clearly that the two algorithms
give significantly different answers. Thus the agglomerative
technique yields clusters (7, 8, 9, 10), (11,12), (1, 3, 4, 5, 6),
and (2) while the divisive method results in the clusters (1,3,
4, 5), (2, 6), (7, 8, 9,10), and (11,12). Moreover, whereas the'
former reveals case 2 as an outlier for nine successive cluster-
ing levels, the top-down approach isolates both observations
2 and 6 for only six successive clustering levels. The slightly
different results obtained for the two techniques in this
hypothetical example are intended as a “worst case” scenar-
io8 in order to indicate that the results of a cluster analysis
need to be cautiously interpreted and that this interpreta-
tion will necessarily need to be guided by an understanding
of the chemical basis underlying the analysis. In themselves
the clustering algorithms do not yield an answer—this can

only be arrived at through as judicious and objective an

interpretation of their outcome as possible.

Conclusion
A complete analysis of multivariate chemical data cannot

be satisfactorily achieved without resorting to multivariate
statistical techniques. Factor analysis offers a completely
objective mathematical technique for identifying important
axes of variation of the data in the multidimensional data
space. In this it can aid in identifying underlying factors
which characterize the data distribution. It also affords a

useful graphical tool, since scatterplots of the data onto
planes described by the few most important axes will have
the effect of separating data points from each other most
effectively. Cluster analysis is a complementary technique
that, although slightly less objective due to a large variety of
possible linkage criteria, nonetheless is a considerable aid in
identifying specific clusters of data points in the plots
emerging from factor analysis.
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8 Indeed, in the example of the analysis of the molecular geometry
of ds five-coordination (quoted earlier), hierarchical and nonhierarchi-
cal clustering techniques produced virtually identical results (1).

Figure 8. Dendrogram illustrating divisive clustering of the hypothetical data as
a function of the intercluster distance (d). The level of clustering (p) at which a

given cluster is split apart is shown by the numbers within the dendrogram.

Appendix
Suppose that n eigenvalues Xi, X2,..., X.,, and n corresponding

eigenvectors ei, e2,..., e„ have been extracted from an n x n covari-
ance matrix C. Then, for all i we have, by definition

Cei = Xrei
Instead of using the individual e,- and X;, however, we can substi-

tute the eigenvector matrix E composed of the column eigenvectors,
and the eigenvalue matrix A, whose diagonal elements are the n

eigenvalues and whose off-diagonal elements are zero. Thus

C • E = E • A

Postmultiplying both sides of the equation by E_1, i.e., the inverse
of E, we obtain

C • E • E_l = E-A - E”1
C = E   A • E_1

= E-AI/2-A1/z-E~!

Now, if the eigenvector matrix is composed of normalized eigen-
vectors, then the inverse of E is just the transpose of E, i.e.,

E"1 = Et
Then, by eq 8 we have

C = F   Ft
In other words, if the eigenvectors extracted from the covariance
matrix C are normalized prior to computing the factor matrix E,
then C should be recoverable from F and its transpose FT by multi-
plication of these two.
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