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Abstract: Cotyledon orbiculata, commonly known as pig’s ear, is an important medicinal plant of South
Africa. It is used in traditional medicine to treat many ailments, including skin eruptions, abscesses,
inflammation, boils and acne. Many plants have been used to synthesize metallic nanoparticles,
particularly silver nanoparticles (AgNPs). However, the synthesis of AgNPs from C. orbiculata has
never been reported before. The aim of this study was to synthesize AgNPs using C. orbiculata
and evaluate their antimicrobial and immunomodulatory properties. AgNPs were synthesized and
characterized using Ultraviolet-Visible Spectroscopy (UV-Vis), Dynamic Light Scattering (DLS) and
High-Resolution Transmission Electron Microscopy (HR-TEM). The antimicrobial activities of the
nanoparticles against skin pathogens (Staphylococcus aureus, Staphylococcus epidermidis, Methicillin
Resistance Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) as well as their effects
on cytokine production in macrophages (differentiated from THP-1 cells) were evaluated. The Ag-
NPs from C. orbiculata exhibited antimicrobial activity, with the highest activity observed against
P. aeruginosa (5 µg/mL). The AgNPs also showed anti-inflammatory activity by inhibiting the secre-
tion of pro-inflammatory cytokines (TNF-alpha, IL-6 and IL-1 beta) in lipopolysaccharide-treated
macrophages. This concludes that the AgNPs produced from C. orbiculata possess antimicrobial and
anti-inflammation properties.

Keywords: green nanotechnology; Cotyledon orbiculata; silver nanoparticles; nanoparticles characteri-
sation; antimicrobial activity; immunomodulation; cytokines; anti-inflammation

1. Introduction

Cotyledon orbiculata is a succulent plant indigenous to Southern Africa and is com-
monly found in the Western Cape province. It is a small shrub, commonly known as
pig’s ear, that has thick green fleshy leaves with a red line around the edges of the
leaves [1]. It is used in folk medicine to treat skin rashes, abscesses, inflammation, boils
and acne [2,3]. The fleshy leaves are applied to corns and warts to soften them, and
the leaf juice is used to treat earache, toothache and epilepsy [4]. Studies have shown
that C. orbiculata have many biological activities, which include antibacterial, antifungal,
anticonvulsant, antinociceptive, anti-inflammatory, antihelmintic and antioxidant activi-
ties [1,5–7]. Aremu and colleagues (2010) assessed the antimicrobial properties of several
extracts (water, ethanol, dichloromethane and petroleum ether) of the C. orbiculata plant
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against Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Bacillus subtilis and
Candida albicans. All the extracts showed antimicrobial activity, with Minimum Inhibitory
Concentration (MIC) values ranging from 1.6 to 12.5 mg/mL [2]. Another study by Am-
abeoku and Kabatende (2012) showed that the administration of a methanol extract of the
C. orbiculata leaf significantly attenuated carrageenan-induced oedema in the paws of rats,
and thus demonstrated the anti-inflammatory properties of the plant extract [8].

Green nanotechnology is a division of nanotechnology which involves the synthesis
of biogenic nanomaterials using eco-friendly methods that are safe and cost effective [9].
Microorganisms (bacteria, fungi and yeast) and plants have been used in the biosynthesis
of biogenic nanoparticles [10]. The advantages of synthesizing nanoparticles by biological
means include lower toxicity and easy scalability [11]. Plants have been readily used in
the synthesis of metallic nanoparticles, as they are easily accessible and can promote rapid
nanoparticle synthesis [12]. Metallic nanoparticles have been synthesized using plants
such as Galenia African; Hypoxis hemerocallidea [10]; Terminalia mantaly [11]; Capparis spinosa [12];
Datura stramonium [13]; Ocimum tenuiflorum; Citrus sinensis; Solanum tricobatum; Centella asiatica;
Syzygium cumini [14]; Musa paradisiacal [15]; Aspalathus hispida; Aspalathus linearis;
Asparagus rubicundus; Cynanchum africanum; Dicerothamnus rhinocertis; Eriocephalus africanus;
Hermannia alnifolia; Indigofera brachystachya; Lobostemon glaber; Metalasia muricate; Nidorella foetida;
Otholobium bracteolatum; Podocarpus falcatus; Podocarpus latifolius; Salvia africana-lutea;
Senecio pubigerus; Searsia dissecta; Camellia sinensis; and Camellia sinensis [16].

It is likely that the phytochemicals that are responsible for the bioactivities of medicinal
plant extracts could also be involved in the synthesis of the biogenic metal nanoparticles.
A study by Aboyewa et al. (2021) demonstrated that the compound mangiferin, which is a
xanthonoid that is found abundantly in extracts of the Cyclopia intermedia plant, can be used
to produce gold nanoparticles, which have similar physicochemical properties to those
produced using the water extract of C. intermedia [17]. The nanoparticles produced from
such plant extracts may therefore have bioactivities that are similar to those of the extract.
C. orbiculata extracts contain flavonoids, phenols, saponins, tannins, triterpene steroids and
reducing sugars, which contribute to its biological activities [1]. It is therefore plausible to
expect that the silver nanoparticles (AgNPs) produced from C. orbiculata extracts may have
antibacterial and immunomodulatory effects.

Nanomaterials are widely used in different biomedical applications and research.
They are incorporated in targeted therapy, drug delivery and in the diagnosis of various
diseases [18]. Among metal nanoparticles, which include, but are not limited to, gold,
copper, platinum and titanium nanoparticles, AgNPs are known for their antibacterial,
antifungal and immunomodulatory activities [13,18]. Antimicrobial resistance is the ability
of microbes to resist the effects of antimicrobial drugs [19]. The emergence of antibiotic
resistant microorganisms is a global health challenge, rendering common infections difficult
to treat. These microorganisms can lead to prolonged illnesses, disability, death and an as-
sociated financial burden. Biogenic nanoparticle could be used as alternative antimicrobial
agents. Plant derived AgNPs with immunomodulatory and/or antimicrobial properties
can contribute to the treatment of resistant infections or chronic inflammation [20].

Inflammation is an essential response triggered by the body’s immune systems to
fight infections. However, chronic and uncontrolled inflammation in diseases such as
cancer, rheumatoid arthritis, asthma and diabetes is associated with adverse effects. Pro-
inflammatory cytokines promote inflammation; however, excessive or uncontrolled pro-
duction of these cytokines can lead to the development of chronic inflammatory conditions
such as chronic obstructive pulmonary disorder, osteoarthritis and cancer [21,22]. Biogenic
gold nanoparticles produced from the H. hemerocallidea plant have been shown to possess
anti-inflammatory properties by reducing the levels of several pro-inflammatory cytokines
(TNF-α, IL-6 and IL-1β) [23].

This study investigated the use of C. orbiculata aqueous extract to synthesize AgNPs.
The reaction parameters of AgNPs synthesis such as time, temperature, silver nitrate
(AgNO3) and plant extract concentrations were studied in order to optimise the synthesis
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of the AgNPs from C. orbiculata (Cotyledon-AgNPs). The physicochemical properties of
the Cotyledon-AgNPs were characterised. The antimicrobial activity against common skin
pathogens (S. aureus, Staphylococcus epidermidis, Methicillin Resistance Staphylococcus aureus
(MRSA), Pseudomonas aeruginosa and C. albicans) and the immunomodulatory effects of
Cotyledon-AgNPs were determined. Results obtained from this study could potentially lay
a foundation for the discovery of new antimicrobial and anti-inflammatory drugs.

2. Materials and Methods
2.1. Materials

Fresh C. orbiculata plants were purchased from Van Der Berg Garden Village nurs-
ery in Stellenbosch, Cape Town, South Africa. AgNO3 (99%) was obtained from ACE
chemicals (Johannesburg, South Africa). Alamar blue was obtained from ThermoFisher
Scientific (Waltham, MA, USA). Lipopolysaccharides (LPS), phorbol 12-myristate 13-acetate
(PMA), WST-1 reagent, Roswell Park Memorial Institute (RPMI) medium, Müller-Hinton
broth (MHB), Yeast Peptone broth (YPB), Luria-Bertani broth (LB broth), Phosphate-
buffered saline (PBS), Fetal bovine serum (FBS), Pen-strep (penicillin and streptomycin),
0.45 µm syringe filters and Whatman filter paper No.1 were obtained from Sigma-Aldrich
(St. Louis, Mo, USA). The cytokine ELISA kits were from Bioo Scientific, PerkinElmer
(Austin, TX, USA).

2.2. Methods
2.2.1. Plant Extract Preparation

The fresh C. orbiculata leaves were cut from the whole plant and washed with distilled
water. The fresh leaves (300 g) were then cut into small pieces, blended and macerated in
600 mL of distilled water overnight. Thereafter, the extracts were filtered using Whatman
filter paper No.1, followed by microfiltration using 0.45 µm filters. The extract was then
concentrated by freeze drying and stored at 4 ◦C until use.

2.2.2. Synthesis of Cotyledon-AgNPs

The synthesis of Cotyledon-AgNPs was performed according to the methodology
reported before, with modifications [16]. In short, 5 mL of AgNO3 solution (1 mM and
3 mM) was mixed with 1 mL of the different concentrations of plant extract in glass tubes
(1.5, 3, 6, 12, 24 and 48 mg/mL). These mixtures were incubated at 25 ◦C (room temperature)
or 70 ◦C while stirring for 0.5, 1, 2 or 3 h in the dark. The Cotyledon-AgNPs were then
purified by centrifugation at 10,000 rpm (Centrifuge 5417R, rotor (F45-30-11), Eppendorf
AG, Hamburg, Germany) for 10 min, and then the pellet was re-suspended in distilled
water. This process was repeated three times.

2.2.3. Stability Testing of Cotyledon-AgNPs

The stability of the Cotyledon-AgNPs was evaluated in different biological media and
buffers used in this study (RPMI, MHB, YPB, PBS and LB broth). This assay was performed
immediately after the Cotyledon-AgNPs were purified. In glass test tubes, 250 µL of aqueous
solutions of Cotyledon-AgNPs were mixed with the same volume of the medium or buffer.
The tubes were incubated at 25 ◦C or 37 ◦C for 24 h. The stability of these nanoparticles was
evaluated by measuring changes in their Ultraviolet-Visible spectroscopy (UV-Vis) spectra.

2.2.4. Characterisation of Cotyledon-AgNPs
UV-Vis

The formation of Cotyledon-AgNPs was confirmed by observing their Surface Plasmon
Resonance (SPR) peaks using UV-Visible spectroscopy (POLARstar Omega microplate
reader (BMG-Labtech, Ortenberg, Germany)) at a wavelength range of 250 to 800 nm.
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Dynamic Light Scattering (DLS)

The DLS analysis was performed using Zetasizer Nano ZS90 (Malvern, UK) to de-
termine particle size distribution, zeta potential and Polydispersity Index (PDI) values of
the Cotyledon-AgNPs.

High Resolution Transmission Electron Microscopy (HR-TEM)

The morphology and the particle size distribution of Cotyledon-AgNPs were deter-
mined by HR-TEM analysis using a FEI Tecnai G2 F20 field-emission gun (Field Electron
and Ion Company, Hillsboro, OR, USA). For the preparation for HR-TEM, a drop of
Cotyledon-AgNPs solution was loaded onto a carbon coated copper grid. The grid was
dried under a Xenon lamp for 10 min before analysis. The particle size distribution was
determined using Image J software. Selected Area Electron Diffraction (SAED) and Energy-
dispersive X-ray spectroscopy (EDX) analyses were also analysed on the same samples
using HR-TEM.

2.2.5. Antimicrobial Inhibition
MIC

The antimicrobial properties of the Cotyledon-AgNPs were evaluated by determining
their MIC using a microdilution assay [24]. The MIC was determined against S. aureus
(ATCC 25923), MRSA (33591), S. epidermidis (ATCC 12228), P. aeruginosa (ATCC 27853) and
C. albicans (ATCC 10231). Briefly, 50 µL of Cotyledon-AgNPs (in LB broth) were added in
96-well plates with decreasing concentrations (320, 160, 80, 40, 20, 10, 5 and 2.5 µg/mL).

Microbial suspensions of the bacteria and the fungus were cultured in LB broth
and diluted until they reached a 0.5 McFarland standard (standard is approximately
1 × 108 CFU/mL) [24]. A volume of 50 µL of the microbial suspensions was added to each
well containing LB broth and AgNPs. The plates were sealed and incubated for 24 h at
37 ◦C. Ampicillin (2.5 mg/mL) and Fluconazole (10 mg/mL) were used as positive controls
for the bacteria and the fungus, respectively, while sterile deionized water was used as the
negative control.

After incubation, 10 µL of Alamar Blue was added to each well and the plate was
incubated for 3 h in the dark. In the presence of viable bacteria, the non-fluorescent
Alamar Blue dye (resazurin) was reduced to resofurin, a pink compound that was highly
fluorescent [25]. Therefore, the intensity of the pink colour and the fluorescence was
proportional to the number of viable cells present. The MIC was then determined using a
spectrophotometer at a fluorescence excitation/emission wavelength of 530–560/590 nm.
The screening was performed in triplicates.

Minimum Bactericidal Concentration (MBC)/Minimum Fungicidal Concentration (MFC)

This assay was conducted according to the previously reported methodology, with
modifications [26]. The MBC and MFC were determined by sub-culturing a loopful of
media from the wells that showed no growth of microorganisms during MIC determination.
The culture plates were incubated at 37 ◦C for 24 h. The MBC/MFC was recorded as the
lowest concentration at which no growth was observed on the culture plates.

2.2.6. Immunomodulatory Studies
Cell Culture

The human monocytic leukaemia cell line, THP-1, was obtained from ATCC (TIB-202),
(Manassas, VA, USA). THP-1 cells were cultured in RPMI (1640) medium containing 10 %
FBS and 1 % Pen-strep. The cells were incubated at 37 ◦C in a humidified atmosphere of
5 % CO2 in a SL SHEL LAB incubator (Sheldon manufacturing, Cornelius, OR, USA).

Differentiation of THP-1 Cells

THP-1 monocytes were differentiated into macrophages using PMA. The THP-1
monocytes were seeded in 24-well plates (500 µL) at a density of 2 × 105 cells/mL and were
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treated with 100 nM PMA. These cells were incubated at 37 ◦C in a humidified atmosphere
of 5 % CO2. After 3 days of incubation, the culture media was replaced with PMA-free
media (resting phase) for another 24 h [27].

Cell Viability

Cell viability was evaluated using the WST-1 assay, according to the manufacturer’s
protocol. This assay was conducted to determine the toxicity of the Cotyledon-AgNPs on
the differentiated THP-1 macrophages. Using 96-well cell culture plates, the macrophages
were treated with different concentrations of the Cotyledon-AgNPs (20, 10, 5, 2.5, 1.3, 0.6
and 0.3 µg/mL). The cells were incubated for 24 h at 37 ◦C in a humidified atmosphere of
5 % CO2. After incubation, the medium was removed from the wells and replaced with
a medium containing 10 % WST-1 reagent. The cells were incubated for another 3 h, and
the absorbance of the culture media was measured at 440 nm (reference 630 nm) using the
POLARstar Omega plate reader (BMG-Labtech, Ortenberg, Germany). Cell viability was
expressed as a percentage of the absorbance of treated cells to control (untreated) cells.

Determination of Cytokine Responses

Stimulation of macrophages for cytokine determination was performed using LPS
from Escherichia coli 0111:B4. PMA-differentiated THP-1 macrophages were stimulated
with 1 µg/mL LPS [28] for 6 h in 24-well plates. After removal of LPS from cell culture,
the stimulated cells were incubated with the Cotyledon-AgNPs at 37 ◦C for 24 h. The
LPS control was treated with LPS only. After 24 h incubation, the cell supernatants were
transferred into Eppendorf tubes and centrifuged at 1500 rpm for 10 min. The supernatants
were then collected and stored at −80 ◦C until measurement of cytokines. The production
levels of the cytokines, IL-1β, IL-6 and TNF-α were determined using enzyme-linked
immunosorbent assay (ELISA) kits, according to the manufacturers’ instructions.

Statistical Analysis

Statistical analysis of the data was conducted using GraphPad Prism 6 software. The
results were expressed as mean ± standard error of the mean (SEM). The significance of
the cell viability and immunomodulatory effects of Cotyledon-AgNPs were determined
using the two-way analysis of variance (ANOVA). Values were considered to be statistically
significant at p < 0.0001.

3. Results and Discussion
3.1. Synthesis of Cotyledon-AgNPs

Generally, AgNPs are formed by the reduction of silver salt to silver ions (Ag+ to
Ag0) [13]. The phytochemicals in the plant extracts, such as alkaloids, terpenoids and
flavonoids, act as reducing agents in the synthesis of AgNPs [29]. Plants differ in their
phytochemical composition and, therefore, their ability to synthesize nanoparticles also
differs. It is therefore imperative to optimise the synthesis of nanoparticles from each plant
extract. The synthesis of Cotyledon-AgNPs was optimised by varying different reaction
parameters such as temperature, time and the concentration of both AgNO3 and the plant
extract solutions.

The synthesis of AgNPs was indicated by a colour change in the reaction mixture
(AgNO3 and C. orbiculata aqueous extract solution). Immediately after the addition of the
plant extract to the AgNO3 solution, the mixture was colourless (Figure 1A). However,
after 30 min, the colour changed to orange, which intensified to a brown colour after 1 h
from the start of the reaction, as shown in Figures 1B and 1C, respectively. The change in
colour of the solution is due to the formation of AgNPs [30]. AgNPs are known to exhibit a
yellowish-brown colour due to the excitation of their SPR vibrations [31].
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Figure 1. Colour change of Cotyledon-AgNPs at (A) 0 min (B) 30 min and (C) 1 h.

The synthesis of AgNPs was further confirmed by measuring the UV-Vis spectra
between 250–800 nm. The maximum absorbance (λmax) of the Cotyledon-AgNPs was
around 420 nm, which is characteristic of AgNPs. AgNPs exhibit an SPR at around
400–500 nm [32]. SPR of lower wavelengths suggest that smaller nanoparticles were formed
and vice versa [33].

3.2. The Effect of AgNO3 Concentration on the Synthesis of Cotyledon-AgNPs

The synthesis of Cotyledon-AgNPs was optimized using two AgNO3 concentrations
(1 mM and 3 mM). These two concentrations are commonly reported in the literature for
the synthesis of AgNPs from plants [4,14,34–36]. Figure 2 shows the effect of AgNO3 con-
centration on the synthesis of Cotyledon-AgNPs. The use of 3 mM AgNO3 produced AgNPs
with an intense brown colour and sharper absorbance peaks. Moreover, 3 mM AgNO3
produced a larger amount of AgNPs. This was evident from the height of the absorbance
peaks, which gives an indication of the number of the nanoparticles produced. It is known
that absorbance is directly proportional to the concentration of AgNPs in a solution [16].
Subsequent nanoparticle synthesis was therefore performed using 3 mM AgNO3.
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3.3. The Effect of C. orbiculata Aqueous Extract Concentration on the Synthesis of Cotyledon-AgNPs

Another reaction parameter evaluated was the concentration of the plant extract. Of
the different plant extract concentrations tested (48, 24, 12, 6, 3, and 1.5 mg/mL) only three
concentrations (6, 3, and 1.5 mg/mL) gave nanoparticles, as determined by the change
in the colour of the respective reaction mixtures after the addition of AgNO3 (3 mM).
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This further suggests that extremely high concentrations of the plant extract hinder the
formation of nanoparticles.

It can be observed in Figure 3 that the absorption spectra of the AgNPs became sharper
with the increase in plant extract concentration (from 1.5 to 6 mg/mL). No absorbance
was recorded when using 48, 24 and 12 mg/mL of the plant aqueous extract (data not
shown). The sharpness of these peaks and the blue-shift of the λmax suggest the formation
of smaller and monodispersed nanoparticles by increasing the concentrations of the plant
extract [37]. A study by Benakashani and colleagues (2016) investigated the effects of
varying the concentrations of plant extract on AgNPs synthesis. Their results indicated
that the increase in the plant extract concentration led to the formation of nanoparticles
with a sharper absorption peak [12]. This is in agreement with the findings in this study,
where an increase in C. orbiculata extract concentration (from 1.5 to 6 mg/mL) enhanced
the formation of AgNPs.

Nanomaterials 2021, 11, x FOR PEER REVIEW 8 of 20 
 

 

A

200 400 600 800
0

1

2

3

4
30min
1 h
2 h

Wavelength (nm)

A
bs

or
ba

nc
e

B

200 400 600 800
0

1

2

3

4
30min
1 h
2 h

Wavelength (nm)

A
bs

or
ba

nc
e

C

200 400 600 800
0

1

2

3

4
1 h
2 h

30 min

Wavelength (nm)

A
bs

or
ba

nc
e

 
Figure 3. Changes in the UV- Vis absorption spectra of Cotyledon-AgNPs over time, using (A) 1.5, (B) 3, and (C) 6 mg/mL 
of C. orbiculata plant extract. 

3.4. The Effect of Temperature on the Synthesis of Cotyledon-AgNPs 
Temperature is another important factor in the synthesis of nanoparticles. High tem-

perature is suggested to facilitate the synthesis of nanostructures [40]. It has also been 
found that synthesis temperature can affect the size, shape and the yield of nanoparticles 
synthesized using plant extracts [41,42]. A study on nanoparticle synthesis using C. sinen-
sis (sweet orange) peel extract showed a decrease in the size of AgNPs with increasing 
temperature [43]. At 25 °C, C. sinensis aqueous peel extract produced particles with a size 
of 35 nm but, at 60 °C, particle size decreased to 10 nm. In this study, however, no nano-
particles were produced at 25 °C. The synthesis was only accomplished at 70 °C. This is 
also in agreement with a study by Elbagory and colleagues (2016), in which aqueous ex-
tracts of Asparagus rubicundus, Aspalathus hispida and Dicerothamnus rhinocertis produced 
gold nanoparticles at 70 °C only [16]. This might suggest that certain reducing phytochem-
icals in plants require higher temperatures to initiate the reduction process [41]. 

3.5. The Effect of Reaction Time on the Synthesis of Cotyledon-AgNPs 
Reaction time can also affect the synthesis of AgNPs. A colour change was observed 

within 30 min of Cotyledon-AgNPs synthesis (Figure 1). The change in colour intensity of 
the reaction mixture with time is an indication of the increased amount of AgNPs formed 
[44]. Indeed, in Figure 3, the height of the absorbance peaks increased with time, indicat-
ing an increase in the concentration of AgNPs. At 30 min, the absorbance reading was 
0.63, which increased to 1.47 and 2 after 1 and 2 h, respectively (Figure 3B). 

Figure 3. Changes in the UV- Vis absorption spectra of Cotyledon-AgNPs over time, using (A) 1.5, (B) 3, and (C) 6 mg/mL of
C. orbiculata plant extract.

Increasing the plant extract concentrations also changed the intensity of the reaction
mixture’s colour, and produced AgNPs at a faster rate than the lower concentrations of
the plant extract. This is as also indicated by the increase in the absorbance of the UV-Vis
spectra. As shown in Figure 3, 3 mg/mL of C. orbiculata extract produced AgNPs with an
absorbance reading of 1.47 after 1 h from the start of the reaction, whereas 1.5 mg/mL of
the extract produced AgNPs with a lower absorbance reading of 0.66 within the same time
frame. This might be because of the availability of higher amounts of phytochemicals when
using high concentrations of the plant extract, which, therefore, increased the reduction
power in the reaction medium, leading to a reduction of more AgNO3 molecules in a short
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time [15,38,39]. This can be observed by measuring the UV-Vis spectra of the AgNPs over
different time periods from the start of the reaction (Figure 3).

3.4. The Effect of Temperature on the Synthesis of Cotyledon-AgNPs

Temperature is another important factor in the synthesis of nanoparticles. High tem-
perature is suggested to facilitate the synthesis of nanostructures [40]. It has also been
found that synthesis temperature can affect the size, shape and the yield of nanoparticles
synthesized using plant extracts [41,42]. A study on nanoparticle synthesis using C. sinensis
(sweet orange) peel extract showed a decrease in the size of AgNPs with increasing temper-
ature [43]. At 25 ◦C, C. sinensis aqueous peel extract produced particles with a size of 35 nm
but, at 60 ◦C, particle size decreased to 10 nm. In this study, however, no nanoparticles
were produced at 25 ◦C. The synthesis was only accomplished at 70 ◦C. This is also in
agreement with a study by Elbagory and colleagues (2016), in which aqueous extracts
of Asparagus rubicundus, Aspalathus hispida and Dicerothamnus rhinocertis produced gold
nanoparticles at 70 ◦C only [16]. This might suggest that certain reducing phytochemicals
in plants require higher temperatures to initiate the reduction process [41].

3.5. The Effect of Reaction Time on the Synthesis of Cotyledon-AgNPs

Reaction time can also affect the synthesis of AgNPs. A colour change was observed
within 30 min of Cotyledon-AgNPs synthesis (Figure 1). The change in colour intensity of the
reaction mixture with time is an indication of the increased amount of AgNPs formed [44].
Indeed, in Figure 3, the height of the absorbance peaks increased with time, indicating an
increase in the concentration of AgNPs. At 30 min, the absorbance reading was 0.63, which
increased to 1.47 and 2 after 1 and 2 h, respectively (Figure 3B).

3.6. DLS Analysis

A DLS analysis was used to measure size distribution, zeta potential and PDI values
of the Cotyledon-AgNPs (Table 1). The PDI is a measure of the width of molecular weight
distribution and has a value between 0 and 1. Nanoparticles with a PDI value of less
than 0.2 are considered monodispersed [45,46]. The increase in the PDI value indicates
an increase in the broadness of the particle size distribution [47]. The Cotyledon-AgNPs
have PDI values of 0.07, 0.15 and 0.1 for AgNPs synthesized using 6, 3 and 1.5 mg/mL of
C. orbiculata plant extract. Hence, these nanoparticles are monodispersed.

Table 1. Average size, PDI and zeta potential of the Cotyledon-AgNPs synthesized using different
concentrations of C. orbiculata extract (6, 3 and 1.5 mg/mL) at 70 ◦C for 2 h.

Parameter
Plant Extract Concentration

6 mg/mL 3 mg/mL 1.5 mg/mL

Average size (nm) 106 ± 2 110 ± 2 137 ± 2
PDI 0.07 ± 0.02 0.15 ± 0.33 0.1 ± 0.01

Zeta potential −19 ± 1.0 −20 ± 1.0 −18 ± 1.0

The average particle sizes were 137 ± 2, 110 ± 2, and 106 ± 2 nm for AgNPs synthe-
sized using 1.5, 3 and 6 mg/mL of C. orbiculata extract, respectively. The results show that
the average size of the Cotyledon-AgNPs decreased as the concentration of the C. orbiculata
extract increased. Increasing the extract concentration increases the reducing agents in the
sample, thus promoting faster AgNO3 reduction and formation of nanoparticles which tend
to be smaller in size [48]. This corresponds to the findings in Figure 3, where the spectrum of
the nanoparticles became sharper with the increase of the plant extract concentration. Sharp
absorption spectrum of nanoparticles suggests smaller nanoparticles [49]. The data agree
with previous studies conducted using banana peel extract [15] and C. spinosa extract [12].
However, in a study performed by Verma and Mehata (2016), the size of the AgNPs
synthesized using neem leaf broth increased with increases in extract concentration [39].
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Zeta potential measures the charge of the AgNPs, which can be used to determine
their stability. The charge reflects the repulsive forces between the nanoparticles [50]. The
Cotyledon-AgNPs had an average zeta potential of −19 mV (Table 1). This indicates that
the Cotyledon-AgNPs are relatively stable and dispersed due to repulsion forces [51]. Metal
nanoparticles with large negative zeta potential repel each other, and therefore do not
aggregate. However, those with low zeta potential values can easily aggregate due to the
absence of strong repulsive forces [52]. According to Ardani et al. (2017), nanoparticles with
positive or negative zeta potential values between ±10 to 20 mV are considered relatively
stable [53]. Based on this, it can be concluded that the nanoparticles shown in Table 1 are
all relatively stable.

3.7. Stability of the Cotyledon-AgNPs in Biological Media

Nanoparticles should remain stable in different biological environments for any poten-
tial biomedical application. Nanoparticles with low stability can easily aggregate, which,
consequently, can alter their intended properties [54]. Aggregation of nanomaterials may
affect their toxicity to different cells, which may adversely affect their suitability for appli-
cations in therapeutics [55,56]. Therefore, the stability of Cotyledon-AgNPs was evaluated
in several biological media.

The aqueous solution of Cotyledon-AgNPs was kept at 25 ◦C in the dark and their
stability was evaluated over a period of 14 days. Figure 4 shows the effects of storage time
on the UV-Vis spectra of Cotyledon-AgNPs, synthesized using different plant extract con-
centrations. Cotyledon-AgNPs synthesized using 3 mg/mL plant extract were more stable
compared to those synthesized using 1.5 and 6 mg/mL. This can be seen in their absorption
spectra, which did not change during the 14-day period, indicating their stability [57]. The
Cotyledon-AgNPs in this study were therefore synthesized using 3 mg/mL of plant extract
and 3 mM AgNO3 at 70 ◦C for 2 h.
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The stability of Cotyledon-AgNPs was also evaluated in RPMI, MHB, YPB, LB broth
and PBS over a 24 h period. These media and buffers were selected because they are
used in several biological assays. The addition of Cotyledon-AgNPs to RPMI, LB broth
and PBS did not change their UV-Vis absorption spectra (Figure 5A,D,E). The stability
of the Cotyledon-AgNPs was not only evaluated at room temperature (25 ◦C), but also at
37 ◦C to observe the effect of biological assay conditions on their stability. Incubation of
most biological assays, such as cell culture, cell viability assays and bacterial culture, is
conducted under these temperatures. The UV-Vis absorption spectra showed that the SPR
characteristics of the nanoparticles did not change throughout the incubation time in RPMI,
LB broth and PBS, implying that they are stable in these solutions. On the other hand, the
Cotyledon-AgNPs were not stable in MHB and YPB at both temperatures (Figure 5B,C).
The addition of the Cotyledon-AgNPs to YPB and MHB resulted in the flattening of the
absorption spectra, probably as a result of nanoparticle aggregation. MHB and YPD have a
high protein content and a lower concentration of inorganic salts compared to LB broth [58].
It is reported that high protein contents in bacterial growth media can negatively affect the
colloidal stability of NPs, leading to their agglomeration [59]. The use of YPB and MHB
was therefore avoided in the biological evaluation assays.
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Figure 5. The UV-Vis spectra of Cotyledon-AgNPs, recorded over a 24 h period (at 25 and 37 ◦C) after mixing with different
biological media; (A) RPMI, (B) MHB, (C) YPB, (D) LB broth and (E) PBS.

3.8. HR-TEM, SAED and EDX

The morphology and size of the Cotyledon-AgNPs were analysed by HR-TEM. The
HR-TEM images showed that the Cotyledon-AgNPs were mostly spherical (Figure 6).
The size of the Cotyledon-AgNPs ranged from 20 to 40 nm, with a few larger particles
of approximately 60 nm (Figure 6C). However, the average nanoparticle sizes recorded
for DLS in Table 1 are much larger than the nanoparticle sizes shown by HR-TEM. This
is because DLS measures the hydrodynamic sizes of nanoparticles, which includes the
surrounding organic layer, whereas HR-TEM only measures the size of the inorganic
core [52,60,61]. Similar results were also obtained in a study by Kittler et al. (2010), in
which the DLS recorded higher average size for PVP-coated AgNPs compared to average
size obtained from electron microscopy [62].

The lattice fringes on the particles indicate the crystalline nature of the Cotyledon-AgNPs
(Figure 7A). The fringe spacing was found to be 0.229 nm. Crystallinity of the AgNPs was
also confirmed by the SAED pattern shown in Figure 7B. The rings were indexed and were
found to correspond to the (111), (200), (220) and (311) crystalline planes of the face-centred
cubic of metallic silver [63]. The EDX analysis, which gives the elemental composition of
nanoparticles, confirmed that Cotyledon-AgNPs contained silver (Figure 8). The optical
adsorption peak observed at 3 keV is due to the presence of silver [64–66]. Adsorption
peaks were also observed for carbon, oxygen, silicon, sulphur, chloride and copper. The
presence of carbon, oxygen, chloride and sulphur is likely to be from the phytochemicals
involved in the reduction and the capping processes during nanoparticle synthesis, as
proposed before [16]. The presence of copper and silicon can be ascribed to the HR-TEM
grid onto which the sample was placed [67].

The morphology and crystallinity of the Cotyledon-AgNPs produced in this study were
similar to those AgNPs reported in several other studies using extracts of Crocus sativus L. [68],
D. stramonium [13], Urtica dioica [69], Azadirachta indica [39], Olive oil [70] and tea leaves [71].
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3.9. Antimicrobial Activity of Cotyledon-AgNPs

The antimicrobial activity of Cotyledon-AgNPs was investigated against skin pathogens,
namely S. aureus, S. epidermidis, MRSA, P. aeruginosa and C. albicans. This was conducted
by determining the MIC and MBC/MFC of AgNPs against the aforementioned microor-
ganisms. Cotyledon-AgNPs exhibited antibacterial and antifungal activity against all the
organisms tested in this study, as indicated in Table 2. The aqueous extract of C. orbiculata
did not display any significant antimicrobial activity at the tested concentrations. However,
Cotyledon-AgNPs were mostly active against P. aeruginosa, with MIC and MBC values of 5
and 20 µg/mL, respectively. The lowest activity recorded for Cotyledon-AgNPs was against
C. albicans, with MIC and MFC values of 80 and 160 µg/mL, respectively. Cotyledon-AgNPs
exhibited the same inhibitory activity against S. aureus and S. epidermidis, with an MIC
value of 20 µg/mL. However, their bactericidal effects differed, as shown by the different
MBC values against these microorganisms (MBC against S. aureus and S. epidermidis was
40 and 20 µg/mL, respectively). The antimicrobial activity of Cotyledon-AgNPs compared
extremely well with the positive controls (ampicillin and fluconazole). In fact, the antimi-
crobial activity of Cotyledon-AgNPs against MRSA and P. aeruginosa was higher than both
controls used. While the MIC for ampicillin was 310 µg/mL for MRSA and >1000 µg/mL
for P. aeruginosa, the MICs for Cotyledon-AgNPs were 40 and 5 µg/mL against MRSA and
P. aeruginosa, respectively.

The Cotyledon-AgNPs were more active against the Gram-negative bacteria (P. aeruginosa)
as compared to the Gram-positive bacteria (S. epidermidis, S. aureus and MRSA). This is
likely due to the different membrane structures and compositions in the cell wall of the
microorganisms [13]. Gram-positive bacteria have a thick layer of peptidoglycan in their
cell wall, whereas, in Gram-negative bacteria, the cell wall contains a thin peptidoglycan
layer [72]. These results are in agreement with other findings in literature where Gram-
negative bacteria were more susceptible to AgNPs than Gram-positive bacteria [12,13,15].
In this study, the Cotyledon-AgNPs also exhibited better antibacterial activity than the
antifungal activity, which corresponds to the findings reported previously [15,73].
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Table 2. The MIC and MBC/MFC (µg/mL) values * of Cotyledon-AgNPs and C. orbiculata aqueous
extract against common skin pathogens.

Microorganisms
Cotyledon-AgNPs C. orbiculata

Aqueous Extract
Ampicillin/
Fluconazole

MIC MBC/MFC MIC MBC/MFC MIC MBC/MFC

S. aureus 20 40 >1000 >1000 20 40
S. epidermidis 20 20 >1000 >1000 40 40

MRSA 40 80 >1000 >1000 310 630
P. aeruginosa 5 20 >1000 >1000 >1000 >1000
C. albicans 80 160 >1000 >1000 60 1000

* The values were observed from three experiments which gave identical results.

The high antibacterial activity of AgNPs is attributable to their large surface area,
which provides better contact of the nanoparticles with the cell wall of microorganisms [44].
Other mechanisms of AgNPs antibacterial activity include their ability to bind to phos-
phorus and sulfur-containing cell constituents such as DNA and some proteins, leading
to their degradation. AgNPs also release silver ions into the bacteria cell wall, which can
cause death of the bacteria [74].

3.10. Cell Culture and Differentiation of THP-1

The human monocytes THP-1 cells, used herein to evaluate immunomodulatory ac-
tivity, were cultured in RPMI and differentiated into macrophages using 100 nM of PMA.
PMA, a cognate of diacylglycerol, is an activator of protein kinase C that is used in cell differ-
entiation [75,76]. Upon differentiation, there are morphological changes that occur within
the cells. In comparison to undifferentiated THP-1, differentiated THP-1 cells are larger,
adherent and show expansion of the cytoplasm and of cytoplasmic organelles such as mito-
chondria and lysosomes [77]. Other differentiation stimuli, such as 1.25-dihydroxyvitamin
D3, have been reported. However, the differentiation of monocytes with PMA was shown
to have more resemblance to the phenotype of human tissue macrophages [78].

3.11. Cell Viability of THP-1 Cells Treated with Cotyledon-AgNPs

Cell viability assays are crucial for the determination of the cytotoxic effects of com-
pounds on different cell lines in vitro. In this study, a WST-1 assay was used to determine
the cytotoxicity of Cotyledon-AgNPs on the differentiated THP-1 macrophages. This assay
is based on the conversion of a water-soluble tetrazolium salt into formazan by the mito-
chondrial dehydrogenases of the viable cells. Therefore, the number of viable cells can be
quantified by detecting the amount of formazan produced [79].

The Cotyledon-AgNPs showed no toxicity to THP-1 cells at concentrations below
10 µg/mL (Figure 9). The percentage viability of the differentiated THP-1 macrophages
was 84 %, 52 % and 2 % when the cells were treated with 5, 10 and 20 µg/mL of
Cotyledon-AgNPs, respectively. Thus, 5 µg/mL of Cotyledon-AgNPs was the least toxic
concentration and was used to evaluate the immunomodulatory effects of the nanoparticles.

3.12. Cytokine Secretion

ELISA was used to determine the effects of Cotyledon-AgNPs on cytokine produc-
tion in the differentiated THP-1 cells. After differentiation with PMA, the macrophages
were stimulated with LPS before exposure to 5 µg/mL Cotyledon-AgNPs. LPS are bio-
logically active substances found in the outer membrane of Gram-negative bacteria [80].
Exposure of THP-1 macrophages to LPS stimulates the production of pro-inflammatory
cytokines, which are essential for antibacterial defence when produced in appropriate
amounts [81]. The levels of cytokine production by the macrophages in the presence of
Cotyledon-AgNPs are shown in Figure 10. LPS treatment of the THP-1 macrophages re-
sulted in the production of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β). However,
the addition of Cotyledon-AgNPs (5 µg/mL) to the macrophages reduced the production
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levels of these cytokines. The levels of cytokine production in the cells treated with
Cotyledon-AgNPs was significantly decreased by approximately 3.5-, 7- and 10.5-fold for
TNF-α, IL-1β and IL-6, respectively, when compared to the LPS treated cells (Figure 10).
Therefore, the results obtained in this study indicate that Cotyledon-AgNPs have anti-
inflammatory properties, as they decreased the production levels of pro-inflammatory
cytokines in LPS stimulated THP-1 macrophages. AgNPs synthesized using Curcumin and
Asparagus racemosus root extract have shown similar results; they also reduced the levels
of proinflammatory cytokines (IL-6 and TNF-α) in THP-1 cells, suggesting that they have
some anti-inflammatory activity [82,83].
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4. Conclusions

AgNPs were successfully synthesized using C. orbiculata aqueous extract. The synthe-
sis was optimized by varying reaction parameters such as time, temperature, AgNO3 and
plant extract concentrations. The formulated Cotyledon-AgNPs were fully characterized and
were found to be stable in different biological media. The antimicrobial study showed that
Cotyledon-AgNPs exhibited antimicrobial activity against several skin-related pathogens
more than C. orbiculata aqueous extract. Cotyledon-AgNPs also exhibited anti-inflammatory
effects by suppressing the production of pro-inflammatory cytokines (IL-1β, IL-6 and
TNF-α) in macrophages.

Therefore, this study demonstrates the potential of Cotyledon-AgNPs as antimicro-
bial agents in the treatment of skin infections. The study also shows the potential of
Cotyledon-AgNPs as agents to control inflammatory disorders that cause chronic inflammation.
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