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a b s t r a c t

Recent analysis of early COVID-19 data from China showed that the number of con-
firmed cases followed a subexponential power-law increase, with a growth exponent
of around 2.2 (Maier and Brockmann, 2020). The power-law behavior was attributed to
a combination of effective containment and mitigation measures employed as well as
behavioral changes by the population. In this work, we report a random walk Monte
Carlo simulation study of proximity-based infection spread. Control interventions such
as lockdown measures and mobility restrictions are incorporated in the simulations
through a single parameter, the size of each step in the random walk process. The
step size l is taken to be a multiple of ⟨r⟩, which is the average separation between
individuals. Three temporal growth regimes (quadratic, intermediate power-law and
exponential) are shown to emerge naturally from our simulations. For l = ⟨r⟩, we get
intermediate power-law growth exponents that are in general agreement with available
data from China. On the other hand, we obtain a quadratic growth for smaller step
sizes l ≲ ⟨r⟩/2, while for large l the growth is found to be exponential. We further
performed a comparative case study of early fatality data (under varying levels of
lockdown conditions) from three other countries, India, Brazil and South Africa. We
show that reasonable agreement with these data can be obtained by incorporating
small-world-like connections in our simulations.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Following its outbreak in the Hubei province of China, the global spread of the novel coronavirus disease (COVID-19)
as reignited efforts to better understand infection spread and mortality rates during the pandemic. Significant emphasis
as placed on modeling the spatio-temporal spread of the disease, in order to make reliable predictions. A key statistic

n such epidemiological analysis is the basic reproduction number R0, which defines the expected number of secondary
ases from one infected individual in a completely susceptible population. Data from the very initial phase of the COVID-
9 outbreak showed good agreement with models that assumed an exponential growth of infections in time (t), with a
ean R0 ranging from 2.24 to 3.58 [1,2]. However, subsequent laboratory confirmed cases in Hubei showed that soon
fter the initial stage, the temporal growth in the cumulative number of infections (N) was instead subexponential and
greed reasonably well with a power-law scaling N ∝ tα [3]. This was consistent with data from other affected regions
n mainland China (with α = 2.1 ± 0.3) and was attributed to a depletion of the susceptible population due to effective
ontainment and mitigation strategies that were put in place and followed after the initial unhindered outbreak [3].
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A potential stumbling block in such analyses is that the reported number of infected cases may be inaccurate, due to
a non-uniform sampling of the entire susceptible population in a given region. In such a scenario one can alternatively
examine the number of reported deaths (due to COVID-19 complications) as a function of time. This is justified, as the
number of deaths are generally more accurately recorded and (under non-variable containment, mitigation and treatment
strategies) can be assumed to be a fixed fraction of the total infected population. Indeed, early mortality data from the
National Health Commission of the People’s Republic of China and Health Commission of the Hubei Province showed
similar power-law behavior, with an exponent α ≈ 2.2 [4] that agreed with the observations in Ref. [3]. Independently,
it has been proposed that the near-quadratic power-law scaling of the cumulative number of deaths (infections) in China
can be explained with an epidemiological model that allows ‘peripheral spreading’ [5]. In this model, once infections are
identified in a location (labeled as a ‘hotspot’), and the subpopulation from the region is isolated, the growth of infections
within this confined local community rises exponentially until no further infections are possible. Once this saturation
is reached, further spread of the disease to outside the region is inevitable, due to interactions at the periphery of the
confined population. The growth of infections due to such peripheral spreading is shown to be quadratic in time and
agreed piecewise with the data from China [5].

In light of the above, we performed a random-walk Monte Carlo simulation study of the spread of a highly infectious
disease such as COVID-19, with particular emphasis on its temporal growth within a constrained population. We show
commonalities between independent models describing such COVID-19 growth, while simultaneously demonstrating the
efficacy of the random-walk model to make predictions. This work also complements other studies of infectious disease
spread through transmission networks, such as with aviation [6], currency dispersal [7] and mobile phone [8] data. Our
model, described below, has the ability to capture random interactions that may be missed in such data-driven contact
network studies and is relatively easy to access compared to most models that study the spread of epidemics. Additionally,
we show that our simulations have the ability to compartmentalize the data, similar to susceptible–infectious–recovered
(SIR) or susceptible–infectious–recovered–susceptible (SIRS) type models [9], that are conventionally used in the study of
infectious disease spread.

2. Monte Carlo simulations

Random walks, particularly on a lattice, have been extensively studied in the past [10–14]. Similar studies have
also been used to analyze contact interactions [15] as stochastic processes, to better understand epidemic spread [16–
23]. In such analysis, one often has to rely on certain approximations [17,18,24–26], due the complexity in describing
stochastically interacting populations over a geographical region. In this regard, Monte Carlo simulations offer a viable
alternative and are pursued using different approaches. For example, early work [27] assumed each susceptible individual
to occupy a point on a square lattice, having a certain probability to contract a disease from an infectious neighbor, who
may be located in one of its nearest lattice positions. In other simulations, the population was distributed in a grid of
cells [28,29], and similar to percolation models, the stochastic movement of infectives as well as susceptibles between
cells with common boundaries resulted in the spread of the disease. More recently, a dynamical network random-walk
model [30,31] was used to study the effects of long-ranged spatial mobility on epidemic spread. Our simulations are along
similar lines. Here, the individuals of an entirely susceptible population are described as identical and independent random
walkers, represented by uniformly distributed random points in an isolated two-dimensional region. The simulations begin
with an initial condition of one infected walker near the center, assuming all other points are ‘normal’ (uninfected). As the
simulation progresses, all individual walkers take simultaneous steps in random directions. For cases when walkers step
outside the bounded area, a boundary condition was imposed so that the transgressing coordinates were reflected back
into the bounded region. The incremental number of simultaneous discrete steps taken by the random walkers quantifies
both time progression as well as spatial mobility. Similar to Ref. [32], we call these increments ‘time-steps’. The ‘spread’
of the disease is said to occur whenever an infected point comes within a ‘touching’ distance from a ‘normal’ susceptible
point, thereby passing on the disease. In such a manner, the growth in the number of infected points with respect to the
number of discrete time-steps (t) determines the temporal evolution of the infection spread.

To put the above in perspective, for N randomly distributed points over area A, the mean distance of separation ⟨r⟩
between any two random walkers is ∼

√
A/N . Therefore, for a metropolis such as New York city, which has a population

density of ∼ 10,000/sq. km, ⟨r⟩ is ∼10 m. For an arbitrarily sized region, given the fixed population density, this would
esult in 10,000 points per unit area, with ⟨r⟩ = 10−2 length units. We assume a ‘touching’ separation of 2 meters, which
is the nominal safe distance recommended in most countries. This corresponds to 2×10−3 normalized length units. If the
distance between any infected data point and a normal (susceptible) point is less than or equal to this value, the normal
point is flagged as infected in the simulations. To illustrate the above, we show an example of such spatio-temporal disease
progression in Fig. 1, where the flow of time is quantified in terms of the number of ‘time-steps’ in the simulation. We
discuss specific results from three sets of simulations below. The first two assume a synchronous SI (susceptible–infected)
model, in which all ‘normal’ points are 100% susceptible, while the third (synchronous SIRS) set of simulations assumed
small recovered fractions of the population, some of whom are susceptible to reinfection.
2
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Fig. 1. An example of proximity-based infection spread obtained using the random walk Monte Carlo simulations described in this work. Each of
the panels shown above has a population of 2.5k over a unit area. The average distance ⟨r⟩ between any two points is = 0.02 units. In this case
very point (walker) takes randomly directed steps of length l = 0.25⟨r⟩. Further details are described in the text below.

imulation set I (Fixed population density, fixed step length, different population sizes). These simulations investigated the
pread of infection in the hypothetical metropolis mentioned above,1 assuming that each walker’s spatial mobility is
ffectively constrained due to containment (lockdown) measures. It is intuitively reasonable to assume that such a
estriction can be achieved by imposing a condition that all members of the populace only take random steps of length
= ⟨r⟩, where ⟨r⟩ is the average distance between individuals. This ensures each random walker to be confined (on
verage) within a local neighborhood. We performed three such simulations for a fixed density of 10k/unit area and three
opulation sizes 10k, 6k and 2.5k respectively.

imulation set II (Fixed population and density, different step lengths). In the next step we probed the dependence on both
opulation density and l in five separate subsets of simulations. These simulations assumed densities of 10k and 2.5k

walkers/unit area, and different step sizes for the walkers, with lengths ⟨r⟩/4, ⟨r⟩/3, ⟨r⟩/2, ⟨r⟩ and 5⟨r⟩. The 2.5k results
are shown in Fig. 3. Further discussion follows in Section 3.

Simulation set III (Fixed population, density and step lengths, recovery and reinfection allowed). In these SIR and SIRS variants,
we studied the effects of a small recovery and reinfection rate within a fraction of the population and their effect on the
growth exponent. We independently investigated scenarios with recovery percentages of 0.02%, 0.1% and 0.5% (similar to
Ref. [5]), such that (i) all the recovered individuals are immune and (ii) a randomly selected 5% of the recovered population
are susceptible to reinfection.

3. Results and analysis

In Fig. 2 we plot the growth in the cumulative number of infected points, obtained from simulation set I. The results
show that independent of population size, the number of infections follow a tα power-law growth in time, with α about
2.2. While the power-law behavior may not be completely unexpected [33], it is interesting that we obtain very similar
values of near-quadratic exponents, as observed with the data reported in Refs. [3,4]. In simulation set II, for step length
⟨r⟩, we determine almost identical power-law growth as in Fig. 2, again in agreement with the observations of Refs. [3,4].
This is shown2 in Fig. 3. Our extracted power-law exponents are consistently similar for this step size, regardless of
the population density used. In comparison, if all members of the sample population were to take larger random steps
of length 5⟨r⟩, on average interacting with points located further away than their nearest neighbors, we find that the
number of infected individuals blows up rapidly, showing near exponential behavior. This would be similar to a scenario
where no control interventions are in place or being followed. Not surprisingly, the slope for exponential growth is found
to strongly depend on the population density, and is larger at higher densities. Fig. 3 also shows the other extreme in
terms of the temporal growth, obtained using step sizes smaller than ⟨r⟩. As apparent in the figure, the results from these
simulations show near-quadratic growth,3 for all step sizes less than a threshold value of around ⟨r⟩/2. This effectively
implies a lower-bound on the growth exponent (α = 2), exactly as in the case of peripheral spreading [5]. Furthermore,
the effect of mobility restriction is clearly evident from the observed delay in reaching the saturation value, when smaller
step-lengths are used. Finally, our results for simulation set III show that a SIR recovery fraction of the order 0.02% does not
affect the growth exponent significantly. We find that a small reinfection component in our SIRS-type simulations leads

1 All simulations described here were carried out for N random walkers over a unit area.
2 We do not quote uncertainties in the fit parameters here, as this figure only serves to highlight the systematic trends of the curves.
3 One would notice that the quadratic power-law fits show better agreement with the data generated using longer step-lengths, compared to the

ones corresponding to l = ⟨r⟩/3 and ⟨r⟩/4. We note that this is mainly due to statistics, on account of the small step-size used in the simulations.
We further re-emphasize that Fig. 3 only serves to highlight the trends in the growth curves, which are nearly quadratic for l ≲ ⟨r⟩/2.
3
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Fig. 2. Simulation results for three population sizes with a fixed number density of 10k/unit area. The simulations assume that all random walkers
take steps of length ⟨r⟩, their mean separation distance. The dashed lines are best-fit results for power-law growth N = Atα . The quoted uncertainty
or each extracted α includes a ±1σ statistical uncertainty and a systematic contribution. The latter were estimated by applying a conservative one
hannel shift to the data along the time axis and redoing the fits.

Fig. 3. Simulated growth in the number of infections and their best-fit curves, obtained for different step sizes taken by the random walkers in a
population of 2.5k/unit area. Below a threshold value of l ∼ ⟨r⟩/2, the growth is observed to be nearly quadratic, regardless of the step size. The
other extreme shows exponential behavior, while power-law growth similar to what was observed in China [3] lies in the intermediate regime.
Nearly identical trends are observed for the 10k case.

to reasonable agreement with temporal growth from the SI results, even when the recovered fraction is comparatively
larger, at around 0.1%. This is shown in Fig. 4, whose results were obtained for 5k random walkers/unit area. In light of
the above, we assume that (small) recovery and reinfection rates do not play a significant role in our interpretation of
results.

The three growth regimes (quadratic, intermediate power-law and exponential), obtained by changing the random
walkers’ mobility through their step sizes are closely linked to other models. We observe that the slowest unavoidable
temporal growth is quadratic in nature. This is not surprising for an unbiased and uncorrelated random walk on a
plane. For each random walker, the root-mean-square (rms) displacement after taking t steps of fixed length l goes as
l
√
t . Therefore the probability of a susceptible individual intercepting a single infectious walker is proportional to the

overlapping area covered by both of them, which scales as t2. This is similar to the peripheral spreading model proposed
in Ref. [5], where the disease spread to the outside of an isolated population is through n infectives located in a narrow
band at the circumference of the confined region. In such a scenario n scales as

√
N , where N is the total number of

infected people at that time. This results in quadratic growth, with N(t) ∝ t2 [5]. At the other extreme, for long step
lengths taken by the walkers in our simulations, the growth is found to be exponential, and consistent with what one
4
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Fig. 4. Left panel: SIR-type simulation results obtained for different values of fR , the recovered fraction. Right panel: SIRS-type simulation results
obtained assuming a random 5% of fR are susceptible to reinfection.

Fig. 5. Cumulative number of deaths reported for India, South Africa and Brazil from the WHO, until June 1 [37]. The fitted growth curves are
shown together with their 95% C.L. bands. The Brazil and India data show a single growth-exponent, consistent with power-law behavior. On the
other hand the overall data for South Africa suggests exponential growth. Closer inspection shows that the initial growth phase for South Africa was
quadratic. The growth exponents are quoted in the insets with ±1σ uncertainty.

would expect from a homogeneous mixing [34] of the population. Such exponential growth is predicted by compartmental
models [9], that also allow a ‘diffusion’ of the disease [35,36] through random walks of the population, provided that there
is no depletion of the susceptible population [9] and that intervention measures/behavioral changes are not enforced or
followed. Finally a step-length parameter of size ⟨r⟩ for the random walkers reproduces the intermediate power-law
growth curves from China reported in Refs. [3,4]. This is consistent with Ref. [3] that used a modified compartmental
model, which took into consideration both quarantine procedures as well as containment strategies. It is interesting that
a simple logarithmic correction to quadratic growth (so that t2 → t2 ln t) results in a power-law exponent of about 2.5,
that is in rough agreement with the intermediate values for contained growth reported from China [3,4].

We further note that since quadratic scaling appears to be the limiting case, it is unrealistic for a large population to
achieve such minimal growth. Therefore, at face value the available data suggest that the containment measures and
response in the eight affected Chinese provinces mentioned in Ref. [3] most likely could not have been significantly
improved upon. Furthermore, for both quadratic and intermediate power-law growth, the growth exponent is found
to be independent of the population density in our simulations. This is not unexpected when the step size l scales as
⟨r⟩ = σ−1/2, where σ is the population density. Any change in σ would be offset by a corresponding change in l for the
random walkers.

4. Power-law, exponential growth and small-world-like connections in observed data (India, Brazil and South Africa)

To make further comparisons, we examine the daily growth in the cumulative number of deaths reported [37] for
three countries, South Africa, India and Brazil, until June 1, 2020. These BRICS countries were not arbitrarily chosen, as
5
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Fig. 6. Comparison of power-law growth exponents for an example city such as São Paulo (population density 7.2k/unit area), with and without
small-world-like connections in the simulation. The latter were introduced by having a random 3% of the population take steps of length 5⟨r⟩. The
ncertainties in α are quoted similarly as in Fig. 2.

hey present an interesting comparative study for several reasons. They face common challenges in terms of poverty
nd economic inequality, and are home to some of the most densely populated informal settlements in the world (such
s Khayelitsha in Cape Town, Dharavi in Mumbai and the favelas of Rio de Janeiro and São Paulo). The lack of proper
anitation is a common theme in these impoverished city pockets, where, given the circumstances, expecting the residents
o follow strict social-distancing protocols is a tall order [38–40]. Secondly, the response of the political leadership of
razil to the COVID-19 crisis was strikingly different from the governments of India and South Africa. While the latter
wo countries swiftly imposed extended periods of severe lockdown [41–44] starting in the month of March (2020), Brazil
id not pursue a concerted policy for such containment [45]. The cumulative death data reported for the three countries,
ith their corresponding fits are plotted in Fig. 5. While we do observe power-law growths with exponents of 2.76±0.02
nd 3.00±0.02 for India and Brazil, the growth curve for South Africa is surprisingly much steeper. As shown in its inset,
he growth was nearly quadratic for a significant portion of the time, following which there is a steep exponential rise
tarting around day 50 from March 28. It is worthwhile to note at this point that the most stringent lockdown measures
at Level 5) were imposed in South Africa until May 1 [44]. The restrictions were only slightly relaxed after that, to Level 4
uring the month of May. Interestingly, the data show that the exponential growth begins around May 17. Given that
he coronavirus has an approximately two week incubation period, the above observation suggests that the two largely
ifferent growth exponents for South Africa are most likely due to a modest containment of the disease under Level 4
ockdown.

While the observed growth exponent for the number of fatalities in Brazil is not unexpected, how does one explain the
igher-than-anticipated growth exponents for South Africa and India? We show below that an extension to our model,
long the lines of a small world network [46,47] can explain the observed growth. For this, we took into consideration
more realistic lockdown scenario that includes a small number of outliers in the population (representing essential

ervice workers and non-compliant citizens etc.), who are allowed to take much larger randomized steps, bounded by the
ampling area A.
If strict containment measures were not adhered by members of the population, it would correspond to a combination

f two effects in our random walk model: (i) All the random walkers use relatively larger step sizes. (ii) A small fraction
f the population has much longer-ranged mobility compared to the above. This establishes small world connections
etween infected individuals and the rest of the susceptible population.
Our simulation results for an example city such as São Paulo (with a population density of 7,200/unit area) are shown

n Fig. 6. For a uniform step length l = ⟨r⟩ we determine a power-law exponent of 2.30 ± 0.06, again in agreement
ith our previous observations. On increasing the step lengths of a randomized ensemble comprising 3% of the city’s
opulation to l = 5⟨r⟩, we find that the exponent increases to 3.09 ± 0.08, very similar to the Brazil data shown in
ig. 5. The higher growth exponent for the data from India can be explained similarly. Despite its best attempts, the
ountry’s COVID-19 containment strategy was challenged by the sheer scale and diversity of its population. For example,
t is known that on several occasions people defied social-distancing measures to attend religious gatherings in large
umbers [48,49]. Furthermore, the sudden and unprecedented lockdown in India resulted in a humanitarian crisis, with
6
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Fig. 7. Monte Carlo results for (A) exponential and (B) constrained growth (both with saturation) fitted to a Richards logistic function N(t) =

A(1 + Be−µt )1/(1−m) . The data are the same as shown in Fig. 3.

millions of daily wage inter-state migrant workers from the rural hinterland left jobless in the big cities [50]. This led to
a large-scale migration back home for thousands of such families, many of them traversing large distances of the country
on foot [51,52]. The above clearly shows the contribution of long distance movers to the spread of the pandemic. It is
well known that long-ranged dispersal can dramatically accelerate the spread of infection [53].

Recently, there have been several attempts (see Ref. [54] and references therein) to fit the sigmoid-type curves
for country specific COVID-19 infections with logistic growth models, including a generalized logistic function of type
N(t) = A(1 + Be−µt )1/(1−m), that solves the Richards differential equation [55]. We caution that such an approach can
lead to inaccuracies, particularly when an effective containment policy is followed. It is clear that the above expression
for N(t) does not produce a linear relationship between lnN and ln t , as expected for (contained) power-law growth.
his is manifested in the results of our simulations and validates our Monte Carlo random walk approach. To illustrate
he above, we show in Fig. 7 simulation results for random walkers with both unconstrained and constrained mobility,
enerated with step lengths l = 5⟨r⟩ and ⟨r⟩ respectively. While the generalized logistic function provides a reasonable
it for the unconstrained curve (exponential growth), a large discrepancy is observed in the other (power-law) case,
ith significantly different values for the fit parameters. For tα type power-law growth, it is apparent that the infection
ate dN/dt should be proportional to αtα−1. This is supported by our simulated data. As an example, we show data
corresponding to three-day averaged values for the reported daily deaths from India and their corresponding power-law
fit in the top panel of Fig. 8. As expected, we obtain a growth exponent of β = α − 1 (for α = 2.8). The bottom panel in
the same figure shows a similar analysis performed for our simulated data, obtained for a population of 6k and density of
10k/unit area. These data (which are the same as presented in the central panel of Fig. 2) show exactly the same behavior,
with dN/dt following a tα−1 power-law increase. This observed consistency further affirms the validity of our Monte Carlo
method. Thus, our general observations suggest that the growth curves from effectively contained scenarios always ought
to be fitted accordingly, by including power-law behavior. This supports the contention that constrained growth curves
from global COVID-19 data necessarily require epidemiological analyses that incorporate additional mechanisms, similar
to those described in Refs. [3,5].

5. Summary and conclusions

In summary, we used a simple two-dimensional random walk Monte Carlo model to study the spread of COVID-19-like
infection within a contained population. Apart from proximity based contact, our model has no underlying assumptions
about the nature of infection spread or its reproduction number, etc. In addition to establishing similarities with con-
ventional SIR or SIRS-type models, we show that three growth regimes, corresponding to different levels of containment
emerge naturally from our simulations. Under stringent conditions, so that only nearest-neighbor connections are allowed,
our simulation results show a power-law growth in time, with growth exponents α = 2.0–2.3, similar to initial COVID-19
data from China [3]. The determined growth exponents show no apparent dependence on population size or density.
Based on available data, this analysis suggests that the containment and mitigation strategies employed/followed in
7
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Fig. 8. Top panel: Growth in three-day-averaged daily deaths reported from India and its corresponding power law fit ⟨dN/dt⟩ = Atβ . Bottom panel:
Similar data obtained from our random walk Monte Carlo simulations, for a city with population of 6k and density 10k/unit area. In both plots the
β are quoted with ±1σ uncertainty.

Chinese provinces after the initial outbreak resulted in growth exponents that were close to the smallest limiting value.
On comparison with data from other countries, we observe that reasonable agreement can be attained by introducing
small-world-type connections in the simulation model. We anticipate that such a Monte Carlo approach (and its more
generalized versions) will be useful for the evaluation of future strategies in the midst of the present pandemic.

As concluding remarks, we briefly mention the general similarity between (i) the peripheral growth model [5], (ii)
our simulation results for short step-lengths taken by the random walkers, and (iii) the diffusion of particles to distinct
sites on a two-dimensional lattice [32] at short time-scales. All these cases show a quadratic growth in time. We further
observe that a simple logarithmic correction to our quadratic results (so that t2 → t2 ln t) yields a power-law exponent
of about 2.5, in rough agreement with the intermediate values for contained growth, both described here and observed
in Refs. [3,4]. Further investigations into this potential connection present an interesting research problem for both
epidemiologists and physicists alike.
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