
sensors

Article

Improving Quality-of-Service in Cloud/Fog
Computing through Efficient Resource Allocation †

Samson Busuyi Akintoye * and Antoine Bagula

ISAT Laboratory, Department of Computer Science, University of the Western Cape, Bellville 7535, South Africa;
abagula@uwc.ac.za
* Correspondence: 3515640@myuwc.ac.za
† This paper is an extension version of the conference paper: Akintoye, S.B.; Bagula, A. Optimization of virtual

resources allocation in cloud computing environment. In Proceedings of the IEEE AFRICON, Cape Town,
South Africa, 18–20 September 2017.

Received: 11 January 2019; Accepted: 9 February 2019; Published: 13 March 2019
����������
�������

Abstract: Recently, a massive migration of enterprise applications to the cloud has been recorded
in the IT world. One of the challenges of cloud computing is Quality-of-Service management,
which includes the adoption of appropriate methods for allocating cloud-user applications to virtual
resources, and virtual resources to the physical resources. The effective allocation of resources in
cloud data centers is also one of the vital optimization problems in cloud computing, particularly
when the cloud service infrastructures are built by lightweight computing devices. In this paper,
we formulate and present the task allocation and virtual machine placement problems in a single
cloud/fog computing environment, and propose a task allocation algorithmic solution and a Genetic
Algorithm Based Virtual Machine Placement as solutions for the task allocation and virtual machine
placement problem models. Finally, the experiments are carried out and the results show that the
proposed solutions improve Quality-of-Service in the cloud/fog computing environment in terms of
the allocation cost.

Keywords: CloudSim; virtual machine; greedy heuristics; cloud computing; fog computing; genetic
algorithm; data center; CloudSim and hungarian algorithm

1. Introduction

Cloud computing is a computing model to provide on-demand network access to a large pool of
networking, storage and computing resources over the internet [1]. This type of computing provides
cost reduction because customers do not need to procure hardware for their operations, rather they
subscribe for computing resources from the Cloud Service Provider (CSP) only when the cloud
services are needed and also only pay for services they consume. Basically, cloud computing is
grouped into four deployment models: Private cloud, community cloud, hybrid cloud and public
cloud [1,2]. A private cloud is solely owned and managed by an individual organization. In the
community cloud model, the cloud infrastructures are owned and shared by various organizations
and supports a specific community that has similar operations. The hybrid cloud is a combination
of two or more clouds such as public, private and community that remain distinctive entities but are
joined together by uniform technology that enables data and applications to be moved easily. In the
public cloud model, the cloud infrastructures are made available to the public on a pay-as-you-use
basis by the CSP. Broadly speaking, cloud computing is divided into three service models as follows:
Platform-as-a-Service (PaaS), Software-as-a-Service (SaaS) and Infrastructure-as-a-Service (IaaS). PaaS
allows users to rent virtualized platforms on which to run their own applications or services [3]. In the
SaaS model, the cloud customers use the provider’s applications running on a cloud infrastructure.

Sensors 2019, 19, 1267; doi:10.3390/s19061267 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0774-5251
http://www.mdpi.com/1424-8220/19/6/1267?type=check_update&version=1
http://dx.doi.org/10.3390/s19061267
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 1267 2 of 29

In IaaS, customers are provided with CPU, network bandwidth, storage and other computing resources,
all of which they are subsequently able to reconfigure as needed. Invariably, the cloud services are
offered to cloud customers and users through the concept of virtualization and distributed computing.
Virtualization is an abstraction of computing resources such as storage and processing power to provide
virtualized resources called virtual machines (VMs) for customer’s applications [4]. Virtualization
technology can be classfied into four groups, namely: Full virtualization, para-virtualization, native
virtualization and operating system-level virtualization. Full virtualization provides a full image of the
essential hardware. Para-virtualization modifies a guest operating system and is able to communicate
directly with the hypervisor [5]. In native virtualization, the guest operating system and host use
the same hardware. Operating system-level virtualization does not depend on a hypervisor, rather it
modifies the operating system to isolate securely many instances of an operating system within a single
host machine. In cloud computing, virtualization technologies such as network, storage and compute
offer users an abstraction layer (i.e., VM) that provides a uniform computing platform by concealing
the underlying hardware heterogeneity, internal management difficulty and geographic boundaries [4].
When the cloud receives a task request from a user, either a new VM is initialized or an existing
VM of the same user is assigned to the request [2]. After the task is processed successfully, every
assigned resource is released to the pool of free resources. Sometimes, the number of the available
physical resources may not be commensurate with the number of task requests from the cloud user,
then resource allocation becomes a critical problem which needs to be solved by CSPs. In such cases,
the CSP has the responsibility to determine the number of VMs to be initiated, based on the number of
requests from cloud users. The problem of resource allocation in cloud computing involves assigning
tasks to VMs and the placement of VMs on Physical Machines (PMs). The computing resource
provided is normally allocated based on the Service Level Agreement (SLA) contract between the
cloud customers and service providers. The SLA spells out the details regarding the quality of service
(QoS) to be offered by the CSP in terms of a range of performance parameters such as reliability,
response time, and throughput. The SLA may also specify the payment process and the breach of
SLA contract penalty [6]. Thus, the ultimate goal of the CSP is to optimize resource utilization and
maximize profit while that of the cloud user is to ensure the cost of leasing the resources is minimized.

1.1. Cloud/Fog Computing Resource Management Framework

The resource management framework in Figure 1 summarizes the work described in this paper.
The multi-layer framework includes:

1. A physical resource layer which is composed of data centres that host PMs in the form of host
machines. The PMs are interconnected by switches (SWs).

2. A virtual resource layer which lies above the physical resource layer to virtualize the physical
resources as VMs for better resource management.

3. An application layer which lies above the virtual resource layer to provide a variety of services to
users. These include SaaS, PaaS and IaaS.

When considered from a service perspective, the framework in Figure 1 can be presented as a
two-layer architecture including:

1. A virtual resource scheduling module, where a mapping between physical machines and the
virtual machines is made. We assume in this paper that each physical machine (host machine)
provides at least one virtual machine.

2. A task allocation management module enabling the virtual resources to be allocated to the users
in a cost effective way.



Sensors 2019, 19, 1267 3 of 29

Figure 1. cloud/fog computing resource management framework.

1.2. Contributions

This paper proposes an implementation of the framework by assuming that: (i) The tasks and
virtual resources are varied and the physical resources are uniform, and (ii) the number of on-demand
requests initiated by cloud users is higher than the number of available resources. In this work,
we propose a model for assigning the tasks (cloudlets) to VMs, and VM placement with the aim of
improving quality of service in the cloud/fog computing environment. The main contributions of this
paper are outlined as follows:

• Problem formulation: The task allocation and VM placement problem models in the cloud
computing environment are formulated and presented. These models aim to minimize the
resource allocation cost in a setting where multiple cloud user requests have to be processed on a
limited number of physical resources.

• A task assignment strategy: We propose the Hungarian Algorithm Based Binding Policy
(HABBP) as a heuristic solution to the linear programming problem, and use the algorithm
to implement a novel assignment strategy for the famous CloudSim simulator. We also propose
the assignment strategy module as a contributed module to CloudSim which includes: (i) A
graphical user interface as a front-end component which enables cloud users to interact and
communicate with CloudSim and to configure the tasks, VM and PM parameters from the
interface, rather than embedding parameter values in the CloudSim source code and (ii) a novel
assignment strategy as a back-end component.

• VMs placement solution: We propose a Genetic Algorithm Based Virtual Machine Placement
(GABVMP) to solve and optimize the VM placement problem in the cloud computing environment.

• Analysis of experimental results: We evaluate and compare the performance of the proposed
binding policy with the conventional binding policy implemented by the CloudSim simulator and
benchmark both solutions against the Simplex algorithm commonly used as a linear programming
solver. The proposed GABVMP solution is also compared with the greedy heuristics: Random
Placement and First Fit Placement.

1.3. Paper Organization

The rest of the paper is arranged as follows: Section 2 presents existing works related to the
resource allocation problem in cloud computing. The linear programming model for task allocation
is proposed in Section 3. Section 4 presents a task allocation algorithmic solution as a solution
for the optimization of the task allocation problem model. Section 5 describes the VM placement
problem. In Section 6, the VM placement problem is solved using GABVMP. Section 7 describes the
implementation of HABBP and GABVMP, for task allocation and VM placement, respectively. Lastly,
we conclude our paper with Section 8.



Sensors 2019, 19, 1267 4 of 29

2. Related Work

In cloud/fog computing, resource allocation is the process of assigning available resources to
the needed cloud applications over the internet. These resources are allocated based on cloud user
request and pay-per-use method. Resources in cloud computing could be either virtual resources
or physical resources. Cloud service providers must effectively manage, provide, and allocate
these resources to provide services to cloud consumers based on service level agreements (SLAs).
Therefore, the appropriate allocation of resources in cloud data centers is also one of the important
optimization problems in cloud computing especially when the cloud infrastructure is made of
lightweight computing devices.

The quality of service in cloud/fog computing is based on its resource allocation process, and the
cloud service provider should assign the resource to the cloud users in an optimal way. The result of any
optimal resource allocation strategies must consider certain parameters such as latency, throughput,
reduction of energy consumption, minimization of allocation cost and response time. There are many
existing works relating to resource allocation in cloud/fog computing. Maguluri et al. [7] propose
a stochastic model for resource allocation in cloud computing in which jobs arrive according to a
stochastic process and request a variety of virtual machines. The authors use a non-pre-emptive for
load balance among the cloud servers and to schedule VM configurations. In order to minimize the
communication complexity, the authors consider a distributed system such that each server maintains
its own queues. The experimental evaluations reveal that there is only a small difference in delay
performance between distributed and centralized queueing systems. Furthermore, the evaluations
show that the non-pre-emptive algorithm adopted in this work outperforms the best-fit scheduling
algorithm in terms of throughput. Baker et al. [8] present a requirements model for the runtime
execution and control of an intention-oriented Cloud-Based Application. The requirements modelling
process known as Provision, Assurance and Auditing, and an associated framework are defined and
developed where a given system’s functional and non-functional requirements are modelled in terms
of intentions and encoded in a standard open mark-up language. An autonomic intention-oriented
programming model, using the Neptune language, then handles its deployment and execution.
Al-khafajiy et al. [9] propose a fog computing architecture and framework to improve QoS through the
request offloading method. The proposed method uses a collaboration strategy among fog nodes in
order to permit data processing in a shared mode which satisfies QoS and serves the largest number
of IoT requests. The experimental result shows that the performance of fogs layer is significantly
increased when the overload is distributed over several fog nodes.

In [10] the author investigates existing resource scheduling algorithms, and classfies them
according to some determining factors, such as cost, energy and time. The advantage of the study
is that it helps CSPs in the adoption of appropriate scheduling algorithms based on their ultimate
goals. Liu et al. [11] propose an earliest finish time duplication algorithm to schedule multiple tasks
in heterogeneous data centres. The algorithm can also be referred to as a directed acyclic graph
based scheduling algorithm. The performance evaluation of the study reveals that the combination of
pre-processing the cloud resources before scheduling and the proposed algorithm, performs better
than the heterogeneous earliest finish time algorithms, in terms of task scheduling time. In [12]
the authors propose a virtual cloud resource allocation model based on constraint programming to
improve the Quality-of-Service (QoS) in cloud computing and decrease the cost of resource utilization.
Moreover, the authors [13] propose a VM Repacking Scheduling Problem (VRSP) to minimise the
energy consumption while placing VM in the data centres. The benefit of the study is that it is flexible,
it enables users to generate automatically the SLA constraints, and it reduces energy utilization.

In order to address the VM placement problem in a data centre, the authors [14] propose a
greedy-based algorithm to reduce resource usage, the network traffic and the number of cloud servers.
The work divides traffic flows and routes them through two link-disjoint paths to decrease congestion,
at the same time meeting the requirements for protection grade as well as bandwidth. Furthermore,
the authors [15] propose an online heuristic-based VM placement algorithm which is based on a



Sensors 2019, 19, 1267 5 of 29

multi-dimensional space partition model. The objective of the work is to make a trade-off between
balancing multi-dimensional resource usage and reducing the number of the PMs used for VM
placement. The advantage of the algorithm is that it reduces the number of running PMs as well
as the total energy consumption. In [16], authors propose an ant-colony based optimization model
with the aim to optimize resource utilization and total power consumption concurrently. The model
performs better than the previous multi-objective VM placement algorithm. Pascual et al. [17] propose
multi-objective evolutionary algorithms to solve the placement problem. The objectives of work are:
(i) The consolidation of VMs on a small set of processors, and (ii) the minimization of associated
energy costs for servers and network equipment. The algorithms were implemented using a Flat
Tree topology and tiered applications, such as a web server with an associated database. The major
advantage of the algorithms is that they enhance the application performance and energy consumption.
The work in [18] proposes algorithms for the placement of precedence-constrained parallel virtual
machines. The aim of the work is to reduce energy consumption by consolidating virtual machines
on the available physical machines yet not degrading the makespan. The algorithms were evaluated
using benchmarks of real-world distributed applications and they achieved efficient results.

Georgiou et al. [19] propose VM placement algorithms for the Portland network architecture with
the aim to allocate communicating virtual machines in physical proximity to avoid the creation of
network bottlenecks. The authors propose two algorithms: the first algorithm is proposed for rapid
placement of closely located virtual machines, while the second algorithm is designed to identify
network regions that can best host the virtual machines and then, using the first algorithm, maps these
virtual machines on the servers. The benefit of the approach is that it has the capability to reduce the
intensity of traffic in the links of top-level switches.

Meng et al. [20] propose a Cluster-and-Cut algorithm to improve the scalability of data center
networks with traffic-aware VM placement. The goal of the algorithm is to reduce network traffic
among VMs and related communication cost by placing inter-communicating VMs in the same
PM. The VM placement problem is formulated as a quadratic assignment problem (QAP) to find a
suboptimal placement which minimizes network traffic, considering the associated communication
cost and a static-single path routing. The allocation cost is defined as the number of switches between
two inter-communicating VMs and each PM is divided by slots with the capacity to accommodate
a single VM with the assumption of an equal number of VMs and slots. If the number of VMs is
lower than the number of slots, dummy VMs are introduced with zero traffic which has no significant
effect on the solution of the problem. The performance evaluations of the algorithm show a significant
performance improvement compared to existing genetic algorithmic methods.

Breitgand et al. [21] investigate the problem of placing images and VM instances on the servers
with the aim to increase the affinity between them to mitigate communication overhead and latency.
The problem is modelled as an extension of the Class Constrained Multiple Knapsack problems
(CCMK) and present a polynomial time local search algorithm for the same size images. Specifically,
this model focuses on an off-line placement problem, where there are a given set of demands and
available servers. In order to solve this problem, the local search algorithm was applied as a basis for
ongoing optimization which periodically improves the VM placement and greedy placement of a new
set of VM instances by allowing migrations of the VMs.

Vakilinia et al. [22] propose a platform for virtual machine (VM) placement/migration to minimize
the total power consumption of cloud data centers (DCs). The platform is divided into two parts. Firstly,
an estimation module is introduced to predict the incoming load of the DC. Secondly, two schedulers
are designed to determine the optimal assignment of VMs to the PMs. The proposed schedulers
apply a column generation method to solve the large-scale optimization problem in conjunction
with the cut-and-solve-based algorithm and the call back method to decrease the complexity and
the time to obtain the optimal solution. The trade-off between optimality and time is investigated.
The numerical results show that the proposed platform produces the optimal solution for a limited
time-frame. Selmy et al. [23] present virtual machines migration and selection policies to reduce the



Sensors 2019, 19, 1267 6 of 29

power consumption of servers in the cloud computing environment. The authors propose neural
networks for classification and prediction, Self Organizing Map (SOM) and K-Means Clustering
algorithms for the policies. The results of implementation of the proposed policies show significant
reduction of energy consumption of the servers in the data center.

All the works mentioned above have been able to solve one or two problems of VM placement in
the cloud computing environment. There is still much to be done, however, to mitigate the effect of
these problems.

3. Task Allocation Problem Model

In this section, we present a linear programming problem model for assigning task requests
(cloudlets) from cloud users to VMs. To express the model mathematically, we consider a set of VMs
represented by vmi for i ≤ n and n > 1. Similarly, a set of tasks (cloudlets) corresponding with
each on-demand user request (job) represented by τj for j ≤ m and m > 1. In this work, we assume
a one-to-one allocation model where each VM executes only one cloudlet and each cloudlet needs
to be assigned to only one VM. However, a many-to-one allocation model may also be considered
where several tasks are allocated to a single virtual machine. The many-to-one allocation model is not
considered in this paper.

Furthermore, we set n = m and C = [ωij] to be an n× n matrix in which ωij is the cost of assigning
vmi to cloudletj, i.e.,

ωij =
f j

vmi
. (1)

We also set χ = [αij] to be the n× n matrix where

αij =

{
1, if vmi is assigned to cloudletj,
0, if vmi is not assigned to cloudletj.

(2)

Our goal is to minimize the total cost ρ(χ), defined as the sum of the cost of assigning cloudlets
to the available VMs. Thus, we present an optimization problem as a linear programming model in
terms of a function ρ as follows:

minimize ρ(χ) =
m

∑
j=1

n

∑
i=1

ωijαij (3)

subject to the following constraints

n
∑

i=1
αij = 1, for j = 1, 2, . . . , m, (4)

and
m
∑

j=1
αij = 1, for i = 1, 2, . . . , n, (5)

such that
αij = 0 or 1. (6)

Thus, any matrix satisfying the Equations (4) and (5) is a solution and conforms to a permutation
σ of a set N = {1, 2, . . . , n} generated by setting σ(i) = j if and only if αij = 1. In addition, if χ is a
solution relating to σ, then

n

∑
j=1

ωijαij = ωiσ(i). (7)



Sensors 2019, 19, 1267 7 of 29

summation over i from 1 to n, we obtain

n

∑
i=1

ωiσ(i) =
n

∑
i=1

n

∑
j=1

ωijαij. (8)

Hence, any solution χ on which ρ(χ) is minimal is known as an optimal solution. We can reform
a given allocation problem specified by C into another one specified by a matrix C = [ωij], in which
ωij ≥ 0, ∀ pairs i, j, where the two problems have the equal set of optimal solutions. If χ∗ is an optimal
solution to the problem given by C, then it is important to know that χ∗ is also an optimal solution to
the one given by C.

Theorem 1 illustrates the steps to reform a matrix into another with the same set of optimal
solutions.

Theorem 1. A solution X is an optimal solution for p(X) =
n
∑

i=1

n
∑

j=1
cijxij if and only if it is an optimal solution

for p(X) =
n
∑

i=1

n
∑

j=1
cijxij where cij = cij − ui − vj for any of u1, . . . , un and v1, . . . , vn and ui and vj are real

numbers for all i and j.

Proof. We establish that the difference between the functions p(X) and p(X) is constant
n
∑

i=1
ui +

n
∑

j=1
vj.

p(X) =
n

∑
i=1

n

∑
j=1

cijxij,

=
n

∑
i=1

n

∑
j=1

(cij − ui − vj)xij,

=
n

∑
i=1

n

∑
j=1

cijxij −
n

∑
i=1

n

∑
j=1

uixij −
n

∑
i=1

n

∑
j=1

vjxij,

=
n

∑
i=1

n

∑
j=1

cijxij −
n

∑
i=1

n

∑
j=1

uixij −
n

∑
j=1

n

∑
i=1

vjxij,

= p(X)−
n

∑
i=1

ui

n

∑
j=1

xij −
n

∑
j=1

vj

n

∑
i=1

xij.

From Equations (4) and (5),

= p(X)−
n
∑

i=1
ui −

n
∑

j=1
vj.

This shows that, p(X)− p(X) =
n
∑

i=1
ui +

n
∑

j=1
vj. Therefore, a solution X minimizes p(X) if and

only if it minimizes p(X).

4. Task Allocation Algorithmic Solution

In this section, we present a task allocation algorithmic solution that is based on Hungarian
algorithm [24,25] known as Hungarian Algorithm Based Binding Policy (HABBP) to solve the task
allocation problem in the cloud computing environment.

4.1. Notation and Preliminaries

• Given a cost-matrix ωm of size n×m,
• n is the number of VMs,
• m is the number of cloudlets,



Sensors 2019, 19, 1267 8 of 29

• ωmij represents the time required to complete cloudleti by vmj.

4.2. Procedures of the Algorithm

Algorithm 1 represents the pseudo-code of the HABBP for tasks-to-VMs allocation in a cloud
computing environment. The first four lines (1–4) in the algorithm represent the initialization of different
variables. Subsequently, we initialize cost-matrix by dividing the cloudlet length by the MIPS of VM.
In the case of many-to-one allocations where the number of cloudlets and the number of VMs are not
equal, we then add the dummy cloudlets/VMs to turn the cost-matrix into a square matrix.

Algorithm 1: Computation of the total assignment cost C.
input : n: denotes the no. of VMs

m: denotes the no. of cloudlets
τi : a set of cloudlets i ∈ [1, 2, . . . , m]

vmj : a set of VMs j ∈ [1, 2, . . . , n]
output : C: total assignment cost

1 /* Initialize and generate cost-matrix */
2 for i ∈ [1, 2, . . . , n] do
3 for j ∈ [1, 2, . . . , m] do
4 ωmij = τi / vmj

5 end
6 end
7 if (n not equal to m) then
8 add dummy cloudlets to make cost-matrix square matrix
9 end

10 ηr← smallest Element in cost-matrix row
11 ηc← smallest Element in cost-matrix column
12 /* calculates the reduced-cost-matrix */
13 for j ∈ [1, 2, . . . , n] do
14 ωmnj = cmnj − ηr
15 end
16 for i ∈ [1, 2, . . . , n] do
17 ωmni = ωmni − ηc
18 end
19 /* calculate the line-cost-matrix */
20 ln ←minimum-number-line()
21 if ln < m then
22 for j ∈ [1, 2, . . . , n] do
23 for j ∈ [1, 2, . . . , n] do
24 if (element are uncovered) then
25 ωmij ← (ωmij −min(uncoveredElement)) elseif (element are covered by two

line) ωmij ← (ωmij + min(uncoveredElement))
26 end
27 end
28 end
29 end
30 /* find the mapping */
31 apply the matching to the original matrix, discarding dummy rows.
32 the addition of the costs will give the total minimum cost
33 return total assignment cost C



Sensors 2019, 19, 1267 9 of 29

Thereafter, we compute the reduced-cost-matrix from the cost-matrix by subtracting the minimum
value of each row from the elements of its row, turning each minimum value into zero, and by
subtracting the minimum value from the elements of each column, turning the minima into zeros.
From that, we compute the line-cost-matrix. If the number of lines is not equal to the number of VMs,
we then subtract the minimum uncovered element from every covered element. If an element is
covered twice, we then add the minimum element to it.

Lastly, we apply the mapping to the original matrix, discarding dummy rows, and we add the
cost of assigning cloudlets to VMs to give the total minimum cost C.

4.3. Illustration

We illustrate, through an example, the concept of the HABBP and the steps that need to be
followed in order to optimize the assignment of tasks to virtual resources in the cloud computing
environment. Table 1 depicts three cloudlets in the queue with a broker and Table 2 depicts VMs
initiated in the data centre.

Table 1. Cloudlet details.

cloudlet1 cloudlet2 cloudlet3

id 0 1 2
file-size 500 1000 1000
length 40,000 80,000 120,000

output-size 500 2048 2048

Table 2. VM specifications.

vm1 vm2 vm3

id 0 1 2
size 1000 1000 1000

mips 400 1000 500
ram 2048 2048 2048

pes-number 1 2 2
bandwidth 500 500 500

The algorithm works as follows: We initialize the cost-matrix by dividing the length of the cloudlet by
the mips of the VM as depicted in Table 3.

Table 3. Initialize cost-matrix.

cloudlet1 cloudlet2 cloudlet3

vm1 100 200 300
vm2 40 80 120
vm3 80 160 240

In this case, the number of cloudlets is equal to the number of VMs. Thus, we do not need to
add the dummy cloudlet/VM values to turn the cost-matrix into a square matrix. We compute the
reduced-cost-matrix by subtracting the minimum value of each row and column from the row and
column of the cost-matrix to yield Tables 4 and 5 respectively.

Table 4. Row reduced-cost-matrix.

cloudlet1 cloudlet2 cloudlet3

vm1 0 100 200
vm2 0 40 80
vm3 0 80 160



Sensors 2019, 19, 1267 10 of 29

Table 5. Column reduced-cost-matrix.

cloudlet1 cloudlet2 cloudlet3

vm1 0 60 120
vm2 0 0 0
vm3 0 40 80

Then, we calculate the line-cost-matrix; this represents the lines that cover all zeros in the
reduced-cost-matrix. In this case, there are two lines. The lines are on column 1 and row 2 of the
reduced-cost-matrix. Since the number of lines is not the same as the number of VMs, we remove the
lowest of all uncovered elements from all uncovered elements as indicated in Table 6.

Table 6. reduced-cost-matrix.

cloudlet1 cloudlet2 cloudlet3

vm1 0 20 80
vm2 0 0 0
vm3 0 0 40

Again, we calculate the minimum number of lines required to cover all zeros in the matrix.
The lines are on column 1, row 2 and row 3 of the reduced-cost-matrix. Since the number of lines is the
same as the number of VMs, an optimal assignment exists among the zeros in the reduced-cost-matrix.
Therefore, cloudlet1 is assigned to vm1, cloudlet3 is assigned to vm2, and cloudlet2 is allocated to vm3

as indicated in Table 7.

Table 7. Optimal Assignment.

Cloudlets Virtual Machines

cloudlet1 vm1
cloudlet2 vm3
cloudlet3 vm2

The total cost of assigning cloudlets to virtual machines optimally is: 100 s + 120 s + 160 s = 380 s.
Alternatively, we solve the example mentioned above using Simplex method [26,27] and

compare the result with the one that is already generated using HABBP. Using the Equations (3)–(6),
the optimization objective function can be formulated as:

minimize ρ(χ) = 100α11 + 200α12 + 300α13 + 40α21 + 80α22 + 120α23 + 80α31 + 160α32 + 40α33 (9)

subject to the following constraints

α11 + α12 + α13 = 1,

α21 + α22 + α23 = 1,

α31 + α32 + α33 = 1,

α11 + α21 + α31 = 1,

α12 + α22 + α32 = 1,

α13 + α23 + α33 = 1

(10)

and
α11, α12, α13, α21, α22, α23, α31, α32, α33 > 0 (11)



Sensors 2019, 19, 1267 11 of 29

Since the objective function is in minimization form, then we convert it into maximization form
and add the artificial variables as:

maximize ρ(χ) = −100α11− 200α12− 300α13− 40α21− 80α22− 120α23− 80α31− 160α32− 40α33 (12)

α11 + α12 + α13 + S6 = 1,

α21 + α22 + α23 + S5 = 1,

α31 + α32 + α33 + S4 = 1,

α11 + α21 + α31 + S3 = 1,

α12 + α22 + α32 + S2 = 1,

α13 + α23 + α33 + S1 = 1

(13)

and
α11, α12, α13, α21, α22, α23, α31, α32, α33, S1, S2, S3, S4, S5, S6 > 0 (14)

In Phase 1 of the two-phase simplex method, we remove the artificial variables and find an initial
feasible solution of the original problem which gives the final Tableau in the Table 8.

Table 8. Phase 1 final Tableau.

Tableau 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1

Base Cb P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
P2 0 0 1 1 0 0 0 −1 0 0 −1 −1 0 0 0 0 1
P3 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0
P13 −1 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 1 1 1
P7 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 −1 −1
P4 0 0 1 0 0 1 0 0 0 −1 −1 −1 −1 0 0 1 1
P5 0 1 −1 0 0 0 1 1 0 1 1 1 1 0 0 0 −1

ρ(χ) 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 0

The basic feasible solution at the end of Phase 1 computation is used as the initial basic feasible
solution of the problem. The original objective function is introduced in Phase 2 computation and the
usual simplex procedure is used to solve the problem. The Phase 2 gives final optimal value in Table 9.

Table 9. Final optimal Tableau.

Tableau −100 −200 −300 −40 −80 −120 −80 −160 −240

Base Cb P0 P1 P2 P3 P4 P5 P6 P7 P8 P9
P2 −200 0 0 1 1 −1 0 0 −1 0 0
P9 −240 0 0 0 1 −1 −1 0 0 0 1
P13 −1 0 0 0 0 0 0 0 0 0 0
P8 −160 1 0 0 −1 1 1 0 1 1 0
P1 −100 1 1 0 0 1 0 0 1 0 0
P6 −120 1 0 0 0 1 1 1 0 0 0

ρ(χ) −380 0 0 20 100 40 0 20 0 0

Similar to the HABBP, the simplex method gives the total optimal cost of assigning cloudlets
to virtual machines as 100 s + 120 s + 160 s = 380 s. That is, cloudlet1 is assigned to vm1, cloudlet3 is
assigned to vm2, and cloudlet2 is allocated to vm3.



Sensors 2019, 19, 1267 12 of 29

5. Virtual Machine Placement Problem

In this section, the problem of optimally placing a set of VMs into a set of PMs in the single cloud
environment is formulated. As depicted in Figure 2, the tree network topology consists of five PMs
and connection points called switches (SWs). The placement of any VM in a PM will be determined by
at least a switch node in the figure. In the light of that, there will be huge end-to-end traffic between a
given VM and the switch which the VM is dependent on.

Figure 2. Physical machines and switches in a tree network topology

It is assumed that the intensity of communication between PMs is negligible compared to the
intensity of communication between PMs and SWs. Placing the VMs in PMs that offer an optimal
placement cost according to the demands of the VMs will be a major determinant factor in this work.
Each PM-SW pair is associated with a cost. Thus, it will not be a good idea to place a VM with intensive
demand for a switch in a PM that has a high cost associated with that switch.

The VM placement problem in the data center network can be represented mathematically as a
graph G(P, S, E), where P is a set of PMs, S is a set of SWs, and E is a set of links between the PMs
and SWs. The links are weighted and represent the cost between any PM-SW pair. In addition, it
is also assumed that there is no congestion in the links between the PMs and SWs. The links have
enough capacity to handle the switch flow demands of VMs appropriately. More information about
the network is as follows.

5.1. Parameters

• P = {p1, p2, . . . , pn} is a set of PMs.
• V = {v1, v2, . . . , vm} is a set of VM requests.
• S = {s1, s2, . . . , sk} is a set of switches.
• lsh pi is the latency between pi and sh.
• bsh pi is the bandwidth for pi − sh link.
• δj represents MIPS of each vj ∈ V.
• µi represents MIPS of each pi ∈ P.
• Ui represents utilization of pi.
• Eidle

i is the power consumed by pi when it is doing nothing but powered on.

• Epeak
i is the power consumed when the pi is fully loaded/utilized or at the peak load.



Sensors 2019, 19, 1267 13 of 29

5.2. Assumptions

Consider a VM to be placed into PM through the SW in a data center network, the following
assumptions are made.

• Each PM has different latency to all SWs in the network.
• Each PM has one and only one link to the SW in the network.
• Each PM can accommodate more than one VM depending on the capacity of the PM.
• Each link between PMs and SWs has enough capacity and there is no congestion on the links.
• The number of VMs, PMs and SWs are equal i.e., n = m = k.

5.3. The Mathematical Model

The cost in terms of the time taken to use the pi − sh link is defined as:

csh pi =
vmsize(j)

bsh pi

. (15)

where vmsize(j) denotes size (MB) of the vj routed through the pi − sh link.
The placement of a vj into a pi depends on the latency between vj and sh, and the cost associated

with the pi − sh link. Thus, the total cost to place vj into pi through sh is computed as,

tpivj = βcpish + αlshvj (16)

where β and α ∈ {0, 1} is the weighting for the link and latency. The goal is to place VMs into PMs
such that the total placement cost for the PM-SW links consumption and latency between VM and SW
is minimized. Thus, an optimization model is defined as follows:

min
n

∑
i=1

n

∑
j=1

tpivj xvj pi =
n

∑
i=1

n

∑
j=1

(βcpisj + αlsivj)xvj pi (17)

where

xvj pi =

{
1, if vj is placed into pi ,
0, otherwise.

(18)

subject to
n

∑
i=1

xvj pi = 1, ∀j = 1, 2, . . . , n, (19)

xvj pi ∈ {0, 1}, for i = 1, 2, . . . , n, and j = 1, 2, . . . , n. (20)

u

∑
j=1

δj ≤ µi, for i = 1, 2, . . . , n, and u < n. (21)

β + α = 1 (22)

csj pi ≥ 0 (23)

lsivj ≥ 0 (24)

Equation (19) ensures that each VM is mapped to one PM and all VMs are placed. Also,
Equation (21) ensures that the total MIPS of VMs placed on a PM should not exceed its capacity.
For a given PM, the sum of the MIPS requirements of all VMs placed on it should be less than or equal
to the total available capacity of the PM.



Sensors 2019, 19, 1267 14 of 29

Furthermore, it is assumed that there is a linear relationship between the power consumption and
utilization of a physical machine in a data center. The energy consumed, Ei, by a PM pi ∈ P can be
calculated as shown in [28]:

Ei = Eidle
i + (Epeak

i − Eidle
i )Ui (25)

where

Ui =

∑
j∈γi

δj

µi
(26)

where γi is a set of virtual machines placed on the pi.
Thus, the total energy consumed by the PMs after VMs placement can be calculated as

n

∑
i=1

Ei =
n

∑
i=1

Eidle
i + (Epeak

i − Eidle
i )Ui (27)

6. Virtual Machine Placement Algorithmic Solution

The section presents the Genetic Algorithm Based Virtual Machine Placement (GABVMP) for
solving the Virtual Machine Placement problem in the cloud computing environment.

6.1. Genetic Algorithm Based Virtual Machine Placement

Genetic Algorithm (GA) is a computerized search and optimization algorithm based on the
mechanics of natural genetics and natural selection. The GA is proposed by John Holland [29] where
each potential solution is encoded in the form of a string and a population of strings is created which
is further processed by three operators: Reproduction, crossover, and mutation. Reproduction is a
process in which individual strings are copied according to their fitness function. Crossover is the
process of swapping the content of two strings at some point(s) with a probability. Lastly, mutation is
the process of flipping the value at a particular location in a string with a very low probability.

Figure 3 describes the GABVMP. The algorithm consists of four parts: Input, initialization, looping
and output. In the initialization part, the set of physical machine chromosomes which are also known
as population, is generated randomly. The looping part contains fitness evaluation and checks if
the optimal solution condition is met according to the optimization objectives. If not, the looping
continues, the selection, crossover, mutation and replace functions are applied sequentially. At the end
of the loop, the optimal solution will be produced as the output.



Sensors 2019, 19, 1267 15 of 29

Start

Input: sizes
and parameters

of VMs, PMs
and SWs

Initialization:
generate randomly
initial placement

Fitness: compute
the fitness value of
each chromosome

(βcpisj + αlsj pi )

Satisfied?

Selection:
choose the two

chromosomes based
on fitness value

Crossover and
Mutation: create new

chromosomes from
old chromosomes.

Replacement:
replace old

chromosomes with
new chromosomes

Total cost: compute
total cost of a

chromosome with
highest fitness value

Output: return
total cost

Stop

yes

no

Figure 3. Genetic Algorithm Based Virtual Machine Placement

6.2. Initialization

Each chromosome in the GABVMP contains genes which represent the allocated physical
resources and switches to the virtual resources. The value of a gene positive integer representing the
identity of the VM being placed in the PM through SW. For Example, let v1, v2, v3, v4, v5, v6, v7, v8 be
a set of VM to be placed in the p1, p2, p3, p4, p5, p6 a set of PM through s1, s2, s3 a set of SW in a data
center network. Let’s assume that p1s1, p2s1, p3s2, p4s3, p5s3, p6s3, p7s2, p8s1 are links between PMs and
SWs which is one of the factors to be considered while placing VMs on the PMs. The initial population



Sensors 2019, 19, 1267 16 of 29

contains a set of PM-SW link chromosomes where the genes represent the identity of VMs. The initial
population is generated randomly by using Algorithm 2.

Algorithm 2: Initial population algorithm.
input :a set of links between the PMs and SWs

a set of VMs with corresponding latency between the VM and SW
output : initial population

1 counter = 0;
2 while (counter ≤ 5) do
3 for (all VMs) do
4 randomize the set of VM identities into number of the PM-SW links according to

network topology
5 end
6 counter = counter + 1;
7 end
8 return initial population

6.3. Fitness Evaluation

The objective is to minimise the total cost of placing VMs on the PMs through SWs. As defined in
Section 5, The VM placement cost consists of the cost of PM-SW link usage and the latency between
the VM and SW. The objective function used by the GABVMP is the same objective function as that of
the mathematical model. Thus, the fitness value of each chromosome is calculated as,

Fitness(chromosome) = βcpisj + αlsj pi (28)

6.4. Generating the Next Population

A new population is generated from an initial population of solutions using their fitness values
and genetic operators: Selection, crossover, mutation and reproduction. In order to generate a new
population, individuals are selected for participation and the genetic operators are applied as follows.

6.4.1. Selection Process

To select the best chromosomes that would pass their genes into the next generation, the fitness
proportionate selection approach is implemented using roulette wheel selection. The fitness function is
the total cost of the VM placement represented by each chromosome. The lower the total cost, the fitter
the VM placement represented by that chromosome [30]. Thus, the chromosomes with lower values
are selected for the generation of the next population.

6.4.2. Crossover Operator

The crossover operator works on two parent chromosomes and produces a new individual.
In GABVMP, a midpoint crossover with crossover probability 0.8 is adopted and crossover operator
process is described in Algorithm 3. Figure 4 shows two parent and offspring chromosomes before
and after mid crossover respectively.



Sensors 2019, 19, 1267 17 of 29

Algorithm 3: Crossover function.
input : Q1, Q2 : two parent chromosomes
output : Qλ1, Qλ2 : two offspring chromosomes

1 Φ = length(Q1);
2 cp = Q1

2 ;
3 mid cross point;
4 Qλ1 = Q1(1 : cp)UP2(cp : Φ);
5 Pλ2 = Q1(cp : Φ)UQ2(1 : cp);
6 return Qλ1, Qλ2.

Figure 4. Midpoint crossover.

6.4.3. Mutation Operator

In the GABVMP, the next operation is mutation of the offspring. Mutation helps to prevent
premature convergence and promotes diversity in the population. In other words, it helps to avoid
getting trapped in local solutions. In this work, inversion mutation is adopted where a subset of genes
in a chromosome is selected and inverted to form mutated offspring. Figure 5 illustrates the inversion
mutation operation on the offspring 1. In offspring 1, a subset of genes (1, 5, 2, 6) in chromosome (7, 8,
1, 5, 2, 6, 4, 3) are selected and inverted to give a new chromosome (7, 8, 6, 2, 5, 1, 4, 3).

Figure 5. Inversion mutation operation.



Sensors 2019, 19, 1267 18 of 29

6.4.4. Replacement

The replacement operator replaces old chromosomes in the current population with the new
chromosomes to form a new population.

6.4.5. Stopping Criterion

GABVMP stops either when the maximum number of generations is reached or the optimal total
placement cost is obtained.

The comparison of the GABVMP and the existing related VM placement approaches as mentioned
above is presented in Table 10. The comparison parameters include: Latency awareness, energy
awareness, network awareness, Internal traffics, flow path allocation and the method adopted to solve
the VM placement problem.

Table 10. Comparison of related VM placement problems.

Paper Latency-Aware Energy-Aware Network-Aware Internal
Traffic

Flow Path
Allocation Method Adopted

[18] No Yes No Yes No Scheduling algorithms

[14] No No Yes Yes Yes Greedy method

[15] No Yes No No No EAGLE algorithm

[16] No Yes No No No Ant-colony based algorithm

[20] No No Yes Yes Yes Cluster-and-Cut algorithm

[17] No Yes Yes Yes No Multi-objective evolutionary
algorithms

[19] No No Yes Yes Yes
Virtual Infrastructure

Opportunistic fit (VIO) and
VIcinity-BasEd Search (VIBES)

[21] Yes No Yes Yes No Local search algorithm

[22] No Yes No No No
Column generation method,

cut-and-solve-based algorithm
and the call back method

[23] No Yes No No No
Neural networks, Self

Organizing Map (SOM) and
K-Mean Clustering algorithms

GABVMP Yes Yes Yes Yes Yes Genetic algorithm

7. Experimental Results

In this section, we evaluate the performance of our proposed models. We carried out experiments
on a desktop computer with specifications: Intel Core i7 CPU @ 2.80 GHz CPU and 4 GB RAM.

7.1. Implementation of the Proposed HABBP

We implemented the proposed HABBP on the famous open source cloud simulator known as
CloudSim [31] Netbeans IDE 8.2. CloudSim is developed by the Cloud Computing and Distributed
Systems (CLOUDS) Laboratory as an extensible Java-based open source framework for modelling and
simulation of cloud computing infrastructures and services. Garg et al. [32] refer to CloudSim as an
advanced simulator for cloud computing infrastructures and services with great properties such as
scaling as well as a low simulation overhead. It provides classes for data centres, VMs, applications,
users, computational resources, and scheduling policies. As depicted in Figure 6, there are different
stages of the CloudSim life cycle ranging from initialization of cloud infrastructures to the simulation
results. Our goal is to validate the performance gains derived from the proposed HABBP compared to
the default task assignment strategy as implemented in the CloudSim.



Sensors 2019, 19, 1267 19 of 29

Figure 6. CloudSim Life cycle with HABBP.

The main disadvantage of the current CloudSim, however, is the lack of a graphical user interface
(GUI) that allows cloud users to configure cloudlets and the cloud infrastructure parameters, and the
lack of optimal cloudlets-to-VMs assignment strategy. In the current work, we extended CloudSim to
(i) implement and integrate a graphical user interface using a java Jframe class as shown in Figure 7
and (ii) introduced a new cloudlets-to-VMs assignment strategy by creating a new method called
TaskAllocationAlgorithmicSolution() in the DatacenterBroker class of CloudSim.



Sensors 2019, 19, 1267 20 of 29

Figure 7. CloudSim User Interface.

The model was implemented by assigning each VM to different PMs of the same capacity and all
PMs were located in the same data centre. Subsequently, we simulated five jobs using HABBP, default
assignment strategy and the Simplex algorithm to assign cloudlets to VMs in CloudSim. Each job
had 20 cloudlets and they assigned them to heterogeneous VMs. Each cloudlet and VM had different
lengths and MIPS values respectively. We assumed that other parameters, such as file size, output size
values of all cloudlets, size, ram, bandwidth and pesNumber of all VMs, were constant, as shown in
Tables 11 and 12.

Table 11. A set of jobs.

job1 job2 job3 job4 job5
cloudletid (length) (length) (length) (length) (length)

0 20,000 30,000 150,000 40,000 200,000
1 60,000 50,000 80,000 20,000 80,000
2 90,000 110,000 130,000 80,000 160,000
3 40,000 10,000 90,000 30,000 20,000
4 120,000 70,000 10,000 10,000 40,000
5 200,000 20,000 40,000 90,000 90,000
6 70,000 80,000 120,000 110,000 120,000
7 80,000 40,000 60,000 60,000 10,000
8 50,000 160,000 20,000 150,000 130,000
9 10,000 90,000 70,000 200,000 100,000

10 150,000 350,000 45,000 75,000 5000
11 250,000 250,000 250,000 300,000 25,000
12 45,000 100,000 85,000 450,000 155,000
13 25,000 95,000 140,000 87,000 95,000
14 75,000 25,000 100,000 250,000 4000
15 30,000 85,000 35,000 50,000 110,000
16 300,000 180,000 130,000 100,000 210,000
17 55,000 35,000 75,000 130,000 55,000
18 65,000 15,000 95,000 95,000 85,000
19 85,000 9000 200,000 400,000 350,000



Sensors 2019, 19, 1267 21 of 29

Table 12. A set of VMs.

vmid mips value

0 1000
1 500
2 200
3 2000
4 250
5 100
6 50
7 125
8 150
9 400

10 1500
11 350
12 450
13 600
14 700
15 850
16 900
17 550
18 1200
19 300

The simulation results are presented in Tables 13 and 14, Figures 8 and 9, and plotted in Figures 10
and 11. In job 1, under the default assignment strategy, cloudlets were assigned to the VMs sequentially,
that is cloudlet0 to vm0, cloudlet1 to vm1, cloudlet2 to vm2, cloudlet3 to vm3, cloudlet4 to vm4, etc. On the
other hand, HABBP assigned cloudlets to VMs based on the operations in HABBP. For instance,
cloudlet0 is assigned to vm8, cloudlet1 to vm5, cloudlet2 to vm11, cloudlet3 to vm7, cloudlet4 to vm6, etc.
in job 4; see Figure 8.

Table 13. Default assignment strategy in CloudSim.

job1 job2 job3 job4 job5
cloudletid vmid proc. time vmid proc. time vmid proc. time vmid proc. time vmid proc. time

0 0 20 0 30 0 150 0 40 0 200
1 1 120 1 100 1 160 1 40 1 160
2 2 450 2 550 2 650 2 400 2 800
3 3 20 3 5 3 45 3 15 3 10
4 4 480 4 280 4 40 4 40 4 160
5 5 2000 5 200 5 400 5 900 5 900
6 6 1400 6 1600 6 2400 6 2200 6 2400
7 7 640 7 320 7 480 7 480 7 80
8 8 333 8 1066 8 133 8 1000 8 866
9 9 25 9 225 9 175 9 500 9 250
10 10 100 10 233 10 30 10 50 10 3
11 11 714 11 714 11 714 11 857 11 71
12 12 100 12 222 12 189 12 1000 12 344
13 13 42 13 158 13 233 13 145 13 158
14 14 107 14 36 14 143 14 357 14 6
15 15 35 15 100 15 41 15 59 15 129
16 16 333 16 200 16 144 16 111 16 233
17 17 100 17 64 17 136 17 236 17 100
18 18 54 18 13 18 79 18 79 18 71
19 19 283 19 30 19 667 19 1333 19 1167

total processing
time 7356 6147 7009 9842 8109



Sensors 2019, 19, 1267 22 of 29

Table 14. HABBP in CloudSim.

job1 job2 job3 job4 job5
cloudletid vmid proc. time vmid proc. time vmid proc. time vmid proc. time vmid proc. time

0 5 200 4 120 18 125 8 267 18 167
1 9 150 9 125 9 200 5 200 11 229
2 15 106 15 129 15 153 11 229 0 160
3 2 200 5 100 1 180 7 240 8 133
4 16 133 12 156 6 200 6 200 4 160
5 18 167 8 133 8 267 9 225 12 200
6 1 140 1 160 14 171 13 183 14 171
7 13 133 11 114 4 240 4 240 7 80
8 19 167 0 160 5 200 15 176 15 153
9 6 200 13 150 19 233 16 222 17 182
10 0 150 3 175 2 255 19 250 5 50
11 10 167 10 167 3 125 18 250 2 125
12 4 180 16 111 12 189 3 225 16 172
13 7 200 14 136 0 110 12 193 1 190
14 17 136 2 125 17 182 0 250 6 80
15 8 200 17 155 7 280 2 250 13 183
16 3 150 18 150 16 144 17 182 10 140
17 11 157 19 117 11 214 14 186 19 183
18 12 144 7 120 13 158 11 190 9 213
19 14 121 6 180 10 133 10 267 3 175

total processing
time 3201 2783 3759 4425 3146

Figure 8. Assigning cloudlets to VMs using HABBP.



Sensors 2019, 19, 1267 23 of 29

Figure 9. Assigning cloudlets to VMs using default assignment strategy.

(a) Job1 (b) Job2

(c) Job3 (d) Job4

(e) Job5 (f) HABBP vs. Default assignment strategy

Figure 10. Processing time of the cloudlets in Job 1, Job 2, Job 3, Job 4 and Job 5.



Sensors 2019, 19, 1267 24 of 29

Figure 11. Comparison of computational time.

In addition, we also compared the overall performance of HABBP with the default assignment
strategy and benchmarked both solutions against the Simplex algorithm in terms of the computational
time of cloudlets in each job and the total processing time of individual jobs. In Figure 10a–e, it can
be seen that some cloudlets took a slightly longer time to complete in HABBP than in the default
assignment strategy, while some other cloudlets took a significantly longer time to complete under
default assignment strategy than under HABBP. Figure 10f, however, where the total processing
time performance of different jobs for HABBP and default assignment strategy is presented, shows
that HABBP constantly outperformed the default assignment strategy. Take Job 2 as an example,
compared to the default assignment strategy, the total processing time for HABBP was reduced by
54.73% compared with that of the default assignment strategy. HABBP and the Simplex algorithm
produced the same optimal allocation cost. HABBP, however, outperformed the Simplex algorithm in
terms of computational time as shown in Table 15 and Figure 11.

Table 15. Comparison of computational time.

HABBP Default Assignment Strategy Simplex Algorithm

0.0157 0.0019 0.0198
0.0216 0.0182 0.0318
0.0178 0.0097 0.0290
0.0166 0.0042 0.0200
0.0174 0.0073 0.0256

7.2. Implementation of the Proposed GABVMP

In this section, the efficiency of the proposed GABVMP as discussed in Section 6 is evaluated.
For the simulation, the mininet module in python3 was used to model the tree topology of the PMs and
SWs interconnected in the datacenter. The network topology consisted of equal pairs of PMs and SWs.
Each PM-SW link in the network topology had a different capacity in terms of Mbps. The proposed
GABVMP and greedy heuristics (Random Placement and First Fit Placement) were implemented and
their behaviors were compared on the topology with different numbers of PMs and SWs.

Three experiments were carried out. In the first experiment, 5, 10, 15, 20, 25, 30, 35, 40 VMs were
placed on 5, 10, 15, 20, 25, 30, 35, 40 PMs interconnected with the same number of switches using
GABVMP with different values of α and β. In the second experiment, 5, 10, 15, 20, 25, 30, 35, 40 VMs
were placed on 5, 10, 15, 20, 25, 30, 35, 40 PMs interconnected with the same number of switches using
Random Placement with different values of α and β.



Sensors 2019, 19, 1267 25 of 29

In the last experiment, 5, 10, 15, 20, 25, 30, 35, 40 VMs were placed on 5, 10, 15, 20, 25, 30, 35,
40 PMs interconnected with the same number of switches using First Fit Placement with different
values of α and β.

Figure 12 shows the experimental results of total placement cost in terms of time to implement
the proposed GABVMP and the other two existing assignment methods in a data center network with
tree topology consisting of 5, 10, 15, 20, 25, 30, 35, 40 of PMs and SWs at different values of of α and
β. The GABVMP had a lower cost to place VMs on PMs than the Random Placement and First Fit
Placement. For instance, at α = 0.2 and β = 0.8, the Random Placement had a total placement cost
of 266 s and the First Fit Placement had a total placement cost of 205 s while GABVMP took a total
placement cost of 116 s to place five VMs on five PMs interconnected with five SWs. For α = 0.5 and
β = 0.5, the Random Placement had a total placement cost of 275 s and the First Fit Placement had a
total placement cost of 235 s while GABVMP took a total cost of 125 s to place five VMs on five PMs
interconnected with five SWs. For α = 0.8 and β = 0.2, the Random Placement had a total cost of 284 s
and the First Fit Placement had a total placement cost of 216 s while GABVMP took a total cost of 134 s
to place five VMs on five PMs interconnected with five SWs.

(a) α = 0.2, β = 0.8 (b) α = 0.5, β = 0.5

(c) α = 0.8, β = 0.2
Figure 12. GABVMP vs. Random Placement vs. First Fit Placement.

In addition, Figure 13 illustrates the impact of latency on the total assignment cost of the proposed
GABVMP. The higher the value of α which denotes the weight of latency, the higher the total placement
cost. For instance, when α = 0.2, the total placement cost was 1947 s, when α = 0.5, the total placement
cost was 1970 s and α = 0.8, the total placement cost was 1992 s to place 20 VMs into 20 PMs.

Finally, Figure 14 shows the plot for energy consumption vs. number of VMs. The value of Epeak
i

and Eidle
i was set to 300 J and 200 J respectively [28]. It is observed from the figure that, when the



Sensors 2019, 19, 1267 26 of 29

number of VMs was increased, the energy consumed by the used PMs was also increased. Energy
consumption in the proposed GABVMP, however, was lower than the Random Placement method.
This is because the number of PMs required to place a given number of VMs was less in GABVMP
than the Random Placement and First Fit Placement.

(a) Total cost for α and β values
(b) Relationship between latency cost, link cost and
total cost

Figure 13. GABVMP for α and β values.

Figure 14. Energy Consumption vs. Number of VMs.

8. Conclusions and Future Work

The level of Quality-of-Service in cloud computing is determined to a large extent by the
resource allocation strategy adopted. In this work, the issue of Quality-of-Service in cloud computing
environments has been revisited. Two solution models have been proposed. Firstly, the tasks-to-virtual
machines allocation problem as a linear-programming problem model was formulated and HABBP
was proposed, a load balancing policy for binding cloudlets to virtual machines. The simulation results
produced by the contributed code to the CloudSim simulation revealed the relative efficiency of the
newly proposed HABBP policy in solving and optimizing the virtual resources allocation problem in
the cloud computing environment. Secondly, the virtual machine placement problem was presented
and proposed a GABVMP as the solution for optimizing the model. The simulation results show
that the GABVMP performed better than the two greedy heuristics, Random Placement and First Fit
Placement, in terms of PM-SW links consumption which corresponds to the cost of placing VMs on
PMs in the data center.

In the near future, the proposed solutions will be used to optimize resource allocation in federated
lightweight cloud computing infrastructures targeting not only drought mitigation [33,34] in the
rural areas of Africa but also healthcare, following the framework proposed in [35,36]. For such



Sensors 2019, 19, 1267 27 of 29

deployments, the policy will be extended to account for traffic engineering characteristics of the
cloud computing network for both local traffic [37] and inter-Africa traffic [38] as these can have a
large impact on the access to the cloud nodes and thus influence the QoS provided by the cloud.
Using UAVs/drones in the context of 5G as proposed in [39] is another alternative for deployment.
The implementation of the newly proposed policy in a real and popular cloud computing management
platform, such as OpenStack, is another avenue for future work.

Author Contributions: Conceptualization, S.B.A. and A.B.; Methodology, S.B.A. and A.B.; Software, S.B.A.;
Writing—original draft preparation, S.B.A.; Supervision, A.B.; Writing—review and editing, A.B.

Funding: National Research Foundation: NRF FREESTANDING.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mell, P.; Grance, T. The NIST Definition of Cloud Computing; National Institute of Standards and Technology:
Gaithersburg, MD, USA, 2015. Available online: http://www.nist.gov/itl/cloud (accessed on 19
October 2015).

2. Rimal, B.P.; Choi, E.; Lumb, I. A taxonomy and survey of cloud computing systems. In Proceedings of the
Fifth International Joint Conference on INC, IMS and IDC, Seoul, Korea, 25–27 August 2009; pp. 44–51.

3. Assante, D.; Castro, M.; Hamburg, I.; Martin, S. The Use of Cloud Computing in SMEs. J. Inf. Technol. Manag.
2016, 83, 1207–1212. [CrossRef]

4. Zhang, Q.; Cheng, L.; Boutaba, R. Cloud computing: State-of-the-art and research challenges. J. Internet
Serv. Appl. 2010, 1, 7–18. [CrossRef]

5. Chaudhary, V.; Minsuk, C.; Walters, J.P.; Guercio, S.; Gallo, S. A Comparison of Virtualization Technologies
for HPC. In Proceedings of the 22nd International Conference on Advanced Information Networking and
Applications (AINA 2008), Okinawa, Japan, 25–28 March 2008; pp. 861–868.

6. Buyya, R.; Yeo, C.; Venugopal, S.; Broberg, J.; Brandic, I. Cloud computing and emerging IT platforms: Vision,
hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 2009, 25, 599–616.
[CrossRef]

7. Maguluri, S.T.; Srikant, R.; Ying, L. Stochastic models of load balancing and scheduling in cloud computing
clusters. In Proceedings of the IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 702–710.

8. Baker, T.; MacKay, M.; Randles, M.; Taleb-Bendiab, A. Intention-oriented programming support for runtime
adaptive autonomic cloud-based applications. Comput. Electr. Eng. 2013, 39, 2400–2412. [CrossRef]

9. Al-khafajiy, M.; Baker, T.; Waraich, A.; Al-Jumeily, D.; Hussain, A. IoT-Fog Optimal Workload via Fog
Offloading. In Proceedings of the 2018 IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion), Auckland, New Zealand, 2–5 December 2018.

10. Lin, C.T. Comparative based analysis of scheduling algorithms for RM in cloud computing environment.
Int. J. Comput. Sci. Eng. 2013, 1, 17–23.

11. Liu, Z.; Qu, W.; Liu, W.; Li, Z.; Xu, Y. Resource preprocessing and optimal task scheduling in cloud computing
environments. Concurr. Comput. Pract. Exp. 2014, 27, 3461–3482. [CrossRef]

12. Zhang, L.; Zhuang, Y.; Zhu, W. Constraint Programming Based Virtual Cloud Resources Allocation Model.
Int. J. Hybrid Inf. Technol. 2013, 6, 333–344. [CrossRef]

13. Dupont, C.; Giuliani, G.; Hermenier, F.; Schulze, T.; Somov, A. An energy aware framework for virtual
machine placement in cloud federated data centres. In Proceedings of the Future Energy Systems: Where
Energy, Computing and Communication Meet (e-Energy), Madrid, Spain, 9–11 May 2012; pp. 1–10.

14. Kanagavelu, R.; Bu-Sung, L.; DatLe, N.T.; NgMingjie, L.; MiAung, K.M. Virtual machine placement with
two-path traffic routing for reduced congestion in data center networks. J. Comput. Commun. 2014, 53, 1–12.
[CrossRef]

15. Li, X.; Qiana, Z.; Lu, S.; Wub, J. Energy efficient virtual machine placement algorithm with balanced and
improved resource utilization in a data center. J. Math. Comput. Model. 2013, 58, 1222–1235. [CrossRef]

16. Gao, Y.; Guan, H.; Qi, Z.; Hou, Y.; Liu, L. A multi-objective ant colony system algorithm for virtual machine
placement in cloud computing. J. Comput. Syst. Sci. 2013, 79, 1230–1242. [CrossRef]

http://www.nist.gov/itl/cloud
http://dx.doi.org/10.1016/j.procs.2016.04.250
http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.compeleceng.2013.04.019
http://dx.doi.org/10.1002/cpe.3204
http://dx.doi.org/10.14257/ijhit.2013.6.6.30
http://dx.doi.org/10.1016/j.comcom.2014.07.009
http://dx.doi.org/10.1016/j.mcm.2013.02.003
http://dx.doi.org/10.1016/j.jcss.2013.02.004


Sensors 2019, 19, 1267 28 of 29

17. Pascual, J.; Lorido-Botran, T.; Miguel-Alonso, J.; Lozano, J. Towards a greener cloud infrastructure
management using optimized placement policies. J. Grid Comput. 2014, 13, 375–389. [CrossRef]

18. Ebrahimirad, V.; Goudarzi, M.; Rajabi, A. Energy-aware scheduling for precedence-constrained parallel
virtual machines in virtualized data centers. J. Grid Comput. 2015, 13, 233–253. [CrossRef]

19. Georgiou, S.; Delis, K.T.A. Exploiting network-topology awareness for vm placement in iaas clouds.
In Proceedings of the 2013 International Conference on Cloud and Green Computing, Karlsruhe, Germany,
30 September–2 October 2013; pp. 151–158.

20. Meng, X.; Pappas, V.; Zhang, L. Improving the scalability of data center networks with traffic-aware virtual
machine placement. In Proceedings of the 2010 IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010;
pp. 1–9.

21. Breitgand, D.; Epstein, A.; Glikson, A.; Israel, A.; Raz, D. Network aware virtual machine and image
placement in a cloud. In Proceedings of the 9th International Conference on Network and Service
Management (CNSM 2013), Zurich, Switzerland, 14–18 October 2013; pp. 9–17.

22. Vakilinia, S.; Heidarpour, B.; Cheriet, M. Energy Efficient Resource Allocation in Cloud Computing
Environments. IEEE Access 2016, 4, 8544–8557. [CrossRef]

23. Mohamed, H.K.; Alkabani, Y.; Selmy, H. Energy Efficient Resource Management for Cloud Computing
Environment. In Proceedings of the 9th International Conference on Computer Engineering and Systems
(ICCES), Cairo, Egypt, 22–23 December 2014; Volume 1.

24. Kuhn, H.W. The Hungarian Method for the Assignment Problem. Nav. Res. Logist. Q. 1955, 2, 83–97.
[CrossRef]

25. Konig, D. Grafok es matrixok. matematikai es fizikai lapok. Matematikai Es Fizikai Lapok 1931, 38, 116–119.
26. Dantzig, G.B. Programming in a Linear Structure; USAF: Washington, DC, USA, 1948.
27. Dantzig, G.B. Linear Programming and Extensions; Princeton University Press: Princeton, NJ, USA, 2016;

Volume 4.
28. Lee, Y.; Zomaya, A. Energy efficient utilization of resources in cloud computing systems. J. Supercomput.

2012, 60, 268–280. [CrossRef]
29. Holland, J. The Grid: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to

Biology, Control, and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975.
30. Su, F.; Zhu, F.; Yin, Z.; Yao, H.; Wang, Q.; Dong, W. New Crossover Operator of Genetic Algorithms for the

TSP. In Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization,
Sanya, China, 24–26 April 2009; Volume 1, pp. 666–669. [CrossRef]

31. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.F.; Buyya, R. CloudSim: A toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Softw. Pract. Exp. 2011, 41, 23–50. [CrossRef]

32. Garg, S.K.; Buyya, R. NetworkCloudSim: Modelling parallel applications in cloud simulations.
In Proceedings of the Fourth IEEE International Conference on Utility and Cloud Computing (UCC),
Victoria, Australia, 5–8 December 2011; pp. 105–113.

33. Masinde, M.; Bagula, A. A framework for predicting droughts in developing countries using sensor networks
and mobile phones. In Proceedings of the 2010 Conference of the South African Institute of Computer
Scientists and Information Technologists, Bela Bela, South Africa, 11–13 October 2010; pp. 390–399.

34. Masinde, M.; Bagula, A.; Muthama, T.N. The role of ICTs in downscaling and upscaling integrated weather
forecasts for farmers in sub-Saharan Africa. In Proceedings of the Fifth International Conference on
Information and Communication Technologies and Development, Atlanta, GA, USA, 12–15 March 2012;
pp. 122–129.

35. Bagula, A.; Mandava, M.; Bagula, H. A Framework for Supporting Healthcare in Rural and Isolated Areas.
Elsevier J. Netw. Commun. Appl. 2018. [CrossRef]

36. Bagula, A.; Lubamba, C.; Mandava, M.; Bagula, H.; Zennaro, M.; Pietrosemoli, E. Cloud Based Patient
Prioritization as Service in Public Health Care. In Proceedings of the ITU Kaleidoscope 2016, Bangkok,
Thailand, 14–16 November 2016.

37. Bagula, A. Hybrid Traffic Engineering: The Least Path Interference Algorithm. In Proceedings of the SAICSIT
2004, Cape Town, South Africa, 4–6 October 2004; pp. 89–96.

http://dx.doi.org/10.1007/s10723-014-9312-9
http://dx.doi.org/10.1007/s10723-015-9327-x
http://dx.doi.org/10.1109/ACCESS.2016.2633558
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1007/s11227-010-0421-3
http://dx.doi.org/10.1109/CSO.2009.422
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1016/j.jnca.2018.06.010


Sensors 2019, 19, 1267 29 of 29

38. Chavula, J.; Suleman, H.; Bagula, A. Quantifying the Effects of Circuitous Routes on the Latency
of Intra-Africa Internet Traffic: A Study of Research and Education Networks. In Proceedings of the
e-Infrastructure and e-Services for Developing Countries, Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering; Springer: Cham, Switzerland, 2014; Volume 147,
pp. 64–73.

39. Chiaraviglio, L.; Blefari-Melazzi, N.; Liu, W.; Gutiérrez, J.A.; van de Beek, J.; Birke, R.; Chen, L.; Idzikowski, F.;
Kilper, D.; Monti, P.; et al. Bringing 5g into rural and low-income areas: Is it feasible? IEEE Commun.
Stand. Mag. 2017, 1, 50–57. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MCOMSTD.2017.1700023
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Cloud/Fog Computing Resource Management Framework
	Contributions
	Paper Organization

	Related Work
	Task Allocation Problem Model
	Task Allocation Algorithmic Solution
	Notation and Preliminaries
	Procedures of the Algorithm
	Illustration

	Virtual Machine Placement Problem
	Parameters
	Assumptions
	The Mathematical Model

	Virtual Machine Placement Algorithmic Solution
	Genetic Algorithm Based Virtual Machine Placement
	Initialization
	Fitness Evaluation
	Generating the Next Population
	Selection Process
	Crossover Operator
	Mutation Operator
	Replacement
	Stopping Criterion


	Experimental Results
	 Implementation of the Proposed HABBP
	Implementation of the Proposed GABVMP

	Conclusions and Future Work
	References

