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Abstract: Machine learning (ML) has been utilized to predict climatic parameters, and many successes
have been reported in the literature. In this paper, we scrutinize the effectiveness of five widely
used ML algorithms in the monthly prediction of seasonal climatic parameters using monthly image
data. Specifically, we quantify the predictive performance of these algorithms applied to five climatic
parameters using various combinations of features. We compare the predictive accuracy of the
resulting trained ML models to that of basic statistical estimators that are computed directly from the
training data. Our results show that ML never significantly outperforms the statistical baseline, and
underperforms for most feature sets. Unlike previous similar studies, we provide error bars for the
relative performance of different predictors based on jackknife estimates applied to differences in
predictive error magnitudes. We also show that the practice of shuffling data sequences which was
employed in some previous references leads to data leakage, resulting in over-estimated performance.
Ultimately, the paper demonstrates the importance of using well-grounded statistical techniques
when producing and analyzing the results of ML predictive models.

Keywords: geophysical image data; high-dimensional data analysis; prediction; statistical modeling;
baselining; evaluation; data leakage; seasonality; uncertainty quantification; jackknife

1. Introduction

Recent advances in computing have shifted the focus of scientific communities from
a data-scarce to a data-rich research environment [1]. This paradigm shift, known as
the fourth paradigm of science, and often referred to as the era of “big data” [2], has
emerged from the move of big data and AI into our daily lives and the pervasiveness of
these two technologies, which are (i) leading to an explosion in innovation, competition,
and productivity [3], (ii) causing a dramatic shift to data-driven research [4], and (iii)
unleashing the benefits of data-intensive applications.

Climate science is a research field where data-driven models based on machine learn-
ing (ML) have become popular [5]. A major focus of climate science is the understanding
and prediction of climate parameters such as rainfall and temperature [6] and many others.
For many practical climate-influenced decisions where prediction times of months to a
decade are likely to be the most important [7], providing accurate models to predict cli-
matic parameters on these time scales is critical. The remarkable successes of ML and deep
learning in a variety of fields such as computer vision and natural language processing
suggests that this success may be extended to climate science as well.

However, there is a concern regarding how effective and legitimate these ML models
are to address real world applications in climate science. This is reason for enthusiasm,
but also for skepticism, as it is all too common to make excessive claims for new techniques,
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which turn out not to live up to their initial promise, as exemplified by Gartner’s hype
cycle model [8]. There are already several examples in the literature that show that ML
does not always live up to its hype. A recent overview study reviewed several papers
that used recurrent neural networks for top-n recommendation tasks, and found that a
simple model using K-nearest neighbors outperformed most of the more sophisticated
models [9]. One major deficiency identified by the study was the use of defective or weak
baselines when quantifying the performance of newer proposed models. Other papers that
also reached the conclusion that sophisticated ML models do not necessarily outperform
simpler models include [10–13].

One key feature of ML methods is that they make no assumptions about the underlying
distribution of inputs. This can be both an advantage and a disadvantage. The advantage
is that ML methods can be applied to a wide variety of datasets without having detailed
knowledge of the statistics of the individual datasets. The disadvantage is that ML may
miss important characteristics of particular datasets. For this reason, if the user has
some knowledge of the dataset’s distribution, it is important to compare ML predictors
with statistical estimates based on the presumed distribution. Such statistical estimates
have the advantage that they are simple to calculate, require no training, and are easy to
interpret [14].

One deep flaw in most papers in the literature is that accuracy estimates for ML
methods are given (such as R2 or root mean squared error) without providing error bars on
these estimates. Hence, it is impossible to tell whether or not differences between methods
are statistically significant. This may be one reason why different investigators often reach
different conclusions about the relative effectiveness of different ML methods. For example,
Armstrong et al. [15] concluded from an analysis in the context of ad hoc retrieval tasks
that numerous published papers report mutually contradictory conclusions concerning
ML model performance.

Another concern is that some common pre-processing practices produce data leakage,
so that ML algorithm accuracies are over-reported. Some examples of such practices are:
data shuffling, whereby researchers randomly shuffle the data [11,16–23]; data imputation
methods that use statistics (such as averaging) calculated on the entire data set, including
both training and testing [24–26]; and data transformations such as de-seasonalization that
also use statistics calculated on the whole dataset [27,28].

It is necessary to investigate the robustness of ML models in different fields of applica-
tion. The current study is aimed at investigating the above mentioned deficiencies in the
area of climatic seasonal parameters. This paper is organized as follows: Section 3 describes
the data used; Section 4 discusses the methodology used for climatic parameter prediction;
Section 5 shows the results obtained; Section 6 discusses the results; and Section 7 furnishes
the conclusions.

2. Literature Review and Scope of the Research

ML is widely used in climatology to construct predictive models based on sequential
data [11]. A variety of types of input data are used, including satellite images or periodic
samples from gauges or weather stations.

The studies in the literature can be largely divided into two categories in terms
of the predicted output: those that predict one or more entire images which provide a
visual representation of a given predicted climate parameter on spatial maps of a specific
geographical area under review (“whole-image prediction”); and those that predict only a
single output representing a given predicted climate parameter at a fixed location (“single-
output prediction”).

For whole-image prediction based on sequential images, convolutional neural net-
works (CNNs) and convolutional long-short term models (ConvLSTMs) are often used
due to their ability to perform feature reduction on spatial information. However these
models require very large datasets with tens of thousands of images, due the data-intensive
training process. For this reason, CNNs and ConvLSTMs are mainly applied to data sets
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with short time intervals of no more than a few minutes between data points, which are
typically much larger than data sets with longer time intervals [29–40]. For single-output
prediction, a wider range of ML tools and time frames have been used, from linear methods
in [17,21,41,42], to ensemble methods in [43–45], to hybrid methods in [28,46–48], to deep
models in [49–56] covering time scales from minutes to years.

From a practical point of view, usually the most important policy decisions involving
climate require monthly predictions [7]. Relatively few studies exist which use image data
to make monthly predictions [57,58]. When time scales on the order of months or longer
are involved, datasets are typically much smaller than those involving shorter time scales.
A broad range of ML methods are applied, from simple methods like multilinear regres-
sion (MLR) up to advanced neural networks models [13,16–18,20,21,24,25,46,47,49,59–62].
Because of the small data sets used, researchers often perform feature selection/reduction
to avoid overfitting. Most often, the selected features in the literature are combinations of
features derived from previous time steps in the data, for example, a parameter at month
n may be predicted based one or more parameter values taken from months previous
to n [25–27,46,63].

Because of the rotation of the earth around the sun, monthly time series data like
rainfall exhibit a seasonal behavior on a yearly basis (exhibit a yearly periodicity) [64,65].
This is critical to address because traditional time series models tends to rely on the
time series being stationary [64,66]. Hence, the authors in [64] saw it as necessary to
remove the periodicity in a monthly time series data. They described three ways of
going about this: (a) previous lag differencing, (b) seasonal referencing; and (c) monthly
mean subtraction, where (c) was identified as the most suitable method for monthly time
series data. However, we found that many papers dealing with monthly prediction of
climate parameters did not transform the input data to remove seasonality. Some papers
accommodate seasonality by including data from month n− 12 to predict parameters at
month n [13,17,19,20,24,25,27,28,44,49,51,58,60,62,67]. Month n’s time stamp (defined as
n mod 12) was used as a feature in [19,49], but is not common in the literature.

In a few papers, the authors subtracted the monthly mean averages computed from
the whole data set [25,28], with the inclusion of data from month n− 12. This procedure
disrupts the integrity of the data by causing data leakage, whereby information from the
testing set is introduced into the training set. Other papers make no attempt to account for
seasonality [18,22,23,46,48,61,68,69]. Evidently, there is no consistent procedure for dealing
with the seasonality aspect of the data; this is one point that we address in this paper.

In the previous section we emphasized the importance of using simple baselines
to provide benchmarks to compare with more complicated methods. According to [66],
the simplest baseline for predicting time series is to use the previous lag. For short-term
image data, the previous image is used as a naive predictor for the next image [36,37,40,70].
As for monthly data, using previous lags as a baseline is not a common practice. Instead,
a variety of baselines are used. Some papers use MLR based on previous lags [13,16,17,25],
while the authors in [45] used same-month averages. Some papers do not use simple base-
lines, but rather compare several variations or architectures of more advanced ML methods
such as SVR or MLP [26,27,46,63]. In summary, simple baselines are not consistently used
in the literature.

The Objectives of the paper are as follows: (a) perform seasonal grid prediction on
multiple climatic parameters; (b) investigate multiple untrained baselines, and in particular
using a statistical estimator derived from a simple statistical model of the image pixel
distributions; (c) analyze the effectiveness of subtracting the seasonality using the monthly
average calculated only on the training data; (d) investigate the common feature sets used
in the literature; (e) calculate error bars on the relative prediction accuracies of different
methods using jackknife estimation applied to pairwise differences between prediction
errors; and (f) demonstrating the effect of data leakage on the reported performance.

Our results show that across all climatic parameters studied, a very limited feature set
(time stamp with spatial information) without seasonal subtraction outperforms feature sets
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that use previous lags, with or without seasonal subtraction. Furthermore, an untrained
baseline based on a simple statistical model can out perform more sophisticated ML tools.
Furthermore, handling data inappropriately so that data leakage occurs (as has been done
in some previous papers) can lead to significant overestimation of predictive performance.

3. Data and Area of Interest

The climatic data were obtained from the NASA GESDISC data archive, which is
accessible to users registered with NASA Earthdata [71]. The dataset used is obtained
from the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation
System (FLDAS). FLDAS contains monthly image data for 28 fields such as rainfall flux,
evaporation, and temperature [72] with a spatial resolution of 0.1◦ × 0.1◦. The data are
archived in netCDF format, where it can be manipulated and displayed using freely
available software packages within python and R. NASA also supplies a cross-platform
application called Panoply that can be used to plot the data [71].

The downloaded data set for each parameter used contains 228 satellite frames on a
monthly basis, between January 1982 and December 2000. Images depict the entire globe
at a resolution of 1500× 3600 pixels. Figure 1 shows a sample image of rainfall. In general,
the images are color coded to provide information about the relevant parameter. In the
current study, the climatic parameters used are rainfall, evaporation, humidity, temperature,
and wind speed.

Figure 1. A sample full image of the rainfall dataset used in this research [72]. Color scale indicates
normalized rainfall intensities.

To limit the computational load, we focused our prediction on Madagascar. Mada-
gascar is the world’s fourth largest island with an area of about 592,000 km2 [73], and is
separated from Mozambique on the main African continent by about 400 km [73]. The cli-
mate on the island is subtropical and is characterized by a dry season from May to October
and rainy season from November to April [74,75]. Table 1 summarizes the characteristics
of the Madagascar image data used in our study, which was extracted from the original
FLDAS data.
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Table 1. Properties of Madagascar image data (extracted from FLDAS dataset).

Property Value
Latitude Extent 12◦–26◦ S

Longitude Extent 43◦–51◦ E

Spatial Resolution 0.1◦ × 0.1◦

Temporal Resolution Monthly

Temporal Coverage January 1982 to December 2000

Dimension (lat × lon) 140× 80

Madagascar is currently facing several challenges due to the potential impact of climate
change on the agricultural sector, which can threaten food security [76–79], especially since
farmers in the country are estimated to be 70% of the population [74]. Example images
of the five climatic parameters used at a specific arbitrary timestamp are provided in
Figure 2. The figure shows normalized values of five climatic parameters, namely rainfall,
evaporation, humidity, temperature, and wind.

Figure 2. Images showing normalized values of five climatic parameters of Madagascar used in this
study (left to right): rainfall (Rain), evaporation (Evap), humidity (Humid), temperature (Temp),
and wind.

4. Methodology

Figure 3 shows a flowchart of the system created and used to make predictions in
this research. The end goal of the system is to predict monthly rainfall, evaporation,
humidity, temperature, and wind speed images on a pixel level, using a sequence of
previous images as an input. The rest of this section describes the progression through
the flowchart in the figure in detail: first we discuss the pre-processing of the images
and the preparation of the data set; then we describe feature selection; and finally, we
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indicate the tools used. The code together with the results are available on GitHub at
https://github.com/EslamHussein55/Climatic-parameters (accessed on 16 April 2021).

Figure 3. Flowchart showing the implementation process.

4.1. Image Pre-Processing

All images in the parameter datasets were cropped to a rectangle of size 140× 80
that includes the Madagascar land area. We transformed the image pixels to greyscale
(0–255) and re-sized the images to 70× 40 to further reduce their complexity. In view
of the fact that extreme values are a common occurrence in geophysical parameter data,
pixel values were regularized by replacing them with their square roots, following the
example of [57,80,81]. Since our study is concerned with relative performance of different
algorithms rather than absolute performance, for simplicity we did not remove over-ocean
pixels, which are constant in all images and hence perfectly predicted.

We mentioned previously that some authors recommend transforming time series data
to remove seasonality, while many authors do not follow this recommendation. To evaluate
the effectiveness of transforming time series, we created two input data sets (denoted as
‘raw’ and ‘de-seasonalized’) for each of the five parameters. The raw dataset contains the
original data, while the de-seasonalized data is transformed by subtracting same-month
averages. Care was taken to compute monthly averages based only on the training data
to prevent data leakage. For illustrative purposes, Figure 4 shows example raw and
de-seasonalized images for rainfall.

Figure 4. Pre-processed rainfall images (compare first image in Figure 2): raw image (left) and
de-seasonalized image (right).

https://github.com/EslamHussein55/Climatic-parameters
https://github.com/EslamHussein55/Climatic-parameters
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4.2. Data Preparation

We prepared the data in a sliding window fashion, similar to the following
studies [35,82–85]. Figure 5 shows how pixels at a given location in a 12 month win-
dow are used to predict the corresponding pixel at the same location in the 13th month.
In the figure, the symbols {f[0], . . . , f[11]} refer, respectively, to the frames {12, . . . , 1}
months prior to the predicted frame, respectively.

Figure 5. Overview of dataset preparation: Notation for same-pixel features used in image prediction.

As shown in Figure 5, the datasets were used to produce sequences consisting of 12
consecutive months. All datasets were divided into training and testing sets, where the
training set was made up of sequences occurring earlier in the dataset, and the testing set
made up of sequences that followed those in the training set. This technique of maintaining
chronological order when dividing the datasets into training and testing sets helps avoid
the problem of information leakage into the trained model from the future [66]. Applying
the sliding window generated 216 sequences with the first 156 used for training, and the
rest as testing. Although the number of images appears relatively small, the training task is
nonetheless computationally expensive since the training process utilizes 156× 70× 40
input vectors. This explains why previous similar studies also use relatively few images;
for example [86] trains on only 47 images.

4.3. Feature Selection

Feature selection is critical to increasing training efficiency and model accuracy. Based
on the reviewed literature for monthly prediction, we tested a variety of feature sets to
understand the system mechanism. We also added in features systematically and assessed
whether or not added features gave clearly better performances to ensure model parsimony
and avoid overfitting [87]. The feature sets are described in the following subsections.

We first created a list of 12 candidate features for image prediction consisting of
pixel values at the same location for the 12 prior months. To select a variety of these
features, we prepared the data using the sliding window algorithm, where each 12-month
window was used to predict the 13th month. Based on previous literature [13,17–20,22–
28,44–49,58,59,61,62,67–69,88], we included the following feature sets:

• f[0]: same-pixel values from frames 12 months previous;
• f[11]: same-pixel values from the previous month;
• f[0, 11]: same-pixel values from 12 months previous and the previous month;
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• f[0, 1, 2, 11]: same-pixel values from {12, 11, 10} months previous and the
previous month;

• f[0, 1, 10, 11]: same-pixel values from {12, 11} months previous and the previous
two months.

Given the geographical variation and seasonal nature of the dataset used, the following
spatio-temporal features are also used in this study:

• The (i, j) coordinates of the pixel of interest;
• Monthly time stamp t ∈ {0, . . . , 11} where {0 = January, . . . , 11 = December}.

The five past-pixel feature sets and the two spatio-temporal features were combined
to form the following feature set variants:

• Past-pixel features only (five variants, as listed above);
• (i, j) feature set only;
• (i, j, t) feature set only;
• Past-pixel features (five variants) plus (i, j, t).

These 12 feature set variants were applied to both the raw and de-seasonalized train-
ing data.

4.4. Tools and Evaluation Methods
4.4.1. Machine Learning Algorithms

A total of five ML techniques are used for image prediction: (a) multivariate linear re-
gression (MLR); (b) k-nearest neighbor (KNN); (c) random forest (RF); (d) extreme gradient
boosting (XGB); (e) multilayer perceptron (MLP). Since the training set consisted of less
than 200 sequences, we did not use deep learning, which typically requires much larger
training sets [89–92]. For all ML tools except for MLR, parameters were optimized via grid
search with three fold validation, using the time series cross-validator implemented in
scikit-learn [93]. The purpose of cross-validation is to avoid overfitting by making sure
that the model is not overly dependent on the particular training data used to construct
the model. Additionally, for MLP, a regularization parameter was used as an additional
measure to counteract overfitting. Grid search optimizations to optimize ML parameters
were performed separately for each feature set applied to each climatic parameter used on
the raw data and separately again on the de-seasonalized data. All optimized parameters
for all ML tools can be found in the GitHub link provided above.

Altogether, a total of (5 climate parameters × 2 data variants (raw/de-seasonalized)
× 12 feature set variants × 5 ML tools) = 600 optimization experiments were performed.

4.4.2. Performance Metrics

One commonly used measure of the accuracy of a predictor’s error is the mean abso-
lute error (MAE). The MAE is calculated as the mean of the absolute values of prediction
errors for all predicted pixel values:

MAE =
1
M

M

∑
m=1
|yobs

m − ypre
m | (1)

where M is the number of observations, and yobs
m and ypre

m refer to the observed and
predicted value of the mth output, respectively.

There is a long-running debate over whether or not MAE is superior to root mean
squared error (RMSE) in geophysical studies [94–97]. It is generally acknowledged that
MAE is more robust, since it puts less weight on outliers. In view of the number of
comparisons made in the current research, we settled on MAE as our principal measure of
forecasting error, rather than reporting both MAE and RMSE.

In order to obtain error bars for differences between estimated MAE values for dif-
ferent ML estimates, we used the jackknife variance estimator [98]. The jackknife was
implemented by obtaining M− 1 different MAE values by omitting successively the first,
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second, third, . . . image in the testing set. It is important to note that entire images were
omitted and not single pixels, because pixel errors in the images are highly correlated: a
jackknife estimator based on omitting single pixels will greatly underestimate the variance.
Since we are interested in relative performance of the ML method compared to a selected
baseline, we applied jackknife to the difference between the MAEs for the ML estimate and
the baseline. This is another critically important point, because the variance for the MAE
for individual ML methods is much larger than the variance of difference between ML and
baseline MAEs because the MAEs for ML and baseline are highly correlated. A pseudocode
for the procedure is given in Algorithm 1.

Algorithm 1 Computation of MAE for the difference between baseline and ML algorithms.
di f f _tot = totalMAE(ML_estimate)− totalMAE(baseline_estimate)
var_est = 0
for m in range(M) do

omit image m from list of M images
di f f = MAE(ML_estimate)−MAE(baseline_estimate) . for the reduced list of images
var_est = var_est + (di f f − di f f _tot)2

end for
var_est = (M− 1)/M× var_est
std_est = sqrt(var_est)

4.4.3. Baselines and Statistical Estimators

For this study, we employed four different untrained predictors as baselines: (1)
previous month (denoted ‘base-11’); (2) same month previous year (denoted ‘base-0’);
and (3) average of all training set images for the same month (referred to as ‘seasonal
baseline’ or ‘base-Se’); (4) the squared mean square root for training set images of the same
month, rounded down to the nearest integer (denoted as ‘base-Se(sqrt)’). When evaluating
the effectiveness of different ML algorithms in parameter prediction, we compared these
baselines against the trained ML models.

The first three baselines have precedents in the literature. The authors in [66] suggested
the use of base-1) as the simplest baseline. Base-0 is suggested by the seasonality of the
data. As for base-Se, the authors in [45] implemented the use of the monthly averages as
a baseline.

The final baseline is justified by an inferred statistical model of the image pixel distri-
butions, which is motivated as follows. It is clear that the distribution of seasonal climatic
parameters for any pixel (i, j, n) must depend on the location (i, j) and the time stamp
t = mod (n, 12). It is also clear that neighboring pixels at the same month index n are
correlated. Allowing for these correlations, we posit the simplest possible statistical model
for the pixel distributions: namely, that all pixels at month n are statistically independent
of all pixels at month n′ as long as n′ 6= n; and further, that the probability distribution for
the pixel value (i, j, n) depends only on the values of (i, j, t).

Given this assumed model for the pixel distributions, we may design an estimator
for future pixel values as follows. It is a well-known result in theoretical statistics that the
true median of the distribution of a random variable minimizes the expected MAE of a
random sample. For a nearly symmetric distribution, the median is approximately equal to
the mean. To reduce the influence of high outliers and make the distribution more nearly
symmetric, we first take the square root of the data before taking the mean: the result will
approximate the median of the square-rooted data, which is equal to the square root of the
median of the original data. Consequently, the median may be estimated as the square of
the mean of the square-rooted data, which is rounded down to reduce the bias produced
by high outliers.
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5. Results

In this section, we first present performance results for the different predictors, in-
cluding baselines and ML methods with and without deseasonalization. Then we give
error bars on the relative performance of predictors compared to the base-Se(sqrt) baseline
prediction. Finally, we describe the effect of data shuffling on predictor accuracy estimates.

In the following discussion, the data is presented graphically for brevity. Data in
tabular format is available at https://github.com/EslamHussein55/Climatic-parameters
(accessed on 16 April 2021).

5.1. Performance Comparisons for Different Baselines, Feature Sets, and Preprocessing Methods

Figure 6 gives residual plots and R2 values for the three baselines base-11, base-0, and
base-Se(sqrt) for the five climatic parameters (base-Se is not shown, but strongly resembles
base-Se(sqrt)). As seen in the figure, Base-Se(sqrt) gives the most accurate estimations
across all parameters (predictions lie closer to the 45◦ line), as well as giving larger R2

values. Indeed, the R2 performance for base-Se(sqrt) is almost perfect, with all values
over 0.96.

Figure 6. Residual plots and R2 values for three proposed baselines on five different parameters. The scatter plots show
5000 randomly-selected point for each baseline, for each parameter.

Figures 7–11 summarize the MAE results for models trained using different feature sets
for each of the climatic parameters. The corresponding RMSE values were also generated,
but since they closely resemble the MAE results, they are omitted here. Each figure contains

https://github.com/EslamHussein55/Climatic-parameters
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two line graphs for raw and de-seasonalized data sets, respectively. For the raw data,
the [i,j] feature set performed very badly, so we omitted these results from the figures to
avoid stretching the vertical scale. In addition, the base-11 baseline was above the vertical
scale for all parameters except rainfall, and is not shown.

Figure 7. MAE for rainfall predictions with different feature sets, for raw and de-seasonalized data sets.

Figure 8. MAE for evaporation predictions with different feature sets, for raw and de-seasonalized data sets.

Figure 9. MAE for humidity predictions with different feature sets, for raw and de-seasonalized data sets.
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Figure 10. MAE for temperature predictions with different feature sets, for raw and de-seasonalized data sets.

Figure 11. MAE for wind predictions with different feature sets, for raw and de-seasonalized data sets.

Of the four baselines, base-Se(sqrt) is always the best, followed by base-Se, base-0, and
base-11, in that order. In fact, Base-Se(sqrt) is also better than all ML tools for all parameters
and feature sets, except evaporation for a few feature sets.

Next, comparison between raw-based and de-seasonalized-based predictions shows
that de-seasonalizing tends to stabilize the performance, so that it is less dependent on
the feature set used. If the feature set contains [0], then de-seasonalizing makes little
difference. De-seasonalizing does not always improve the feature sets’ performances,
as will be discussed in more detail below.

A comparison of feature sets shows that the feature sets [i,j,t],[11,i,j,t], and [0,11,i,j,t] are
consistently the best performers, both for raw-based and de-seasonalized-based predictions.
In our detailed performance analysis below, we focus on these three feature sets.

It is significant that the above observations apply consistently to all five parameters,
which suggests that the same observations can generalize to other climatic parameters.

5.2. Detailed Comparison of ML Tools and Feature Sets

Figures 12 and 13 show the percentage error reductions for different ML algorithms
for the 5 climatic parameters, using raw and de-seasonalized data, respectively. Only the
three best feature sets are represented, namely i,j,t, [11]+i,j,t, and [0,11]+i,j,t. In the figures,
the 100% level corresponds to the Base-Se(sqrt) MAE error: so, for example, the MLR value
of 120% for rain (raw) with feature set [0,11] + i,j,t indicates that the MAE error for MLR
is 1.2 times the corresponding Base-Se(sqrt) error. Error bars in the figures correspond to
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±2 standard deviations, and were computed using the jackknife procedure described in
Section 4.4.2, using the different ML methods and the Base-Se(sqrt) baseline.

Figure 12. MAE of all trained models with features [i,j,t, i,j,t+[11], i,j,t+[0,11]], compared to base-Se(sqrt) on the raw climate
datasets. On the vertical scales, 100 corresponds to the MAE for the base-Se(sqrt) estimator.

Figure 13. MAE of all trained models with features [i,j,t, i,j,t+[11], i,j,t+[0,11]], compared to base-Se(sqrt) on the de-
seasonalized climate datasets. On the vertical scales, 100 corresponds to the MAE for the base-Se(sqrt) estimator.
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For raw-based predictions, Figure 12 shows that the KNN, XGB, and RF algorithms
typically attain between 100 and 110% of base-Se(sqrt) across all parameters, while MLR
and MLP exceed 125% in several cases. For evaporation with the [11]+i,j,t feature set
and for wind with the i,j,t feature set, the KNN XGB and RF algorithms are slightly
better than base-Se(sqrt), but the error bars show that this relative improvement is not
statistically significant.

For deseasonalized-based predictions, the accuracy of XGB and RF is nearly the same
as for raw-based, but KNN performance is degraded by up to 10%. The errors for MLR
and MLP are reduced to below 115%, but still tend to be 5–10% higher than errors for XGB
and RF.

For all parameters except evaporation, the ML methods of KNN, XGB, and RF applied
to the feature set i,j,t give the best performance on both raw and de-seasonalized data.
This implies that (surprisingly) including lag-based features actually worsens prediction
accuracy for these parameters. It is also surprising that the most and least sophisticated
methods (MLR and MLP) have similar (and sub-optimal) performance in most cases.

5.3. Data Shuffling

In Section 1, we mentioned that several references shuffle the image sequences. In
order to gauge the effects of this shuffling, we used RF with features set [11]+i,j,t to predict
all climatic parameters with both shuffled and unshuffled data. For both shuffled and
unshuffled data, 156 of the 216 total 12-month sequences were used for training and the rest
for testing. The unshuffled data used the first 156 sequences for training and rest for testing,
as described in Section 4.2, while the shuffled data took 156 sequences randomly from the
entire dataset, thus producing overlap between training and testing sequences. Results
showed that MAE obtained from shuffled data was 2-10% lower than from unshuffled data,
due to data leakage.

6. Discussion

The results demonstrate that when doing seasonal parameter prediction on monthly
time scales, it is important to use a well-motivated simple baseline, e.g., a statistical
estimator computed from the source data. This finding is consistent with the points made
in [9]. Baselines that depend on lags do not perform as well. Furthermore, a simple
same-month average baseline which does not take into account the statistical properties of
MAE cannot match the performance of baseline that is designed to estimate median values,
which in theory will minimize MAE. For the seasonal parameters we tested, a carefully
designed statistical estimator outperforms even highly sophisticated ML models. This
finding raises concerns about positive results reported in previous papers that fail to supply
statistical baselines.

The results also show that care must be taken in selecting seasonal features as inputs.
In the literature, same month previous year (corresponding to our feature [0]) is com-
monly used [13,17,19,20,24,25,27,28,44,49,51,58,60,62,67]. However, we found that using
[0] scarcely outperforms base-0, and is much worse than base-Se(sqrt). Indeed, we found
that time stamp t (where t runs from 0 to 11) gave much better results, although it is rarely
used in the literature. In addition, using both features typically gave worse performance
than using t only.

Aside from using seasonal features, another way to account for seasonality is to
de-seasonalize the input data by subtracting monthly averages. The results show that
de-seasonalization tends to reduce model complexity: for example, when data is de-
seasonalized, then feature [0] becomes unnecessary. However, whether or not
de-seasonalization lowers the error depends which algorithm and which features set
is used. For example, the best-performing feature-algorithm combinations in our study
used i,j,t with RF, or XGB, and for these combinations de-seasonalization of inputs made
no difference. We conclude that appropriate feature and algorithm selection has more of an
effect on performance than de-seasonalization.
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A study similar to ours may be found in [45], in which base-Se is used to standardize
the performance of different ML models in predicting 1–6 months ahead rainfall using past
rainfall, temperature, and climate index. Compared to base-Se, the following ML algo-
rithms had worse performance: MLR, RF, support vector machine (SVM), artificial neural
network (ANN), long short term memory neural networks (LSTM), and convolutional
LSTM (ConvLSTM). It follows that including additional climatic parameters as features
and doing joint prediction may yield no benefits. Only when the authors used wavelets
during pre-processing did their accuracy improve. Even with wavelets, the basic MLR
model gave results that nearly matched a sophisticated LSTM model (no error bars for the
difference are given, so it is impossible to tell whether there is a significant difference).

For the climatic parameters that were examined in this paper, using previous month
(denoted as feature [11]) was not effective, and could even degrade predictive performance
when added. However, this conclusion is not applicable to other parameters such as
groundwater [7,57], which involves conditions that last over multiple months. The slight
improvements seen when adding [11] to evaporation may be due to this effect.

Unlike most prior research in this area, we established the significance of differences
in predictive performance between ML methods using error bars that were calculated
using statistically rigorous jackknife estimates. The error bars for differences between MAE
values for different estimation methods were much smaller than error bars on the MAE
values themselves (such as those calculated in [45]). The jackknife methods employed are
quite general, and can be used for other ML applications.

Finally, we established that images used for training and testing must be strictly
separated and timed. Shuffling of image sequences, which has been employed in some prior
research, leads to data leakage, which produces artificial reductions of prediction errors.

7. Conclusions

In this paper, we studied the application of machine learning to the prediction of
seasonal climatic parameters on a monthly basis. Our conclusions may be briefly summa-
rized as follows. First, a well-thought out baseline based on a simple statistical estimator
will often outperform all ML models. Hence, studies of ML prediction algorithms that do
not provide a baseline comparison are not sufficiently demonstrating the effectiveness of
the algorithms. Second, the use of time stamp (i.e., month index) as a feature can replace
de-seasonalization, and often yields better results than lags (i.e., previous month, or same
month previous year). Third, we have demonstrated that jackknife estimation can be used
to calculate error bars on algorithms’ relative performance, which until now have not
been generally reported in the literature. Fourth, we have shown that the practice of data
shuffling produces error estimates that are artificially lowered. The methods we have used
are quite general, and can be readily applied to other situations. The fact that our results
are consistent over five widely different climatic parameters suggests that similar results
may be expected for other climatic parameters measured on other regions. This conclusion
is reinforced by the fact that similar results have been observed in another study of rainfall
conducted in China [45].

In the current research, we have considered only single parameter prediction, using
local spatio-temporal based features. For future work, we may apply similar methods to
predictions based on other features. Reference [45] for instance shows that using wavelets
can lead to better predictions—the question remains whether ML applied to these features
can bring significant improvements, or whether simple statistics are sufficient.

Another possibility for future research is the application of deep learning. However,
since most monthly datasets available are not large, deep learning may be of limited
applicability for monthly prediction. Furthermore, the authors of [45] found that deep
learning did not significantly improve on multi-linear regression for monthly rainfall
prediction. Nonetheless, since the field of deep learning is developing rapidly, future
techniques may produce algorithms that perform well even on datasets of limited size.
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