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ARTICLE

Effect of landscape pattern and spatial configuration of vegetation patches on 
urban warming and cooling in Harare metropolitan city, Zimbabwe
Pedzisai Kowea,b, Onisimo Mutangaa, John Odindia and Timothy Dubec

aDiscipline of Geography, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, 
Pietermaritzburg, South Africa; bScientific and Industrial Research and Development Centre (SIRDC), Geo-Information and Remote Sensing 
Institute, Harare, Zimbabwe; cDepartment of Earth Sciences, University of the Western Cape, Bellville, South Africa

ABSTRACT
The spatial configuration of vegetation patches in the landscape has implications for the provision 
of ecosystem services, human adaptation to climate change, enhancement, or mitigation of urban 
heat island. Until recently, the effect of spatial configuration of vegetation to enhance or mitigate 
urban heat island has received little consideration in urban thermal assessments. This study 
examines the impact of spatial configuration of vegetation patches on urban thermal warming 
and cooling in Harare metropolitan city, Zimbabwe. The study used Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER), Landsat and Sentinel 2 data acquired 
between 1994 and 2017 to derive detailed information on vegetation patches, landscape metrics, 
and land surface temperature LST(°C). The spatial configuration of urban vegetation patterns was 
analyzed using landscape metrics in Fragstats program. Getis Ord Gi* as a Local Indicator of Spatial 
Association (LISA) was used to characterize the spatial clustering and dispersion of urban vegeta
tion patches. Results of the Getis Ord Gi* showed that clustered vegetation lowers surface 
temperatures more effectively than dispersed and fragmented patterns of vegetation. The size, 
density, shape complexity, and cohesion of vegetation patches conferred different levels of cooling 
but Patch Cohesion Index had the strongest negative relationship with LST(°C) at three spatial 
resolutions of 10 m (Sentinel 2), 15 m (ASTER) and 30 m (Landsat 8). The Spatial Lag Regression 
model performed better than the Ordinary Least Squares regression analysis in exploring the 
relationship between LST(°C) and landscape metrics. Specifically, the Spatial Lag Regression model 
showed higher R2 values and log likelihood, lower Schwarz criteria, and Akaike information 
criterion, and reduced spatial autocorrelations. The overall information provides important insights 
into the provision of larger, connected, and less fragmented urban vegetation patches to derive 
maximum and higher cooling effects which is critical for urban planning and design approaches for 
mitigating increasing surface temperatures in cities.
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1.0 Introduction and background

With increasing global urbanization, climate change 
and global warming, urban heat island (UHI) effects 
(Oke 1982; Voogt and Oke 2003) are expected to grow 
in intensity (Gabriel and Endlicher 2011; Gill et al. 
2007; Wang and Akbari 2016). Urban heat island 
effects cause higher temperatures and increase the 
number of warm nights in urban areas than in less 
developed, rural, and surrounding areas (Oke 1982). 
Urban warmth and high surface temperatures reduce 
annual energy consumption in cold climates 
(Svensson and Eliasson 2002), but the reverse is true 
in warm and tropical cities where summer air condi
tioning demand loads far outweigh potential savings 
in energy use for heating during winter (Santamouris 
et al. 2001). Intensified UHI can lead to increased 

demands for water consumption (Guhathakurta and 
Gober 2007), elevated concentration of air pollutants 
(Lai and Cheng 2009), and degraded water quality 
(Arnold and Gibbons 1996). UHI worsens the thermal 
comfort conditions, heat-related health problems, 
and welfare of urban dwellers (Tomlinson et al. 
2011). The urban climate is likely to become more 
uncomfortable, especially in summer, when heat 
released from the urban infrastructure at night 
increases the duration and intensity of heat waves 
(Tomlinson et al. 2011).

Urban green spaces (UGSs) and vegetation cover 
including urban parks, street trees, lawns, woodlands, 
forests, grasslands, playgrounds, and green belts are 
considered to be important components of urban 
climate (Dobbs, Nitschke, and Kendal 2014; Gill et al. 
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2007) in mitigating the effects of UHI. For instance, 
Kong et al (2014a) observed a reduction of land sur
face temperature (LST°C) by 0.83°C in the city of 
Nanjing in China following a 10% increase in forest 
and green spaces. This is due to the fact that evapo
transpiration and shading from trees and green 
spaces within urban areas reduce surface tempera
tures, which may subsequently reduce the amount 
of energy needed to cool buildings. The positive role 
of urban green spaces and vegetation cover in miti
gating urban thermal islands is already established 
through measurements (field measurements, models, 
and thermal remote sensing of land surface tempera
ture) and computer simulation (Farhadi, Faizi, and 
Sanaieian 2019; Lai et al. 2019). The majority of scho
larly work studying the effect of spatial arrangement 
patterns of urban green spaces (UGSs) and vegetation 
cover on UHI have been conducted over the past 10 
years (Aram et al. 2019).

However, current knowledge on the effects of 
urban vegetation and green spaces on LST(°C) is not 
comprehensive as it ignores the possible influence of 
landscape pattern and spatial configuration of vege
tation patches such as edge density, shape complex
ity, size, aggregation, connectivity, and fragmentation 
on their cooling effect (Masoudi, Tan, and Liew 2019). 
The results of a relatively small but growing number 
of research studies indicate that the landscape pat
tern and spatial configuration of urban vegetation 
patches has significant impacts on LST(°C) and can 
be optimized to mitigate the UHI effect (Asgarian, 
Amiri, and Sakieh 2015; Bao et al. 2016; Chen et al. 
2014; Connors, Galletti, and Chow 2013; Estoque, 
Murayama, and Myint 2017; Huang and Cadenasso 
2016, Kong et al. 2014a; Li et al. 2012, 2016, 2017; 
Maimaitiyiming et al. 2014; Zhang et al. 2009; Zhibin 
et al. 2015; Zhou, Huang, and Cadenasso 2011). For 
instance, urban green spaces and vegetation patches 
with more complex shapes were shown to deliver 
higher cooling effects (Asgarian, Amiri, and Sakieh 
2015; Chen et al. 2014; Estoque, Murayama, and 
Myint 2017; Li et al. 2012; Zhang et al. 2009; Zhou, 
Huang, and Cadenasso 2011). Other studies have 
shown that the size of urban green space is respon
sible for higher cooling effects (Feyisa, Dons, and 
Meilby 2014; Hamada, Tanaka, and Ohta 2013).

Even though the spatial configuration is strongly 
affected by ecological processes based on the con
cept of landscape ecology, it should be noted that not 

all landscape metrics of landscape configuration are 
responsible for the thermal processes in city or urban 
area (Chen et al. 2016). In addition, most landscape 
metrics are highly correlated with each other and 
create serious challenges with redundancy and diffi
culty in interpretation (Song et al. 2014; Uuemaa, 
Mander, and Marja 2013). For instance, some uncer
tainties and inconsistencies exist regarding the effects 
of other spatial configuration patterns such as con
nectivity and aggregation of vegetation patches on 
the resultant cooling and warming of the urban envir
onment. For instance, the positive effects of spatial 
patterns of connectivity and aggregation of urban 
green spaces (UGSs) and vegetation patches have 
been observed in some studies (Asgarian, Amiri, and 
Sakieh 2015; Chen et al. 2014; Estoque, Murayama, 
and Myint 2017), whereas in other studies (Bao et al. 
2016; Chen et al. 2014a, Li et al. 2012; Li, Zhou, and 
Ouyang 2013; Zhou, Huang, and Cadenasso 2011), the 
opposite has been reported. Therefore, appropriate 
selection of landscape metrics in relation to thermal 
processes is important capturing the effects of land
scape configuration on any variation in LST(°C) (Chen 
et al. 2016).

Furthermore, most of these landscape metrics do 
fully represent the dispersed and clustered spatial 
patterns of each land cover category, because they 
are calculated based upon discrete maps and ignore 
all other variation (Fan and Myint 2014; Myint et al. 
2015; McGarigal and Cushman 2005; McGarigal, Tagil, 
and Cushman 2009). Consequently, most UHI studies 
do not consider spatial configurations as continuous 
surfaces but rather as discrete spatial variation result
ing in loss of vital information (Myint et al. 2015). The 
ultimate result has been that effects of spatial auto
correlation of LST(°C) are not taken into account in 
most existing UHI studies (Chen et al. 2006; Li et al. 
2011; Zhou, Huang, and Cadenasso 2011) when per
forming conventional and regression analysis of the 
relationships between LST(°C) and landscape indices.

In order to address the limitations associated with 
discrete landscape metrics, an alternative and effec
tive approach is to use continuous methods of local 
spatial autocorrelation indices, also known as Local 
Indicator of Spatial Association (LISA) (Anselin 1995). 
Previous studies have indicated that the local Moran’s 
I index (Anselin 1995) to be very effective in charac
terizing the impact of clustered and dispersed spatial 
configurations and composition patterns of 
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vegetation cover (Fan, Myint, and Zheng 2015), 
impervious surface area (Wu et al. 2019) and other 
land cover categories (Myint et al. 2015; Zheng, Myint, 
and Fan 2014) on surface temperatures. Unlike local 
Moran’s I index, the utility of Getis-Ord Gi* has largely 
been ignored in examining the impact of clustered 
and dispersed spatial configurations of vegetation on 
UHI studies. Only recent applications of Getis-Ord Gi 
statistics in UHI studies, have analyzed the LST pattern 
change through time to assess the impacts of land 
use/land cover change and urbanization on UHI (Tran 
et al. 2017) and to identify the high concentration of 
the LST visually across an urban landscape (Adeyeri, 
Akinsanola, and Ishola 2017; Tran et al. 2017).

Furthermore, it is not known how sensitive are 
findings of LST(°C) to the spatial resolution of the 
underlying data relative to the grain size of hetero
geneity of urban vegetation and land cover. Previous 
studies have mainly examined these relationships for 
a single scale, which is usually the spatial resolution of 
satellite imagery data from which landscape metrics 
and LST(°C) are derived. The issue of spatial resolution 
is relevant where landscape metrics are scale- 
dependent on the spatial resolution of the remote 
sensing and other data sources as they change with 
the scale of the observation or analysis (Turner 1989; 
Wu et al. 2000, 2002) as well as their relationships with 
LST(°C) (Kong et al. 2014b; Li, Zhou, and Ouyang 2013; 
Song et al. 2014). The landscape patterns of green 
spaces have ecological implications at varying spatial 
resolution and scales. It could produce different 
amounts of latent heat of evapotranspiration which 
in turn influences the distribution of habitat and 
material energy fluxes in the landscape, thus resulting 
in diverse thermal effects (Adams and Smith 2014; 
Berger et al. 2017; Chen et al. 2017; Forman 1995; 
Turner 2005; Zhou et al. 2014).

However, to date, spatial configuration studies 
have largely been conducted mainly in cities of 
United States of America (Buyantuyev and Wu 2010; 
Maimaitiyiming et al. 2014; Myint 2012; Myint et al. 
2013, 2015) and China (Kong et al. 2014a; Kong et al. 
2014b; Li et al. 2012; Zhang et al. 2009; Zhang, Lv, and 
Pan 2013). Cities from Africa are largely ignored. The 
conclusions and implications drawn from these stu
dies may not be comprehensive because of the lim
itations of the geographical locations, regional 
climate conditions, and different patterns of urban 
and economic growth levels. Given this background, 

the objective of this study was to examine how land
scape pattern and spatial configuration of urban 
vegetation significantly enhance or mitigate the 
urban warming in the Harare metropolitan city, 
Zimbabwe. The study further examined the effects 
and sensitivity of the spatial resolution on the rela
tionship between LST(°C) and the spatial configura
tion of vegetation by using multi-regression models 
after controlling spatial autocorrelation effects. This 
paper is organized in the sections. Following the 
description of the study area, the methodology of 
calculating LST(°C), landscape metrics, Getis-Ord Gi*, 
spatial regression models is presented in Section 2. 
The results, discussions and conclusions and recom
mendations are presented in Section 3,4 and 5, 
respectively.

2.0 Materials and methods

2.1 Study area

This study was conducted in Harare metropolitan city, 
which is located in the north-eastern part of 
Zimbabwe. The Harare metropolitan city encom
passes Harare urban and rural, satellite towns of 
Epworth and Ruwa to the east and Chitungwiza to 
the south (ZIMSTAT 2012). Harare is the economic 
hub, administrative capital and the largest city of 
Zimbabwe. The population of Harare in the year 
2012 was 2.1 million (ZIMSTAT 2012). (Figure 1) 
shows the location of Harare metropolitan city. It is 
situated at 17.83° latitude and 31.05°longitude. The 
city has an area of approximately 980.6 square kilo
meters. Harare metropolitan city is characterized by 
a mainly flat topography in the southern part and is 
generally hilly in the northern part. The city falls 
within the subtropical highland climate, which are 
mild and cool with relatively longer sunshine hours. 
It experiences warm summers (average temperature 
26°C) and cold winters (average temperature 10°C).

The western, southern, and eastern parts portion of 
the Harare metropolitan city is largely composed of 
urban and built-up areas with dominance of high- 
density residential areas. The northern portion is lar
gely vegetated with predominance of low-density 
residential areas. Despite being a highly built-up and 
urbanized city, there are also protected forest and 
vegetated areas in Harare, which includes Haka 
game park (Cleveland dam vegetation), Mukuvisi 
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woodlands, Harare Kopje, Harare botanical gardens, 
and the vegetation surrounding the Harare National 
Heroes Acre.

Harare metropolitan city was selected for this study 
because it has witnessed a rapid urbanization process 
over the past few decades (Kamusoko, Gamba, and 
Murakami 2013) and the trend is expected to con
tinue (Mushore et al. 2017) mostly replacing open 
spaces and surrounding natural habitats (grassland 
and remnant forests). Such a rapid urbanization also 
inevitably generates urban heat island effect because 
of the increasing built-up developments, loss of vege
tation, and increase in land surface temperature. 
Given the continued urban expansion of the Harare 
metropolitan city, a better understanding of the rela
tionship between the spatial configuration of urban 
vegetation cover and LST(°C) can provide significant 
insights for the energy balance, ecological function
ing of the city, sustainable urban management, and 
the mitigation of urban heat island.

2.2. Satellite data

This section outlines the various satellite datasets 
used in this study and are summarized in (Table 1). 
The data used in this study consist of six satellite 
images, an Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER), a Sentinel 2 
Multispectral Instrument (MSI) and four Landsat data 
(Table 1). Only ASTER imagery was acquired in 
September rather than in October due to cloud cover
age challenges. The satellite imagery data were freely 
downloaded from Earth Explorer United States 
Geological Survey website (http://earthexplorer.usgs. 
gov/). The satellite data were in dry season because 
the images were cloud free and with more stable 
atmospheric factors. Dates of imagery were paired 
relatively close in time to help ensure consistency in 
land cover classification and phenology.

The satellite datasets were used to derive detailed 
urban green and vegetation areas, landscape metrics 
and summer daytime land surface temperature data. 
Land surface temperature LST(°C) is one of the indi
cators of surface-energy balance (Voogt and Oke 
2003) which is sensitive to surface characteristics. 

Figure 1. The geographical location of the study area, Harare metropolitan city in Zimbabwe.

Table 1. Satellite image data.
Satellite data Spatial resolution (m) Date of Acquisition
Landsat 5 30 m(VNIR) and 120 (TIR) 8 October 1994
Landsat 7 30 m(VNIR) and 60 m (TIR) 19 October 2001
ASTER 15 m(VNIR) and 90 m (TIR) 3 September 2010
Landsat 8 30 m(VNIR) and 100 m (TIR) 28 October 2013
Sentinel 2 10 m (VNIR) 24 October 2017
Landsat 8 30 m(VNIR) and 100 m (TIR) 23 October 2017

Visible and Near Infrared (VNIR), and the Thermal Infrared (TIR)
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Land surface temperature (LST°C) patterns derived 
from the thermal-infrared remote sensing imagery 
has been instrumental in capturing urban heat island 
effects (Weng, Lu, and Schubring 2004). Thermal data 
generally have coarser spatial resolution than shorter 
wavelength bands, placing further limitations on UHI 
studies. For example, the resolution of Landsat and 
ASTER’s thermal bands are 60 m −100 m and 90 m, 
respectively, despite both having resolutions of 30 
and 15 m for other bands. While Airborne sensors 
like Airborne Topographic Laser System (ATLAS) and 
Airborne Hyperspectral Scanner (AHS) can offer 
greater spatial and thermal resolution, airborne data 
are however, only available for small areas and at 
significant cost to the end user compared to that of 
moderate resolution sensors.

Similarly, this study did not use high-resolution 
data from commercial satellites as these are generally 
not as widely accessible for researchers and most of 
them do not have thermal bands. Although low and 
coarse resolution data like Moderate Resolution 
Imaging Spectroradiometer (MODIS) on the Terra 
and Aqua satellites and Advanced Very High 
Resolution Radiometer (AVHRR) are readily available, 
they have limitations in solving the problems of 
mixed pixels in heterogeneous urban areas. Low- 
resolution satellite images like MODIS and AVHRR 
are useful only for coarse-scale urban landscape 
mapping.

2.3 Urban green areas and vegetation extraction

The satellite data used in this study were initially 
classified into five land cover categories (i.e., vegeta
tion, grassland, built-up, water, and bareland) with 
the supervised image classification approach using 
the support vector machine algorithm in the 
Environment for Visualizing Images (ENVI) 5.3 soft
ware image processing software. Later, the classified 
land cover map was reclassified into a binary vegeta
tion and non-vegetation map for subsequent land
scape analysis. A value of one and zero was assigned 
to vegetation and non-vegetation pixels, respectively. 
Vegetation consisted of forests, woodlands, shrub
land, cropland, park and green land, and street trees, 
which are sometimes referred to as green spaces. The 
non-vegetation consisted of impervious surfaces, arti
ficial structures including pavements and built-up 

areas, transportation, industrial, commercial and resi
dential space, water, and bareland.

An accuracy assessment was conducted based on 
ground reference data derived from air photographs 
of 1994 and 2001, Google imagery of 2010 (ASTER), 
2013 (Landsat 8), and 2017 (Sentinel 2 and Landsat 8). 
The overall accuracy of the error matrix was com
puted by dividing the total number of correctly clas
sified pixels (sum along the major diagonal) by the 
total number of validation plots, known as percen
tage correct (Congalton and Green 1999). A non- 
parametric Kappa test was used to measure the land 
cover classification accuracy as it accounts for all the 
elements in the confusion matrix rather than the 
diagonal elements. The Kappa coefficient were calcu
lated following the procedure given by Congalton 
and Green (1999).

2.4 Spatial configuration analysis of urban green 
vegetation

Since most landscape metrics are often correlated 
with one another and they should be relatively inde
pendent of each other with minimal redundancy, we 
only selected a suite of landscape metrics based on 
their widespread use in landscape analysis, their easy 
interpretation, and their relevance as indicators of 
ecosystem functioning (McGarigal 2002; Wu 2004; 
Riitters et al. 1995). After computing several landscape 
metrics, only five landscape metrics indices including 
Edge density (ED), Mean Patch Size (MPS), Area 
Weighted Mean Shape Index (AWMSI), Area 
Weighted Mean Patch Fractal Dimension (AWMPFD), 
and Patch Cohesion Index (Table 2) were further used 
in this study. The selected landscape metrics indices 
accounted for different and important dimensions of 
the landscape patterns and configurations of size, 

Table 2. Description of landscape metrics used in the study area.
Landscape metrics Description
Mean Patch Size/Area The average mean surface of patches
Area-Weighted Mean 

Shape Index
A larger value of SHAPE_AM means the area 

is more complex and irregular in shape
Area-Weighted Mean 

Fractal Dimension Index
Fractal dimension: ratio of perimeter per unit 

area. Increases as patches become more 
irregular

Patch Cohesion Index Increases as the patches of the 
corresponding 
patch type become less connected. 
Total length of all edge segments in the 
landscape (green space) per hectare (m/ha)

Edge Density
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density, shape, isolation, and connectivity of urban 
vegetation patches. The selected landscape metrics 
were computed from the binary vegetation and non- 
vegetation data. The landscape metrics were calcu
lated using FRAGSTATS 4.2 software (McGarigal and 
Marks 1995; McGarigal 2002).

For the landscape metrics used, the lower Mean 
Patch Size values are usually associated with a more 
fragmented land cover pattern in a landscape. AWMSI 
and AWMPFDI are simple measures of patch shape 
complexity, in which the greater the value, the more 
complex and irregular the shape. The Patch Cohesion 
Index assesses the contiguity of the shape and the 
percentage of physically connected patches. Patch 
Cohesion index (COHESION) varies between 0 and 
100%. A higher value of Patch Cohesion Index repre
sents more physically connected patterns of patches 
in a landscape and vice versa (McGarigal 2002). 
A more detailed description for each landscape metric 
can be found in (McGarigal 2002).

2.5. Land surface temperature

The digital number(DN) of the thermal bands were 
first converted to spectral radiance (w/m2/sr/µm) or 
Top of Atmosphere (TOA) reflectance according to 
radiometric rescaling coefficients (Chander and 
Markham 2003; Chander, Markham, and Helder 
2009). Next, the spectral radiance was then converted 
to brightness temperature (i.e., blackbody tempera
ture) in Kelvin at the sensor by applying the inverse of 
the Planck radiance function for temperature using 
the following formula. 

TB ¼
K2

ln K1
Lλ

� �
þ 1

� � (1) 

where TB is the at-sensor brightness temperature in 
degrees Kelvin.Lλ is spectral radiance in 
Wm−2sr−1mm−1. K1and K2are calibration constant 1 
and 2, respectively. For Landsat 5 (Band 6), the K1 

value is 607.76 and the K2 value is 1260.56. On the 
other hand, Landsat 7 the thermal band 6’s K1 and the 
K2 values are 666.09 and is 1282.71, respectively. For 
Landsat 8 Band 10, the K1 value is 774.89 and the K2 

value is 1321.08, respectively. For Aster band 13, the 
K1 value is 866.46 and the K2 value is 1350.06, 
respectively.

This process is followed by a correction for land 
surface emissivity (ε) according to the nature of the 
landscape (Sobrino, Jiménez-Muñoz, and Paolini 
2004). The land surface emissivity (ε) values ranges 
between 0.97 and 0.99. The land surface emissivity (ε) 
was assigned to be 0.97 at NDVI < 0.2 and 0.99 at NDVI 
> 0.5 using the NDVI thresholds method proposed by 
Sobrino, Jiménez-Muñoz, and Paolini (2004). When 0.2 
≤ NDV I ≤ 0.5, the emissivity was calculated by the 
following formula: 

ε ¼ 0:004 � Pv þ 0:986 (2) 

where Pv is the Proportion of Vegetation(Carlson and 
Ripley 1997; Sobrino, Jiménez-Muñoz, and Paolini 
2004). The Proportion of Vegetation (Pv) of each 
pixel was determined from the NDVI using the follow
ing equation (Carlson and Ripley 1997) 

Pv ¼
NDVI � NDVImin

NDVImax � NDVImin

� �

2 (3) 

where NDVImin is the minimum NDVI value (0.2) where 
pixels are considered as bare soil (non-vegetated 
areas) and NDVImax is the maximum NDVI value (0.5) 
where pixels are considered as healthy vegetation 
and dense vegetation. The Normalized Difference 
Vegetation Index (NDVI) (Tucker 1979) which is an 
index of living green vegetation, was derived from 
Aster and Landsat 8 satellite data by using the follow
ing equation: 

NDVI ¼
NIR � R
NIRþ R

� �

(4) 

Where R and NIR are the red and infrared bands, 
respectively, as derived from image data.

Lastly, the emissivity-corrected LST(°C) was com
puted using the following equation (Weng, Lu, and 
Schubring 2004; Sobrino, Jiménez-Muñoz, and Paolini 
2004) 

LST ¼
TB

1þ λσTB= hcð Þð Þlnε

� �

� 273:15 (5) 

where LST = land surface temperature, TB = at-satellite 
brightness temperature, λ = wavelength of emitted 
radiance (λ = 10.8 µm for Landsat 8 Thermal Infrared 
Sensor (TIRS) (Band 10), σ is Boltzmann constant 
(1.38 ×10−23J/K), h =Planck’s constant(6.626 ×10−34Js), 
c =velocity of light (2.998 ×10−8m/s). The retrieved 
LST(°C) values were later converted from degrees 
Kelvin to degrees Celsius (°C) by subtracting 273.15 

266 P. KOWE ET AL.



from the calculated pixel values. An absolute zero, 0°C 
equals 273.15 Kelvin (K).

2.6 Spatial clustering and dispersion of vegetation 
based on getis-ord gi*

Based on NDVI(Tucker 1979) data, Getis-Ord Gi* as 
a local indicator of spatial association (LISA) (Anselin 
1995), known also as hot-spot analysis (Getis and Ord 
1992; Ord and Getis 1995) was calculated in ENVI 
image processing software to map the spatial cluster
ing and dispersion of vegetation patterns in the study 
area. This technique characterizes the presence of hot 
spots (high clustered values) and cold spots (low 
clustered values) over an entire area by looking at 
each feature within the context of its neighboring 
features (Ord and Getis 1995). The Getis-Ord Gi* 
statistic was calculated according to (Getis and 
Ord 1992). 

G�i dð Þ ¼

Pn
j¼1 wij dð Þxj � W�i �x

s W�i n � W�i
� �

=ðn � 1Þ1=2
h i (7) 

�x and s are mean and standard deviation, respectively. 
Basically, wij is calculated on the basis of the concep
tualized spatial relationship and in reference to d. 
Therefore, it is often written as wij(d). Following the 
methodology of Myint et al. (2015), Getis-Ord Gi* 
values were normalized to the range of −1 to 1. 
Positive values of Getis-Ord Gi* statistic represent 
highly clustered and homogeneous patterns that 
are, on average, greater than the mean. Getis-Ord 
Gi* of negative values represent highly dispersed 
and heterogeneous patterns that are less than the 
mean. Values of zero indicate random patterns with 
no apparent spatial clustering. Getis-Ord Gi* statistic 
is effective in rainfall modeling (Liu et al. 2019), crime 
analysis (Craglia, Haining, and Wiles 2000), incident 
management (Songchitruksa and Zeng 2010), heat 
vulnerability assessment (Wolf and McGregor 2013) 
as well as in agriculture (Chopin and Blazy 2013; Rud, 
Shoshany, and Alchanatis 2013).

2.7 Statistical analysis

Pearson’s product-moment correlation coefficient 
was computed to evaluate the relationship between 
LST(°C) and the selected landscape metrics of vegeta
tion or green space. LST(°C) was the dependent 

variable in our analysis and landscape metrics of 
Edge density (ED), Mean Patch Size (MPS), Area- 
Weighted Mean Shape Index (AWMSI), Area- 
Weighted Mean Patch Fractal Dimension (AWMPFD) 
and Patch Cohesion Index were the independent vari
ables. A negative correlation means a reducing effect 
on LST(°C) and a positive correlation means that the 
landscape pattern component can increase and 
enhance LST(°C). The landscape metrics of vegetation 
derived from ASTER image and Landsat 5, 7, and 8 
were related to the LST(°C) of the same images, 
respectively. Since Sentinel 2 does not have thermal 
bands, the landscape metrics of vegetation derived 
from Sentinel 2 of 2017 were compared to the LST(°C) 
acquired from Landsat 8 Thermal Infrared Sensor 
(TIRS) of 2017.

2.8. Spatial autocorrelation of LST(°C)

This section will introduce the concepts of spatial 
regression analysis and spatial autocorrelation. The 
Global Moran’s I index (Moran 1950; Cliff and Ord 
1981; Legendre and Fortin 1989) was used to measure 
the spatial autocorrelation of LST(°C) for the ASTER 
acquired on September 9, 2010 and on the Landsat 5 
acquired on October 8, 1994, Landsat 7 acquired on 
October 19, 2001 and Landsat 8 acquired on 
October 23, 2017. Moran’s I is the most common 
method to describe the degree of spatial concentra
tion or dispersion for the variables and their proximity 
in geographical space which is defined as follows; 

Moran0s I ¼
n
P

i
P

jwij dð Þ xi � �xð Þ xi � �xð Þ
P

i
P

jwij
P

i xi� �xð Þ
2 (8) 

i and j depict the various locations, xi and xj are the 
values of the variable x of location i and j, respectively, 
�x is the mean value of the variable and wij represents 
a spatial weight matrix for measuring spatial 
proximity(connectivity) between i and j locations. 
The Moran’s 1 is standardized and Moran’s I values 
range from−1 to 1, hence positive Moran’s I index 
values indicates a tendency toward spatial clustering 
(0 to ≥ 1) and more significant spatial autocorrelation. 
The negative Moran’s I index values indicates 
a tendency toward spatial dispersion (0 to ≥ −1) and 
zero suggests that there is no spatial autocorrelation.

The Global Moran’s I was conducted using a queen 
contiguity matrix to create the spatial weights matrix 
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defining the neighboring size of LST(°C). The queen 
contiguity weights criterion is recommended in prac
tice to deal with potential inaccuracies in the polygon 
file (such as rounding errors) (Anselin 2003). 
A significant spatial autocorrelation (p <0.05) was 
detected in LST(°C) data violating the critical assump
tion of sample independence required by parametric 
tests. After discovering significant spatial autocorrela
tion, we therefore used the Lagrange Multiplier test in 
the Geoda software package (Anselin 2003, Anselin 
2006) to determine the more appropriate spatial auto
regression models specifications: either the spatial lag 
or spatial error that integrate spatial autocorrelation. 
One of the critical outcomes of this study is that the 
inclusion of any of the spatial autoregression model 
(spatial lag or spatial error) into examining the rela
tionships between LST(°C) and spatial configuration 
patterns of vegetation results in a decrease in the 
Akaike Information Criterion (AIC), as can be seen 
when comparing the Ordinary Least Squares (OLS) 
and spatial lag models.

2.9 OLS and SLM models analysis

Two regression models, the Ordinary Least Squares 
(OLS) (Model 1) and a Spatial Lag model SLM 
(Model 2) were developed to predict the mean LST(° 
C) as the dependent variable. The selected landscape 
indices of Mean Patch Size, Area-Weighted Mean 
Patch Fractal Dimension Index, Area-Weighted Mean 
Shape Index, and Edge Density were independent 
variables at 10 m, 15 m, and 30 m spatial resolution. 
The Ordinary Least Squares (OLS) can be described as: 

y ¼ Xβþ 2 (9) 

where y is the dependent variable, X is the matrix of 
explanatory variables without an intercept term; β is 
a vector of slopes; and ε is a vector of random error 
terms. In dealing with spatial data, the traditional 
regression model may not be appropriate resulting 
in a failure to capture the spatial dependence of data 
in the model residuals. Therefore, other spatial regres
sion models including the spatial lag model (SLM) are 
often used. The spatial lag model (SLM) assume that 
the residuals could be the result of spatial autocorre
lation in the dependent variable. The spatial lag 
model (SLM) is expressed as follows 

y ¼ ρWy þ Xβþ 2 (10) 

where ρ is a spatial autocorrelation parameter; and 
Wy is the spatial weight matrix.

The OLS and SLM regression models were com
pared to evaluate the performance and their good
ness fit in explaining the relationship between LST(°C) 
and explanatory variables of landscape metrics. Four 
parameters including R2, log likelihood, Akaike 
Information Criterion (AIC) and Schwarz criteria were 
selected to describe the fitness of the two models. 
The higher the R2 value and the log likelihood of the 
model, the higher the model fitness. On the other 
hand, the lower the AIC and Schwarz criteria indicates 
better model fit. The analysis was conducted in the 
GeoDa software. (Figure 2) illustrate the research 
methodology undertaken in this study.

3.0 Results

3.1 Land cover classification accuracy and spatial 
pattern of vegetation in the city

The land cover classification for Harare metropolitan 
city of the six satellite imagery datasets had a high 
accuracy, which could be partly attributed to the sim
ple classification scheme and the effectiveness of the 
robust support vector machine classification algorithm 
used. The overall accuracy of the land cover classifica
tion was 97.65% in 1994, 97.55% in 2001,96.12% in 
2010, 96.13% in 2013. It was 97.14% and 97.32% for 
Landsat 8 acquired on 23 October 2017 and Sentinel 2 
data acquired on October 24, 2017, respectively. On the 
other hand, the Kappa coefficient was 0.95 for ASTER 
data acquired on September 9, 2010 and Landsat 8 
acquired on October 28, 2013, 0.96 for Landsat 
acquired in 1994, in 2001 both Landsat 8 acquired on 
October 23, 2017, and Sentinel 2 data acquired on 
October 24, 2017, respectively. This is more than 85%, 
the minimum level of mapping accuracy generally 
required for most land cover categories from remote 
sensing data (Anderson 1976).

The large proportion of vegetation patches are con
centrated in the northern part of the city whilst small, 
scattered vegetation patches are concentrated in the 
western, eastern, and southern part of the city. In 1994, 
the amount of vegetation cover was approximately 
27,190.8 (ha) and non-vegetation was 70,871.5 (ha). 
The proportion of vegetation in city declined to 
26,575.5 (ha) in 2001 whilst non-vegetation was 
approximately 71,486.8 (ha). In 2010, the total area of 
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vegetation comprised 28,432.7 hectares (ha), and non- 
vegetation was 69,625.7 ha. In 2013, the total area of 
vegetation was approximately 25,377.2 ha and non- 
vegetation was around 72,687.24 ha. The total area of 
vegetation was 19,582.6 ha and non-vegetation was 
78,480.9 ha on Landsat 8 acquired on October 23, 2017. 
On the other, the total area of vegetation was 
25,958.6 ha and non-vegetation was 72,126.2 ha on 
Sentinel 2 acquired on October 24, 2017.

3.2 Spatial variability pattern of LST(°C)

(Table 3) shows the descriptive statistics of LST(°C) 
derived from Aster and Landsat data in 2010, 2013 
and 2017. In 2010, the LST(°C) derived from ASTER 
data ranged from 18.89 to 45.50°C (Table 3). On the 

other hand, LST(°C) derived from Landsat data of 2013 
ranged from 22.93 to 51.05°C. In 2017, it ranged from 
23.81to 48.5°C. The mean LST(°C) value was 29.85°C in 
1994, 31.80°C in 2001, 35.93°C in 2010, increased to 
36.71°C in 2013 and 38.26°C in 2017 indicating the 
increasing warming trend in the study area. In 2010, 
2013, and 2017, the significantly low values of LST(°C) 
dominated the northern side of the city suggesting 
the presence of dense vegetation and a cooler region 

Figure 2. Flowchart of the research methodology and the steps presented in this study.

Table 3. Descriptive statistics of LST(°C).
Acquisition date aMin (°C) aMax (°C) Mean (°C) aSD
08/10/1994 (Landsat data) 14.71 41.45 29.85 3.27
19/10/2001 (Landsat data) 17.95 45.59 31.80 2.96
03/09/2010 (ASTER) 18.89 45.50 35.93 2.96
28/10/2013 (Landsat data) 22.93 51.05 36.71 3.58
23/10/2017 (Landsat data) 23.81 48.5 38.26 2.89

aMin-Minimum, *Max (Maximum), SD* (Standard Deviation).

GISCIENCE & REMOTE SENSING 269



(Figure 3). On the other hand, significantly high values 
of LST(°C) dominate sparsely vegetated western, 
southern and eastern side of the city indicating 
a warmer region. The western, southern, and eastern 
side of the city is a densely built-up area with heavy 
concentration of industries and residential areas indi
cating the presence of impervious surfaces in raising 
higher land surface temperature.

3.3. Effect of the spatial clustering and dispersion 
of vegetation on LST(°C)

The Pearson correlation coefficients indicated the rela
tively moderate to strong negative linear relationship 

between LST(°C) and Getis-Ord Gi*.The relationships 
between the Getis-Ord Gi* and LST(°C) was (r = -0.55, 
p < 0.05) on Landsat data of 1994, (r =−0.71, p < 0.05) on 
Landsat data of 2001, (r = −0.67, p < 0.05) on Aster data 
of 2010, (r = −0.60, p < 0.05) on Landsat data of 2013, (r = 
−0.60, p < 0.05) on Sentinel 2 data of 2017 and (r = −0.64, 
p < 0.05) on Landsat data of 2017. This suggest that the 
spatial clustering of vegetation has strong impact in 
decreasing LST(°C) and correlate strongly with cooler 
surface temperatures. The spatial clustering of vegeta
tion indicated by Getis Ord Gi* ranged from being dis
persed (negative values), random (zero), and to highly 
clustered (positive values) as indicated in (Figure 4). The 
statistically significant high attribute values of Getis Ord 

Figure 3. The spatial distribution of LST(°C) derived from a) Landsat 5 data acquired on 8 October 1994 (b) 19 October 2001 and (c) 
Aster data acquired on 9 September 2010 (d) 28 October 2013 and (e) 23 October 2017. Low values of LST(°C) are heavily concentrated 
in the northern side of the city and significantly high values of LST(°C) in the sparsely vegetated western, southern and eastern side of 
the city.
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Gi* were heavily concentrated in the northern part of 
Harare, indicating that LST(°C) was low in areas with 
relatively high and positive clustering of vegetation 
(Figure 4). Conversely, LST(°C) was high in areas with 
low, negative clustering and dispersed vegetation 
patches in the western, southern, and eastern parts of 
the city (Figure 4). Therefore, higher LST(°C) closely cor
relate under dispersed and isolated vegetation patches, 
whereas lower LST(°C) correlate under high clustered 
vegetation patterns.

3.4 The relationship between spatial configuration 
of vegetation and LST(°C)

(Table 4) indicate that the landscape metrics of 
urban vegetation patterns had consistently negative 

relationships with LST(°C) (p <0.05), but the magni
tude of the correlation varied by spatial resolution at 
10 m (Sentinel 2), 15 m (ASTER) and 30 m (Landsat 8). 
The Landsat acquired on on October 8, 1994 (b) 
October 19, 2001 were not considered for this analy
sis. The AWMPFDI, AWMSI, Edge Density and Mean 
Patch Size of landscape metrics were less correlated 
with LST(°C) at 30 m of Landsat 8 imagery data 
acquired on October 28, 2013 and October 23, 2017 
than at 10 m (Sentinel 2) and 15 m (ASTER) spatial 
resolution. This suggests that the negative correla
tions between LST(°C) and landscape metrics of 
AWMPFDI, AWMSI, Edge Density, and Mean Patch 
size are stronger at finer spatial resolution.

MPS – Mean Patch Size, AWMPFDI – Area Weighted 
Mean Patch Fractal Dimension Index, AWMSI – Area 

Figure 4. The spatial distribution of Getis-Ord Gi*) derived from a) Landsat 5 data acquired on 8 October 1994 (b) 19 October 2001 and 
(c) Aster data acquired on 9 September 2010 (d) 28 October 2013 and (e) 23 October 2017. High positive values of Getis-Ord 
Gi*represent highly clustered pattern and low and negative values represent highly dispersed patterns of vegetation.
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Weighted Mean Shape Index, ED – Edge Density, 
COHESION -Patch Cohesion index.

Although all the landscape metrics had a significant 
negative correlation with LST(°C), however, Patch 
Cohesion index (COHESION) had the most consistently 
strong correlation with LST(°C) across all three spatial 
resolutions (10 m, 15 m, and 30 m) (p <0.05). (Table 4) 
show that the Patch Cohesion index had relatively 
higher and stronger correlation at 30 m spatial resolu
tion (r =− 0.69, p <0.05) in 2017 data and (r =− 0.68, 
p <0.05) in 2013 for Landsat 8 than at 10 m (r =−0.61, 
p <0.05) for Sentinel 2 data acquired in 2017 and 15 m 
(r =−0.65, p <0.05) for ASTER data of 2010 as indicated 
in (Table 4). This suggests that the relationship 
between LST(°C) and Patch Cohesion index increase 

with the subsequent decrease of spatial resolution. In 
addition, the results of the Patch Cohesion index may 
indicate that highly connected and less isolated vege
tation patterns do have a strong cooling effect and 
have a strong impact in decreasing LST(°C). Higher 
vegetation connectivity (i.e., less isolation of vegetation 
patches) are associated with a greater proportion of 
high, contiguous vegetation patterns, reflecting 
shorter distances between the vegetation patches 
and may contribute to lower and minimum LST(°C) 
values (e.g. 18°C, 22 and 23°C) as indicated in (Figure 
5). These are illustrated with higher vegetation connec
tivity ranges (<50%-70%).

On the other hand, lower vegetation connectivity 
(higher degree of isolation of vegetation patches) 
contributes to higher and maximum LST(°C) values 
(e.g., 45°C, 48°C, and 51°C) as illustrated in (Figure 5). 
Areas with less connected vegetation are found in the 
western, southern and eastern side of the city. These 
are illustrated with lower vegetation connectivity 
ranges (<0–30%). Less connected vegetation (<0– 
30%) represent the highly fragmented nature of vege
tation patches that are smaller, isolated, and scattered 
across the landscape.

Table 4. Pearson’s correlation coefficients (r-values) showing the 
degree of associations between LST(°C) and landscape metrics.

COHESION MPS ED AWMSI AWMPFDI
09/09/2010 ASTER 

(15 m)
−0.65 −0.26 −0.32 −0.37 −0.32

28/10/2013 (Landsat 
data) (30 m)

−0.68 −0.16 −0.21 −0.07 −0.09

23/10/2017 (Landsat 
data) (30 m)

−0.69 −0.15 −0.24 −0.08 −0.11

24/010/2017 (Sentinel 2) 
(10 m)

−0.61 −0.40 −0.37 −0.49 −0.34

Figure 5. Patch cohesion index derived from (a) Aster data of 2010 (b) Landsat data of 2013 and (c) Landsat data of 2017 illustrating 
that high vegetation connectivity correspond to lower LST(°C) and vice versa.
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3.5 Spatial autocorrelation of LST(°C)

There was significant spatial autocorrelation of LST(° 
C) which meant that similar LST(°C) were clustered 
together in the study area. (Table 5) indicate that 
the Moran’s I value for LST(°C) was 0.21 for Sentinel 
2 of 2017, 0.18 for Aster data of 2010, and 0.27 
(p <0.001) for Landsat 8 of 2017 data which meant 
that there was less than a 0.1% chance that the 
observed spatial clustering pattern in the study was 
due to random chance. Due to the significant spatial 
autocorrelation of LST(°C) in the study area, it meant 
that the results of the Ordinary Least Squares model 
regression model would have been misleading with
out the adoption of a spatial regression model since 
the conventional OLS regression model violated the 
independent observations and uncorrelated error 
assumptions.

3.6 Comparisons of OLS and SLM regression 
models

(Table 5) shows the results of Model 1 (Ordinary Least 
Squares model) and Model 2 (Spatial lag regression 
model) that examined the relationships between 
mean LST(°C) and spatial configurations of vegetation 
based on landscape metrics as independent variables 
at different spatial resolutions. The landscape metrics 
included ED, MPS, AWMSI, AWMPFD, and Patch 
Cohesion Index. The three different spatial resolutions 
were based on 10 m spatial resolution (Sentinel 2) 
acquired on October 24, 2017, 15 m spatial resolution 
(ASTER) acquired on September 9, 2010, and 30 m 
spatial resolution (Landsat 8) acquired on October 23, 
2017. The Landsat acquired on October 28, 2013 was 
not considered. The Model 1(OLS) explained about 
11% (R2 = 0.1058) for Sentinel 2 (10 m), 13% (R2 = 0. 
1304) for Aster data (15 m) and 53% (R2 = 0.5285) for 
Landsat 8 data (30 m) of the variance in the relation
ship between mean LST(°C) and landscape metrics.

On the other hand, Model 2 (SLM) explained 51% 
(R2 = 0.5076) for Sentinel 2 (10 m), 52% (R2 = 0.5153) 
for Aster data (15 m) and 64% (R2 = 0.6353) for 
Landsat 8 data (30 m) of the variance in the relation
ship between mean LST(°C) and spatial configuration 
of vegetation. This indicates that more than 50% of 
the variations in mean LST(°C) can be explained by the 
selected landscape metrics in SLM model. In both 
models, R2 values become higher with the decrease 
of the spatial resolution.

Besides higher R2 values, the results obtained by 
SLM (Model 2) are characterized by higher log like
lihood in SLM model than those in OLS model. Both 
AIC and Schwarz criteria were smaller in SLM model 
than those in OLS model indicating that the that 
spatial regression was superior to the traditional 
regression method of OLS. The comparison of these 
two models suggests that the SLM model performs 
better than OLS model for investigating the relation
ships between mean LST(°C) and spatial configura
tions of vegetation.

4.0 Discussion

This study examined the effect of landscape pattern 
and spatial configuration of vegetation patches on 
land surface temperature in Harare metropolitan city 
in significantly enhancing or mitigating the urban 
warming. The study showed that the effect of spatial 
configuration of vegetation on LST(°C) significantly 
vary with a particular landscape metrics used. The 
results of Pearson’s correlation coefficient of LST(°C) 
with landscape metrics suggest that highly con
nected, irregularly shaped vegetation patterns, patch 
size and green space edge (conditions significantly 
reduce LST(°C). This is consistent with previous stu
dies that show that the landscape metrics of vegeta
tion were significantly correlated with LST(°C) (Kong 
et al. 2014a, Maimaitiyiming et al. 2014; Li et al. 2012; 
Zhang et al. 2009; Zhou, Huang, and Cadenasso 2011). 

Table 5. Results of Ordinary Least Squares (OLS) and Spatial Lag regression Model (SLM) analysis.
Models
Model 1: OLS Model 2: SLM

Parameter Sentinel 2 (10 m) ASTER (15 m) Landsat 8 (30 m) Sentinel 2 (10 m) ASTER (15 m) Landsat 8 (30 m)
R-squared (R2) 0.11 0.13 0.53 0.51 0.52 0.64
LL −110,805 −58,143.7 −26,092.2 −98,932.8 −51,344.8 −24,594.7
AIC 221,621 116,299 52,196.4 197,880 102,704 49,203.4
SC 221,674 116,348 52,241.2 197,941 102,761 49,255.7
Moran’s I 0.21 0.18 0.27

LL-log likelihood; AIC-Akaike information criterion; and SC-Schwarz criterion
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This is largely because different landscape patterns 
and configurations such as the shape, size, connectiv
ity, and edge density can influence the thermal 
exchange between vegetation and its surroundings, 
further inducing different warmings and cooling 
effects.

Li et al. (2012) found a negative relationship 
between LST(°C) and the shape complexity and 
mean patch size of the patches of green space in 
Beijing, China. Green spaces with more complex 
shapes were shown to deliver higher cooling effects 
in several studies (Asgarian, Amiri, and Sakieh 2015; 
Bao et al. 2016, Kong et al. 2014a; Li et al. 2012; Zhang 
et al. 2009; Zhou, Huang, and Cadenasso 2011). In our 
study, the negative correlation between the LST(°C) 
and shape complexity were relatively higher on 
AWMSI than AWMPFD. This is not surprising as in 
calculating the average patch shape complexity, 
AWMSI weights larger patches more heavily than 
smaller patches. The negative correlations between 
edge density of vegetation patches with LST(°C) were 
observed in the Mediterranean cities of Europe 
(Nastran, Kobal, and Eler 2019), Aksu city in China 
(Maimaitiyiming et al. 2014) and in Baltimore in USA 
(Zhou, Huang, and Cadenasso 2011). Zhou, Huang, 
and Cadenasso (2011) noted that LST(°C) decreased 
through the increase in the amount of green space 
edge (edge density), which enhances the energy flow 
and thermal exchange between the urban green 
space and its surrounding areas and provide more 
shade for surrounding surfaces.

The green vegetation patches are larger, more 
complex, and more contiguous in the northern part 
of Harare whereas in the western, southern, and east
ern parts portion of the city, they are mostly fragmen
ted and dispersed. Previous investigation by Mushore 
et al. (2017) reported higher LST(°C) in the sparsely 
vegetated western, southern and eastern side of the 
city. Small green spaces usually have a high thermal 
load and are unlikely to produce significant cooling 
effects (Bao et al. 2016). Conversely, the densely vege
tated northern part of Harare had consistently lower 
LST(°C). Larger, contiguous vegetation patches have 
been found in previous studies to produce stronger 
cooling effects than that of several smaller and iso
lated vegetation patches (Maimaitiyiming et al. 2014; 
Li et al. 2012; Zhang et al. 2009). Large and dense 
vegetation patches are more heat tolerant producing 
cooling effects during daytime that greatly offset the 

warming effects caused by the small, isolated vegeta
tion and the built-up and impervious surfaces. 
Dugord et al. (2014) also reported that larger forest 
share and extensive, aggregated forest patches sig
nificantly reduced LST(°C) in Berlin.

The strength of the Getis-Ord Gi* is its ability to 
provide continuous representation of the true hetero
geneity of the landscape. Based on a Getis-Ord Gi*,, 
our findings are consistent with previous studies that 
indicate that less fragmented patterns of urban vege
tation lower LST(°C) more effectively (Fan, Myint, and 
Zheng 2015; Peng et al. 2016) than more fragmented 
(dispersed) patterns of urban vegetation that raise 
LST(°C) as indicated in (Li et al. 2012; Zhang et al. 
2009). Clustered patches of vegetation may increase 
latent heat fluxes through evaporation, thereby redu
cing the sensible heat emitted from the surface. 
Furthermore, clustered vegetation patches shade the 
surface by absorbing incipient solar radiation, which 
substantially lowers the land surface temperature.

4.1 Effect of spatial resolution on LST(°C) and 
landscape metrics relationship

The effect of landscape metrics of vegetation on LST(° 
C) were affected by the spatial resolution of the satel
lite imagery data, which confirms the previous find
ings of other studies (Li, Zhou, and Ouyang 2013). 
With the exception of Patch Cohesion index, the cor
relation coefficients of LST(°C) with landscape metrics 
of AWMPFDI, AWMSI, Edge Density, and Mean Patch 
size declined significantly with the decrease of spatial 
resolution becoming stronger at finer spatial resolu
tion of 10 m (Sentinel 2) and 15 m (ASTER) than at 
30 m (Landsat 8). This is probably due to the fact that 
finer rather than low satellite imagery data effectively 
extract the large distribution number of small, iso
lated vegetation patches in urban areas. This also 
explains, a non-significant and low correlation coeffi
cient between LST(°C) and landscape metrics of 
AWMPFDI, AWMSI, ED, Edge Density, and Mean 
Patch size at 30 m Landsat 8 imagery data.

On the other hand, several reasons can be high
lighted in explaining the higher negative correlation 
between LST(°C) and Patch Cohesion index at 30 m (r = 
− 0.69) than at 15 m (r =− 0.65) and 10 m (r =− 0.61) 
resolutions. One of the reasons is that, Patch Cohesion 
index is sensitive to the aggregation of the focal class 
or patch type (McGarigal 2002). It increases as the 
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patch type becomes more clumped or aggregated in 
its distribution, consequently creating a physically con
nected patch (Gustafson 1998). Hence, Patch Cohesion 
index tends to be biased toward larger patches than 
smaller patches. In low and medium resolution image 
data such as the 30 m resolution (Landsat 8), small 
patch sizes of vegetation easily identified from the 
fine resolution imagery may be mapped as one single 
large vegetation patch. Patch Cohesion index has been 
previously found to report lower fragmentation at 
coarser spatial resolutions (Saura 2004).

4.2 The advantages of SLM model over OLS model

The selection of a suitable spatial regression method 
and local statistical model is essential in analyzing the 
relationship between the UHI effect and landscape 
factors of vegetation pattern. This study, by comparing 
both the OLS regression model and SLM spatial regres
sion model, found that, all the parameters such as R2, 
log-likelihood, Akaike information criterion (AIC) and 
Schwarz criteria in OLS regression model were not as 
good as those in the SLM. SLM model performed better 
than OLS model in examining the relationships 
between mean LST(°C) and spatial configurations of 
vegetation. Furthermore, SLM model had stronger 
explanatory power and lower spatial autocorrelations 
of residuals compared with conventional OLS model.

Significant positive spatial autocorrelations in resi
duals based on Moran’s I values were detected in the 
OLS model. Hence, the assumption of randomly dis
tributed and residual independence is violated when 
applying OLS in analyzing the relationship between 
the urban surface temperature and driving landscape 
factors of vegetation pattern. OLS regression cannot 
take into account the spatial autocorrelation of the 
dependent variables, thus making the model mislead
ing which may limit the predictive utility of under
standing the mitigation of the UHI effect and specific 
local planning of cities and urban areas.

Traditional regression methods, such as the OLS 
regression model are “global” models that assumed 
to apply global parameters over an entire geographical 
area which best describes the overall data relationships 
in a study area which calls for the need for a local 
estimations and predictions to the specific local region 
or geographical area. As opposed to OLS model, which 
may mask out local spatial variations, SLM is a localized 
spatial regression method that examines spatially non- 

stationary phenomena of urban surface temperature 
by generating local slope coefficients of driving land
scape factors of vegetation pattern.

LST is spatially autocorrelated because of land sur
face heat fluxes (Song et al. 2014). Specifically, SLM has 
the potential to solve the problem related to spatial 
dependence when the dependent variable is influ
enced by nearby locations in the study area. Ordinary 
least squares analysis does not take spatial autocorrela
tion into account. These findings confirm the observa
tion of previous studies that emphasize the use of 
spatial regression methods (Li et al. 2012) which are 
needed when examining the relationships between 
mean LST(°C) and spatial configurations of vegetation. 
This is because spatial regression methods provide 
more robust evidence on the relationships between 
spatial configurations of vegetation and LST(°C) in 
minimizing spatial autocorrelation in spatial datasets.

5.0 Conclusions and recommendations

Understanding the landscape pattern and config
uration of green spaces could help urban planners 
and conservationists in urban and green infrastruc
ture planning for climate adaptation and mitigate 
UHI effect in rapid growing cities and sprawling 
metropolitan regions. In general, dispersed or frag
mented vegetation is less effective in mitigating 
the urban warming effect than clustered or 
clumped vegetation. Hence, it is recommended 
that urban planners and policy makers should opti
mize the spatial arrangements and configurations 
of urban landscapes by aggregating or clustering 
vegetation. This will promote the effective urban 
planning practices by improving landscape design 
and land use management. Due to continuing 
green spaces fragmentation in urban areas, urban 
design and planning should account for green 
spaces that are relatively fragmented and scattered 
to maximize the cooling effects.

However, the landscape metrics of urban green 
spaces and their relationships with LST(°C) are sensi
tive to spatial resolution. Satellite imagery data with 
higher spatial resolution could more accurately quan
tify the spatial configuration of urban vegetation. The 
effects of finer spatial resolution generally had better 
correlation coefficients with land surface temperature 
providing important indications of the spatial resolu
tions at which maximum warming and cooling effect 
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is achieved. In developing more insights into the 
relationship between spatial configuration of urban 
vegetation and LST(°C), it is suggested that spatial 
regression methods be utilized in future studies deal
ing with spatial data where the fundamental assump
tion of spatial dependency is more often than not 
violated. In general, this study demonstrated that 
the landscape metrics can convey meaningful infor
mation on the spatial configuration of vegetation and 
its effects on different levels of cooling in a landscape.
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