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ABSTRACT ARTICLE HISTORY
This study utilised multi-temporal satellite data to characterize Received 12 August 2021
droughts across the five Agro-ecological zones (AEZ) of  Accepted 28 April 2022
Zimbabwe at monthly, seasonal, sub-seasonal and annual scales
(2000 to 2018) using a combination of Satellite Pour I'Observation
de la Terre (SPOT) Vegetation (VGT) and Project for On-Board d ’

. . . . rought frequency;
Autonomy-Vegetation (PROBA-V) derived Vegetation Condition livelihoods; multi-date
Index (VCI). The characterized droughts were validated, using assessment; vegetation
maize yield and meteorological station derived Standardised condition index
Precipitation Index (SPI). The study showed differential spatial and
temporal expression of drought in Zimbabwe, over the 19-year
study period. November had the highest frequency of drought
while the first quarter of the season experienced more droughts
than the second quarter. Spatially, virtually all AEZ in Zimbabwe
are prone to droughts and the frequency is increasingly, with the
Agro-ecological region five (southern Zimbabwe) being the worst
affected. Further, the study found a strong positive relationship
between the VCl and maize yield (r=0.701, P=0.000), demon-
strating the utility of the index in drought monitoring at national
level. Overall, findings from this work highlight the significance of
using multi-date and national-scale analysis of agricultural
drought occurrence and trends. Moreover, this work provides crit-
ical baseline information for developing drought resilience and
mitigation strategies in drought-prone areas.

KEYWORDS
Agro-ecological region;

1. Introduction

Drought is a recurrent natural phenomenon, with adverse impacts on socio-economic
development and the environment in general (Wilhite et al; Aswathi et al. 2018). It is
the most widespread hazard occurring virtually in all regions of the world
(Kourouma et al. 2021). About 38% of the world’s land area has experienced some
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episodic droughts (World Bank 2005). Globally, droughts have resulted in signifi-
cant loss of life. For example, about eleven million deaths have been reported in
the past, while approximately two billion people have been directly affected by
drought-induced food shortages (FAO 2016). The number of drought related
deaths is highest in the African continent, which has experienced ~800,000 deaths
since 1900, with about 262 million directly affected. The worst drought in Africa
occurred, during the 1991/1992 rainfall season where southern Africa was worst
hit. This resulted in countries such as Zimbabwe experiencing about 11% shrinkage
in gross domestic product and food shortages (Maphosa 1994). In Zimbabwe, the
1991/1992 drought resulted in more than one million cattle deaths and six million
people directly affected. Besides, recent droughts in Zimbabwe have increased the
country’s food insecurity where in 2019 alone, about 3.5 million people were con-
sidered food insecure by the United Nations World Food Programme. In addition,
the high frequency of droughts directly threatens agricultural dependent economies
and livelihoods and impedes the attainment of the United Nations Sustainable
Development Goals, particularly, goals number one, two and three, that is,
no poverty, zero hunger, and good health and wellbeing, respectively (Frischen
et al. 2020). In this regard, it is important to monitor droughts routinely and
timeously to understand their spatial and temporal evolution as it is critical for
identifying areas at risk and development of early warnings and disaster prepared-
ness strategies.

Drought is a complex phenomenon whose dimensions are still poorly under-
stood (Frischen et al. 2020). The complexity of drought arises from the various def-
initions of the phenomenon resulting in operational definitions being applied.
However, all droughts emanate from a precipitation deficiency over a specified
period, such as a month, resulting in an imbalance between water supply and soci-
etal or environmental demands (Wilhite and Buchanan-Smith 2005). Due to com-
plex nature of drought, four main categories are used to understand its occurrence
and these are meteorological, hydrological, agricultural and socio-economic
drought (Wilhite and Glantz 1985). The operational definition of drought thus
depends on the component of the biophysical or socio-economic system affected
(Winkler et al. 2017). Since droughts are triggered by precipitation deficiency
(Wilhite and Glantz 1985) four dimensions i.e., duration, geographical extent,
intensity and severity are used determine whether and to what extent water supply
fails to meet demand (Rossi et al. 1992). While the four dimensions are critical for
characterizing droughts, intensity is regarded as the most important (Tsakiris and
Vangelis 2005). Drought intensity is the ratio of drought severity divided by dur-
ation (Tsakiris and Vangelis 2005). The severity of a drought depends on the dur-
ation, season of occurrence, spatial extent of the affected area as well as the
impacts on socio-economic activities and the environment (Wilhite and Buchanan-
Smith 2005). However, the onset of a drought is difficult to determine since it is
gradual, and the effects are long term.

Previous studies on drought occurrence in sub-Saharan Africa, particularly
Zimbabwe were mostly based on in-situ rainfall station data (Chamaille-Jammes et al.
2007; Mazvimavi 2010). However, a limitation of station-based data is that in most
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developing countries, observation stations are sparsely distributed or even missing in
some areas resulting in limited spatial and temporal coverage (Kourouma et al. 2021).
Where stations are available, there is inconsistency in data collection for the climate
parameters due to poor maintenance of equipment, non-functionality, vandalism, and
the lack of automated stations (Magno et al. 2018). The sparse network combined
with inconsistent data records limit our understanding of drought dimensions across
the country (Frischen et al. 2020). Moreover, as data is measured at point locations
the use of measurements from these stations to estimate for areas without stations,
yield estimates, which are not comparable to reality, due to the wide distance between
the stations (Chikodzi and Mutowo 2013). Most studies have surprisingly relied on
ground station data in characterising droughts despite limitations associated with
ground-based station measurements. In fact, few studies have taken advantage of the
unique opportunities offered by satellite sensors such as wide spatial coverage in add-
ition to availability of data at consistent temporal and spatial dimensions, suitable for
farm-scale drought analysis (Unganai and Kogan 1998; Mutowo and Chikodzi 2014;
Kuri et al. 2018; 2020). Although these studies have applied remotely sensed data to
characterise drought (see Liu and Kogan 1996; Sierra-Soler et al. 2016; Kogan et al.
2017; Aziz et al. 2018; Kogan et al. 2019; Javed et al. 2021; Khan and Gilani 2021;
Kourouma et al. 2021; Zhang et al. 2021), few have characterised agricultural drought
in across temporal scales relevant for agricultural planning e.g., monthly scale or sub-
seasonal scale. For instance, Mutowo and Chikodzi (2014) estimated the spatial extent
of agricultural drought in Zimbabwe across the whole agricultural season for the
period between 2005 and 2010 using the vegetation condition index (VCI).

While important insights on drought extent and severity at the seasonal scale were
generated from previous studies, there is an urgent need to understand drought
occurrence at finer scales such as monthly and sub-seasonal scales. This information
is important for timely and accurate intervention in the agricultural sector such as
crop selection and irrigation. For instance, a recent study by Kuri et al. 2020 revealed
differential impacts of drought across the season with drought periods occurring at
the vegetative stage having more impacts on crop yield than at the senescence stage.
In this regard, there is a need to understand the frequency and probability of drought
occurrence at temporal scales appropriate for interventions e.g., month to avert food
shortages. In most parts of the world particularly in southern Africa, the increase in
frequency and severity of droughts are related to climate change. In fact, studies have
indicated that most parts of southern Africa will experience decrease in rainfall and
increase in temperature which is likely to lead to high soil-moisture deficiency. With
the advent of climate change, which is likely to see droughts becoming more frequent
there is need to utilize all available tools to enhance knowledge on drought occur-
rence. Remotely sensed data thus becomes one of the key primary data sources as it
has a large footprint with high temporal resolution and a long history archival data,
spanning over 40-years. This study therefore aimed at analysing the frequency and
probability of drought occurrence at multiple temporal scales over a nineteen-year
period across different Agro-ecological regions in Zimbabwe using satellite-
derived metrics.
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Figure 1. Agroecological regions of Zimbabwe (Vincent and Thomas, 1961) overlaid on Sentinel
2016 landcover map (European Space Agency, 2016)

2. Materials and methods
2.1. Study area

Zimbabwe is located in southern Africa and is surrounded by Mozambique to the
east, Zambia to the north, Botswana to the west and South Africa to the south
(Muchadeyi et al. 2007). The country is located between latitude 15 and 22° south
and longitude 26° and 34° east, and is divided into five Agro-ecological regions that
are grouped according to uniform climatic characteristics (Figure 1 and Table 1)
(Masvaya et al. 2010). Zimbabwe is mostly dominated by a sub-tropical climate with
a wet and hot season (October and November) and a cold and dry season (May and
August) (Shoko et al., 2015). Rainfall reliability decreases from north to south as well
as from the east to west. Only 37% of the country receives rainfall considered
adequate for agriculture (Chikodzi et al. 2013). There is distinct rainfall variability
with areas characterized by high altitude receiving high rainfall and low-lying areas
having low and erratic rainfall. The amount of rainfall received determines the nature
of economic activities in particular areas. For example, Agro-ecological Zone 1,
receives an annual rainfall of >1000mm distributed throughout the year while Agro-
ecological Zone 2 receives rainfall of between 700 to 1000 mm received mostly in
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Table 1. The rainfall and agriculture potential of the five agro-ecological regions of Zimbabwe.

Area extent % Total land Annual
Region (million hectares) area rainfall Agricultural Productivity
| 0.62 1.6 >1000 Suitable for dairy farming,

forestry, tea, coffee, fruit, beef
and maize production

Il 7.31 18.8 750-1000 Suitable for intensive farming
based on maize, tobacco,
cotton and livestock

1 6.85 17.6 650-800 Semi-intensive farming region
characterised by mid-season
dry spells. Suitable for
livestock, fodder, and cash
crop production.

v 12.84 33.0 450-650 Semi-intensive agricultural region
characterised by periodic
seasonal droughts and severe
dry spells during the rainy
season. Suitable for farming
systems based on livestock
and resistant fodder crops.

Vv 11.28 11.28 <450 Extensive farming region.
Suitable for extensive cattle or
game ranging

Source: Adapted from Moyo (2000)

summer. These two regions support large and small scale intensive agricultural activ-
ities such as horticulture and mixed farming. In Agro-ecological Zone 3 rainfall varies
between 500 to 700 mm and droughts are a common phenomenon due to infrequent
rainfall. The dry regions (i.e., Agro-ecological Zones 4 and 5) in the low elevation
areas are characterised by erratic and unreliable annual rainfall of less than 600 mm
and these regions are prone to frequent seasonal droughts (Mugandani et al. 2012).
During drought years these regions can receive less than 60% of their long term aver-
age annual rainfall (Nangombe, 2015).

2.2. Data sources

2.2.1. Vegetation condition index (VCl)

In this study, the Vegetation Condition Index (VCI) was used to characterize drought
occurrence in Zimbabwe. The VCI was chosen over other drought indices as it is one
of the most commonly used remotely sensed index for drought and crop condition
monitoring and has been successfully applied across a number of agricultural land-
scapes in Africa (Unganai and Kogan 1998; Kuri et al. 2020; Frischen et al. 2020;
Kuri et al., 2020; Kourouma et al. 2021; Mupepi and Matsa 2022), Asia (Jain et al.
2010; Muthumanickam et al. 2011; Dutta et al. 2015, Khan et al., 2020; Mikaili and
Rahimzadegan 2022), Australia (Kogan et al. 2018; Kuri et al., 2020), North America
(Quiring and Ganesh 2010; Kogan and Guo 2015; Kogan et al. 2017) and even at glo-
bal scale (Kogan et al. 2020, Khan and Gilani 2021). Advantages of the VCI are that
as a satellite-based agricultural drought index, it provides near real time data across
spatial scales and overcomes the problem of sparse network of meteorological stations
that are characteristic of most developing countries such as Zimbabwe (Dhakar et al.
2013). Apart from these advantages, VCI significantly reduces impacts on the spatial
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Table 2. The name and location of Meteorological stations where rainfall used for validating
Vegetation Condition Index was derived as well as the Agro-ecological regions across a rainfall
gradient in Zimbabwe.

Station name Location (LatLon) Agro-ecological region
Beitbridge —22.217, 30.000 Vv

Kadoma —18.317, 29.883 Ilb
Masvingo —20.067, 30.867 11}

Mvurwi —17.033, 30.850 lla

Mutoko —17.400, 32.217 \%

Nyanga —18.217, 32.733 |

heterogeneity in ecological systems, geographical locations, soil conditions and per-
forms well in detecting crop water shortages associated with the NDVI (Kogan 1995;
Liu and Kogan 1996). The VCI was derived from 10-day NDVI composites from
SPOT VEGETATION 1 and PROBA-V satellite at 1-km spatial resolution. SPOT
VGT data is available from the 21% of April 1998 up to the 31% of May 2014.
PROBA-V Normalized Difference Vegetation Index (NDVI) data were used to fill the
gap (1 June 2014 to 31 December 2018). NDVI is a spectral index derived from
remote sensing data to estimate vegetation vigour and is closely related to drought
conditions (Drisya and Roshni 2018). The data were accessed from the Flemish
Institute for Research website (http://www.vito_eodata.be). The acquired raw remotely
sensed images were already pre-processed to remove errors. The VCI derived from
Normalized Difference Vegetation Index (NDVI) is resourceful as it provides near
real-time data over an area at a relatively high spatial resolution. Further, this data
provides an independent methodology for drought monitoring as it incorporates both
climatic and ecological components (Jiao et al. 2016).

2.2.2. Rainfall data

Monthly rainfall data used to calculate the Standardised Precipitation Index were
made available by the Meteorological Services Department of Zimbabwe. The data
covering the period 1980-2020 were from six stations distributed across the five
Agro-ecological regions of Zimbabwe (Table 2). These stations were selected based on
the availability of rainfall data.

2.3. Data analysis

Prior to data analysis, NDVI data was imported into the Drought Monitoring System
(DMS) developed under the EU-AU funded Monitoring the Environment for Security
in Africa (MESA). The VCI was calculated for the period between 2000 and 2018.
The VCI was calculated from the NDVT using the following formula.

VCI = [(NDVIi — NDVIMIN)/(NDVIMAX — NDVIMIN)] % 100 (1)

Where:
NDVI; is the NDVI for the period of interest
NDVIyy is the minimum NDVI ever recorded in each pixel
NDVIax is the maximum NDVI ever recorded in each pixel
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2.3.1. Determining frequency and probability of drought occurrence

To determine the frequency and probability of drought occurrence, pixels were first
classified as having experienced a drought or not based on the 36% threshold sug-
gested by Kogan (1995). Specifically, drought pixels were those with VCI values less
than 36% and were assigned 1 and 0 otherwise. To obtain the frequency of dry dek-
ads per pixel, we summed all the binary maps ie., 1 (drought) and 0 (no drought),
over a specified time scales such as monthly, seasonal, and annual scales. The fre-
quency of drought defined by the number of dry dekads over a given period were
then divided by the total number of dekads over that specified time to yield a prob-
ability map showing how likely it was for drought to occur over that time scale. The
seasonal analysis was based on two periods, the 1°* part covering the first three
months of the rain season i.e., from October to December (OND) while the 2™¢ part
covered the last three months of the rainfall season i.., from January to March
(JEM). This classification is based on the crop growing season in the country during
which time conditions for crop growth are optimal (Kuri et al., 2020). All the output
maps based on the different time scales were later classified for presentation based on
the natural breaks method (Dent et al. 2009). The natural breaks method of data clas-
sification was applied in this study since it has the added advantage of being able to
identify inherent patterns within a dataset (Vasilca 2019).

2.4. Validation of vegetation condition index derived drought

In this study, several validation statistics were used to determine the extent to which
satellite derived Vegetation condition index (VCI) relates to rainfall measurements
from meteorological stations. To calculate these statistics, data from six rainfall sta-
tions distributed across the five Agro-ecological regions of Zimbabwe (Table 2) were
used to calculate Standardised Precipitation Index (Mckee et al. 1993) (SPI) at the
monthly and 3-month timescales. SPI at the monthly and 3-month timescales was chosen
as it is closely related to soil moisture which, in turn, affects crop growth and vigour. SPI
was calculated using the Artificial Intelligence Techniques-Genetic Algorithms available in
the SPIGA package (Ayala-Bizarro and Zuniga-Mendoza 2016) in R Version 4.02 (R
Development Core Team 2015).

Results of SPI and VCI calculations were independently classified into a drought (1)
and no drought (0) classes based on classification scheme by Mckee et al. (1993) and
Kogan (1995), respectively. Specifically, we used VCI of <36% to denote a drought con-
dition and no drought otherwise while a threshold of <0 was used to determine a
drought and >0 no drought based on SPI (Winkler et al. 2017). We did not classify
droughts based on intensity as our interest was on drought detection regardless of the
drought intensity. The resultant Boolean maps were then overlayed in a GIS environ-
ment to create a confusion matrix, indicating the number of times a drought or no
drought condition was detected or missed by these two indices in ILWIS GIS (ITC,
2000). We then calculated several metrics of agreement between these two including:
Sensitivity, Specificity, Accuracy, F1 Score and Matthews Correlation Coefficient, True
Skills Statistic (Table 3) for the 1 month and 3-month time scales.
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Table 3. Metrics used to validate the satellite derived drought index based on SPI calculated
from six rainfall stations across Agro-ecological regions of Zimbabwe.

Measure Derivations

Sensitivity TPR=TP / (TP +FN)

Specificity SPC=TN / (FP +TN)

Accuracy ACC = (TP+TN) / (P+N)

F1 Score F1=2TP / (2TP +FP +FN)

Matthews Correlation Coefficient TP*TN - FP*FN / sqrt((TP 4 FP)*(TP + FN)*(TN -+ FP)*(TN + FN))
True Skills Statistic TPR+TNR —1.

*TP =True Positive; FN = False Negative; TN = True Negative; FP = False Positive.

Further validation was carried out through relating VCI and maize yield at the national
scale. To do this, VCI was first aggregated using the cultivation mask for each of the
growing seasons from 1998 to 2018. This yielded a seasonal average VCI for each growing
season for the country. The seasonal average VCI was then related to annual maize yield
for each corresponding year using regression analysis in R Version 4.02 (Core, R., 2015).

3. Results

3.1. Frequency of drought occurrence across agro-ecological regions at the
monthly scale

The results of drought frequency analysis at the monthly scale showed that over the
entire study period, high frequency of dry dekads were experienced in October,
November and December with November having the highest frequency. Spatially,
areas with the highest frequency droughts are in the southern and northern parts of
the country which coincide with Agro-ecological region 5. The results show that these
regions experienced a cumulative average of 54 dry dekads over the 19-year period
(Figure 2) suggesting multiple occurrences of droughts. In contrast, areas located in
Agro-ecological regions 1 (eastern), 2a and 2b (central to eastern) experienced fewer
drought episodes compared to the rest of the country. Overall, all the Agro-ecological
regions in the country experienced more than one dry dekad across all the months
during the growing season (October to March) as illustrated by drought occurrence
>1 (Figure 2). Comparatively, drought conditions tend to be less in the months of
January to March than between October and December. January, February and
March are the peak rainfall months in Zimbabwe and are often characterised by high
rainfall associated with cyclonic activity.

3.2. Spatial and temporal variation in drought frequency on an annual scale

The results of drought frequency analysis at the annual scale illustrate that the highest
number of dry dekads were experienced in 2002, 2003, 2005, 2006, 2008, 2009 and
2016 (Figures 3 and 4). Among these drought years, the years 2002 and 2008 had the
highest frequency of drought occurrence over the 19-year period. On a spatial scale,
the highest frequency of droughts was observed in the districts of Hurungwe and the
south and north-western parts of the country i.e., Beitbridge and Hwange mostly
located in Agro-ecological region 5. In these districts an annual average of 21 dry dek-
ads were observed over the 19-year period.
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Figure 2. Frequency of drought occurrence for the months of a) October, b) November, ¢) December,
d) January, e) February, f) March and g), April.

3.3. Spatial and temporal variation in frequency of drought occurrence at the
sub-seasonal scale

The results of drought occurrence based on the 1% part of the agricultural season
(October to December) and 2"¢ part (January to March) are illustrated in Figure 5. It
is observed that although droughts are common across the season, the first part of
the season (October to December) is characterised by higher frequency of drought
than the second part of the season (January to March) Specifically, close to three
quarters of the country experience drought in the first half of the season with Agro-
ecological regions 3, 4 and 5 being the most affected. However, across the two sea-
sons the Agro-ecological region 5 had the highest frequency of drought occurrence.

3.4. Frequency of drought at the annual scale over the 19-year period

Results of drought occurrence based on the number of dekads over the 19-year
period show a relatively high frequency of occurrence across all Agro-ecological
regions. This was observed throughout the period under study except for Agro-eco-
logical region 1 and few isolated pockets in Agro-ecological regions 2a and 2b
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Figure 3. Spatial variation in drought frequency at the annual scale across Agro-ecological regions
of Zimbabwe for the years a) 2000, b) 2001, ¢)2002, d) 2003, e) 2004, f) 2005, g) 2006, h)2007, i)
2008, and, j) 2009.

(Figure 6). However, the frequency of drought varied with Agro-ecological region 5
covering the southern districts namely Beitbridge, Chiredzi, Chimanimani, Chipinge,
Gwanda, and Mwenezi having highest frequency of drought occurrence.

Results of drought probability assessment based on dry dekads from the year
2000 to 2018 illustrate that Agro-ecological regions 5 (southern and northern parts
of the country) and 4 (western and north eastern parts of the country are predom-
inantly drought prone with approximately more than 40% channce of experiencing
drought in any year. In contrast, Agro-ecological region 1 has the least likelihood
of a drought followed by Agroecological regions 2a and 2b. Overall, results of the
study show the proness of the country to droughts as illustrated by a probability of
>0.06 (Figure 7).

3.5. V(I Validation using meteorological station derived SPI

Table 4 illustrates the results of the validation metrics based on a one-month SPI
derived from meteorological stations and Vegetation Condition Index. Results show
that sensitivity (True Positive Rate) is generally higher than specificity (True
Negative Rate) across all six stations considered in this study suggesting that the
two metrics agree on drought occurrence more than they agree on the non-occur-
rence of drought. This is further supported by a moderate to relative strong agree-
ment between the two drought indices as reflected by high accuracy values and F1
Scores. In addition, there is relatively weak but positive correlation (as measured
by Matthews Correlation Coefficient and True Skills Statistic) between VCI and
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Figure 4. The spatial variation in the frequency of drought occurrence at the annual scale across
Agro-ecological regions of Zimbabwe for the years a) 2010, b) 2011, c¢) 2012, d) 2013, e) 2014, f)
2015, g) 2016, h) 2017 and, i) 2018.

SPI. Overall, the least agreement in the two indices is observed in the driest regions
i.e., AEZs IV (Masvingo) and V (Beitbridge) while higher correlation is observed in
the wetter AEZs (I-1II).

In contrast, results at the 3-month scale show relatively higher specificity than at
the monthly scale implying concurrence of the two indices in detecting absence
instead of drought presence (Table 5).

Moreover, a stronger relationship, based on Matthews Correlation Coefficient and
F1 score, was observed between SPI and VCI at the 3-month than at 1-month scale.
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Figure 5. The spatial variations in drought frequency across Zimbabwe in the first and second part
of season from the year 2000 to 2018.
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Figure 6. Overall drought frequency from the year 2000 to 2018.

The least correlation between VCI and SPI was observed in the driest region (AEZ
V) while the highest correlation was detected in the wettest region of the country
(AEZ ).
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Figure 7. Probability of drought occurrence based on dekadal data from 2000 to 2018.

Table 4. Validation of vegetation condition index based on one month standardised precipitation
index derived from six stations distributed across agro-ecological regions of Zimbabwe.

Measure Beitbridge Kadoma Masvingo Mvurwi Mutoko Nyanga All six stations
Sensitivity 0.6383 0.8769 0.4516 0.8000 0.8333  0.7857 0.7195
Specificity 0.5085 0.5741 0.6364 0.6709  0.6506  0.6264 0.6452
Accuracy 0.5660 0.7395 0.5882 0.7143  0.7059  0.6639 0.6681
F1 Score 0.5660 0.7862 0.3636 0.6531 06316  0.5238 0.5719
Matthews Correlation Coefficient 0.1468 0.4784 0.0793 04450 04446  0.3502 0.3375
True Skills Statistic 0.1468 0.451 0.088 0.4709 04839 04121 0.3647

Source: Meteorological Services Department of Zimbabwe.

3.6. Relationship between growing season VCI and annual maize yield at the

national scale

Results of correlation analysis illustrates a significant and strong correlation (Fjo=
19.09, R*=0.5012, P =0.000) between VCI and national maize yield with a general
increase in maize yield associated with high VCI and vice versa (Figure 8a and b).
Typical drought years such as 1998, 2002, 2005, 2008, 2009, 2012 and 2016 coincide
with dips in both maize yield and VCI, while normal to above normal rainfall years
are associated with relatively high maize yield.

These results relate well with those of SPI which detected drought and non-drought
years (Figures 9-14) suggesting the utility of VCI to detect agricultural drought.

4. Discussion

The aim of this study was to empirically derive drought frequency over multiple
temporal scales i.e., monthly, seasonal, and sub-seasonal as well as annual scale at
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Table 5. Validation of vegetation condition index based on 3-month standardised precipitation
index derived from six stations distributed across agro-ecological regions of Zimbabwe.

Measure Beitbridge ~ Kadoma  Masvingo ~ Mvurwi  Mutoko  Nyanga  All six stations
Sensitivity 0.3750 0.5000 0.5333 0.5000  0.2727 0.5833 0.4556
Specificity 0.8000 0.9500 0.7727 09333  0.8214  0.8462 0.8582
Accuracy 0.5385 0.7500 0.6757 0.8095 0.6667 0.7632 0.7013
F1 Score 0.5000 0.6400 0.5714 0.6000 03158  0.6087 0.5430
Matthews Correlation Coefficient 0.1845 0.5164 0.3148 0.4985  0.1049  0.4402 0.3470
True Skills Statistic 0.175 0.45 0.306 04333  0.094 0.4295 0.3138
(@)
2500 + - 90
m N - 80
d=3 Maize Yield =—VCI
2000 A —_
5 - 703
Nt ~
Q —
= - 60 ©Q
@ 1500 >
£ - 50 S
e o
S @
=] - 40 @
<1000 A ]
T L 30 &
2 3
> F 20 %
'g 500 -
< L 10
0 - -0
1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
Year
(b)
2500
y = 31.645x - 669.45
R2=0.5012
o o °
P=0.000

N
o
o
o

1500

1000

Maize yield (1000 metric tonnes)

500

35 45

55
Mean VCI (%)

65

75

85

Figure 8. The relationship between maize yield (in 1000 metric tonnes) and Vegetation Condition
Index (a) for each of the years from 1998 to 2018 and b) for the 20-year period.
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national level. Overall, results showed that droughts are a common phenomenon
across all temporal scales, although at a spatial scale, there is great variability in the
prevalence of droughts across the country. For example, at the monthly scale
November was characterised by the highest frequency of drought while at the sub-
seasonal scale the first half of the rainfall season (OND) had the highest frequency
of drought compared with the second half of the season (JFEM). At the annual scale,
the years 2002, 2006, 2008, 2009 and 2018 had the highest frequency of drought
occurrence. Across all these temporal scales, the southern districts of the country
persistently experienced higher frequency of droughts than the rest of the country.
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Figure 11. Variations in monthly SPI based on rainfall measured from 1981 to 2020 at Masvingo
weather station in Zimbabwe.
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Figure 12. Variations in monthly SPI based on rainfall measured from 1981 to 2020 Mutoko wea-
ther station in Zimbabwe.

The retrospective analysis of droughts at the monthly scale showed that November
had the highest frequency of drought occurrence in Zimbabwe. This result is consistent
with Tadross et al., (2007) who observed that effective rainfall, i.e., sufficient rainfall for
planting, is now being received late in the season for several countries in southern
Africa. Since November usually marks the beginning of the rainfall season, drought
occurrence during this period has important implications to food security and liveli-
hoods. This is particularly critical as the country is heavily reliant on rain-fed
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Figure 13. Variations in monthly SPI based on rainfall measured from 1981 to 2020 at Mvurwi
weather station in Zimbabwe.
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Figure 14. Variations in monthly SPI based on rainfall measured from 1981 to 2020 at Nyanga
weather station in Zimbabwe.

agriculture and livestock with the agricultural sector contributing significantly to the
economy through employment creation, foreign currency earnings, supply of raw mate-
rials to industry and contributes a relatively large percentage to GDP (Chifurira et al.
2016). As previous studies have shown that droughts have more profound effects on
crops at the vegetative stage than the reproductive stage, the occurrence of droughts in
November is likely to negatively affect crop germination and ultimately crop yield. In
fact, Allen et al., (1998) noted that, on average, crops require a period of ~30days to
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germinate and establish suggesting that if droughts occur during this month, they will
affect crop establishment and ultimately yield. Moreover, the onset of rainfall influences
the length of the growing season (Oladipo and Kyari, 1993) thereby determining the
suitable crops that can be grown and the yield during this period. Therefore, the
importance of studies aimed at understanding drought progression over time cannot be
over-emphasized especially in rain-fed Agro-based economies.

Like results of drought analysis at the monthly scale, findings at the seasonal scale
indicate that more droughts are experienced in the first half of the rainfall season
(OND) when compared with second half of the season (JFM). The high frequency of
drought occurrence in most parts in the southern, south-eastern, western, and northern
parts of the country during the first part of the season may also be due to late onset of
the rainfall season. These areas are generally classified as low rainfall areas where the
climate is moderated by the low altitude. This finding points to the need to consider
the growing of short season drought tolerant crops such as millet and sunflower. The
relatively high rainfall normally received in the second half of the season in the country
may be explained by the latitudinal movement in the major rainfall bearing systems in
Zimbabwe. Specifically, the southern migration of the Inter Tropical Convergence Zone
(ITCZ) and Congo air boundary (CAB) dominate the greater parts of the country and
are responsible for bringing moisture into the country during the summer season
(Cook 2000; Manjowe et al. 2018) and the effects of these two systems are strongest in
January (Mason et al. 1994). Moreover, the second half of the season is associated with
cyclonic activity in the Indian Ocean that brings lots of rain in the in the eastern, cen-
tral and southern parts of the country. The findings of this study are inconsistent with
previous studies that reported a tendency of dry spells to be concentrated in the second
part of the season than the first part particularly in January and February (Makarau
and Jury, 1997), resulting in crop yield decline (Twomlow et al., 2006; Cooper et al.,
2008). Combined, our results emphasise the importance of multi-temporal scales when
analysing agricultural drought need of assessing data at various spatial scales.

The finding that the southern and western districts of the country such as
Beitbridge, Chiredzi, Gwanda and Mwenezi are highly susceptible to droughts across
all temporal scales is consistent with previous studies. According to results from ear-
lier studies, these districts are within Agro-ecological regions 4 and 5 characterised by
relatively low and erratic rainfall. The low and erratic rainfall could be attributed to
failure of major rainfall bearing systems such as the ITCZ to cover southern most
parts of the country resulting in reduced rainfall (Frischen et al. 2020, Chikodzi and
Mutowo 2013, Mutowo and Chikodzi 2014). For example, in districts like Beitbridge,
extremely high temperatures are experienced for consecutive days during the rainfall
season resulting in high evapotranspiration and high soil-moisture deficits contribu-
ting to crop failure in the region (Simba, 2012). In fact, the southern districts have
been identified as the most vulnerable to droughts in the country and are thus priori-
tised for the government projects on coping with drought. Results from this study
further emphasise the need for not only identifying areas at risk of agricultural
drought but the specific periods during which droughts are experienced thereby pro-
viding spatially and temporally specific information that is key in making interven-
tions in the agricultural sector such as irrigation.
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Opverall, results showed that droughts are a recurrent phenomenon with an aver-
age of six out of 19 years having experienced drought. The most intense drought was
detected in the years 2002 and 2008 and its spatial coverage also varied spatially.
Previous studies have also identified the years 2001, 2002, 2003, 2006, 2008 to 2016
as extensive drought years in Zimbabwe (Winkler et al. 2017). Given that the coun-
try is already exposed to incessant droughts under the current climate (Zimbabwe
Third National Communication to the UNFCCC, 2016) and that the frequency of
droughts and other extreme events are projected to increase in future, there is need
to develop proactive strategies for ensuring that agriculture production is sustained
or even increased, especially in view of the ever-increasing population. For instance,
the adoption of climate smart agriculture, a suite of methods that seeks to align agri-
cultural practices to climate change and variability (e.g., conservation farming and
adoption of drought tolerant varieties) could help in reducing drought impacts on
the agricultural sector. The country also needs to take advantage of the abundant
water resources to develop irrigation supported agriculture to reduce crop failure.
Thus, our study emphasizes the need for multi-temporal approaches in assessing
agricultural droughts.

Results of the validation exercise illustrate a strong positive correlation between
VCI and maize yield (r=0.701, p=000), with the former explaining more than 50%
of the variation in maize yield at the national scale. The relationship between VCI
and maize yield has long been established within heterogeneous agricultural land-
scapes of southern Africa (Unganai and Kogan 1998; Mikaili and Rahimzadegan
2022). The study demonstrated that between 46 and 83% of the variance in maize
could be explained by VCI thereby pointing out to the suitability of VCI in detecting,
monitoring as well as mapping agricultural drought. Similarly, Gitelson et al. (1998)
carried out a study in Kazakhstan across a climatic gradient and illustrated that VCI
consistently explained 76% of the variance in crop density. Zambrano et al. (2016)
demonstrated the utility of the VCI in detecting drought as well as accurately identi-
fying affected stakeholders in a drought-prone areas thereby and improving drought
emergency response, especially in the absence of local observations. Using the dry
dekads derived from the VCI, Kuri et al. (2014, 2017, 2020) established a significant
relationship between maize yield and the number as well as sequence of the VCI-
based dry dekads during the growing season. Thus, our results further provide evi-
dence of the utility of the VCI in characterising droughts in agricultural landscapes.

Further validation based on several statistics such as Matthews Correlation
Coefficient and True Skills Statistic established a relatively poor agreement between
satellite-derived VCI and station-based one month SPI but slightly improved at 3-
month scale. Two mechanisms may explain the observed poor relationship between
VCI and SPI at the monthly scale. First, the lagged response of vegetation to a
drought episode is expected to dampen the relationship between VCI and SPI (Ji and
Peters, 2003; Tornros and Menzel 2014). For instance, Zambrano et al. (2016)
observed the strongest correlation between VCI and SPI at 3-month timescale in
croplands of Chile, suggesting the time lag in response of crops to a drought event.
These results are in accord with Wei et al. (2021) who observed the tendency of the
VCI and TCI to perform well in monitoring long-term drought conditions. Although
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focusing on eco-regions of Africa, Lawal et al. (2021) observed variability in the time-
scales of the response of vegetation indices to drought with shorter responses over
most parts of southern Africa. However, since the focal areas in this study are pre-
dominantly croplands one would expect a faster response of crops to a drought epi-
sode. Second, the cropping systems are heterogeneous consisting of irrigated and
non-irrigated areas. It is therefore reasonable to assume that the relationship between
VCI and SPI should be stronger under rainfed agricultural landscapes than irrigated
as the latter system supplements rainfall during periods of moisture stress thereby
reducing the sensitivity of crops to changes in moisture availability. Qian et al. (2016)
attributed the low correlation between the VCI and precipitation to extensive use of
artificial irrigation thereby reducing sensitivity to variations in precipitation.
Similarly, a study by Bhuiyan et al., (2006) revealed better correlation between VCI
and SPI during the monsoon season (rainfall season) as vegetation performance is
heavily dependent on precipitation unlike the other seasons which are partially reliant
on irrigation. In our study, the VCI data were not separated by irrigation status as
data on irrigation were not available. Thus, future studies need to test the sensitivity
of crops to meteorological drought under different agricultural water supply systems.

Another important result of this study is that there is better correlation between VCI
and SPI in wetter than drier regions at both 1-month and 3-month scale (Table 3). This
could suggest that crops in wetter regions are more sensitive to changes in water avail-
ability than those in higher rainfall areas. Lawal et al. 2021 demonstrated the differential
response of vegetation to changes in moisture availability across a rainfall gradient. In
particular, the study illustrated that plants in drier regions tend to develop drought toler-
ant morphological and physiological attributes that make them less sensitive to drought
episodes unlike plants in the wetter regions that have shorter response timescales to
droughts. Although this finding may not be surprising, our study is among the first to
demonstrate differential response of plants to drought in agricultural landscapes.

This study generated important insights into spatial occurrence of drought across
heterogeneous agricultural landscapes of Zimbabwe at various temporal scales using
VCI. Although VCI has been widely used across various climate systems, spatial
scales, agricultural as well as ecological systems, it has some drawbacks that warrant
attention. Singh et al. (2003) observed that it may be difficult to distinguish low VCI
values emanating from flooding and drought thereby making the VCI unsuitable for
drought monitoring when used independently. Studies have also shown that the VCI
tends to be outperformed by other drought indices that incorporate temperature such
as Vegetation Health Index. Nevertheless, the close correlation between the VCI and
maize yield at the national scale in our study suggest that the performance of the
drought index could be context and scale specific. Thus, future studies could test the
performance of the VCI in detecting drought intensities at various spatial scales and
different environmental settings. Furthermore, it will be interesting to test the per-
formance of the VCI in monitoring agricultural drought using various sensors such
as the Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat 8 and
Sentinel which have different spatial, temporal, radiometric and spectral resolutions.
Such studies will help in shedding light on the optimal spatial and temporal scale at
which agricultural drought can be detected using indices such as VCI and VHL
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5. Conclusion

In this study Vegetation Condition Index (VCI) was successfully used to detect the fre-
quency and probability of agricultural drought occurrence including trends in the
occurrence of high intensity droughts. On a yearly scale, droughts were detected in
2002, 2006, 2008, 2009 and 2018 while at the monthly scale November had the highest
frequency of drought occurrence. This period coincides with the onset of the crop
growing season, which has important implications to the final yield loss at the end of
season. High frequency of drought occurrence was found to be more common in first
part of the season compared to the last part of the season. Furthermore, there was a
statistically significant positive relationship between VCI and maize yield at the national
scale suggesting the utility of VCI in monitoring agricultural drought. The study dem-
onstrated the utility of satellite derived vegetation indices in identifying geographic
areas which are at risk of experiencing a drought. The findings of this study provide
critical baseline information required for the provision of early warning systems and
disaster preparedness in areas exhibiting high risk of drought occurrence in Zimbabwe.
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