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Abstract: While accelerometers could be used to monitor important domains of walking in daily
living (e.g., walking speed), the interpretation of accelerometer data often relies on validation studies
performed with healthy participants. The aim of this study was to develop cut-points for waist-
and ankle-worn accelerometers to differentiate non-ambulation from walking and different walking
speeds in people post stroke. Forty-two post-stroke persons wore waist and ankle accelerometers
(ActiGraph GT3x+, AG) while performing three non-ambulation activities (i.e., sitting, setting the
table and washing dishes) and while walking in self-selected and brisk speeds. Receiver operating
characteristic (ROC) curve analysis was used to define AG cut-points for non-ambulation and different
walking speeds (0.41–0.8 m/s, 0.81–1.2 m/s and >1.2 m/s) by considering sensor placement, axis,
filter setting and epoch length. Optimal data input and sensor placements for measuring walking
were a vector magnitude at 15 s epochs for waist- and ankle-worn AG accelerometers, respectively.
Across all speed categories, cut-point classification accuracy was good-to-excellent for the ankle-worn
AG accelerometer and fair-to-excellent for the waist-worn AG accelerometer, except for between
0.81 and 1.2 m/s. These cut-points can be used for investigating the link between walking and health
outcomes in people post stroke.

Keywords: accelerometers; ActiGraph; gait speed; objective measurement; ROC analysis; stroke;
wearable sensors

1. Introduction

Walking is the most common form of physical activity (PA) [1], and how fast a person
walks (i.e., gait speed) is associated with health, risk of disease, and mortality in the
future [2–4]. Recovering walking ability is an important goal for people post stroke [5] and
a useful marker of independence, functioning and health status across the continuum of
recovery after stroke [6–8]. In stroke research and clinical practice, gait speed is commonly
assessed in a standardized setting using a performance-based test (e.g., 10 m walk test or
6 min walk test) [8]. Although the clinical assessment of gait speed provides important
information of the level of function post stroke, it does not provide quantitative information
of actual walking ability outside the clinical setting (e.g., home environment).

The ActiGraph GT3X+ (AG; ActiGraph Corp., Pensacola, FL, USA) is a small triaxial
accelerometer (dimensions: 4.6 × 3.3 × 1.5 cm; weight: 19 g) with a dynamic range of
±6 G (1 G = 9.81 m/s2) [9], and it is one of the most used accelerometers for measuring
PA [10–12]. The AG device measures continuous acceleration signals related to PA that
are in turn converted to a ‘count’, which is defined as the acceleration signal crossing a
proprietary amplitude threshold (greater counts indicating more intense PA). Population-
specific count cut-points have been developed to distinguish between different PA levels
(i.e., sedentary, light-intensity PA, and moderate-to-vigorous PA) [13]. The AG device
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can be worn on different body positions (e.g., waist and ankle) and can continuously
measure PA over a prolonged period (up to six weeks at 30 Hz). Although previous studies
have mostly used energy-expenditure measurements (such as indirect calorimetry) as the
criterion measure [14–16], accelerometers measure a biomechanical characteristic of PA,
so researchers have suggested that PA intensity can be interpreted in the biomechanical
domain, e.g., by referring the AG output (i.e., counts) to walking speed categories [17].

Previous studies have demonstrated that the AG device underestimates energy expen-
diture in people post stroke [18–20]. This is believed to be influenced by the often-altered
gait pattern post stroke (e.g., hemiparesis) [21] that, combined with slow walking speed,
leads to lower AG output even if a fairly high energy expenditure is required for ambula-
tion [20,22]. Slow walking speed also affects the AG accelerometer’s step detection accuracy,
and previous studies have demonstrated the poor accuracy of the AG device when de-
tecting steps in people post stroke—especially when worn on the waist and during slow
walking (<0.6 m/s) [23,24]. Furthermore, the authors of most previous studies developed
accelerometer cut-points using epoch lengths of 60 s [12,25]. However, such cut-points
are difficult to apply to populations with impaired gait (e.g., following stroke) who rarely
perform steady-state walking bouts for ≥60 s [26]. AG cut-points reflecting shorter epoch
length (e.g., 15 s) might therefore be better suited to measure frequent short-duration
walking bouts with low numbers of sequential steps for people post stroke.

Currently, there are no AG cut-points for measuring the gait speed developed for
people post stroke. Importantly, the assessment and classification of walking speeds in
daily life requires not only cut-points to separate different walking speeds but also a
minimum cut-point to separate non-walking from walking. The aim of this study was
therefore to develop cut-points for waist- and ankle-worn AG accelerometers to differen-
tiate non-ambulation from walking and different walking speeds in people post stroke.
Since previous studies have shown that the accuracy of AG accelerometers is affected by
placement on the body (e.g., waist or ankle) [23,24], the axis analyzed, and data-filtering
options [11], these parameters should also be taken into consideration while developing
cut-points.

2. Materials and Methods
2.1. Study Participants

People who had a stroke ≥3 months prior to study participation and had the ability to
ambulate with/without a walking device for 2 min were recruited from two rehabilitation
centers in Stockholm, Sweden, through advertisement platforms. Exclusion criteria were
cognitive deficit, severe neglect and aphasia affecting the ability to give written consent and
follow instructions. The project was approved by the Regional Board of Ethics in Stockholm
(2017/1626-31 and 2018/2524-32), and all study participants gave written consent prior to
study participation.

2.2. Data Collection

All participants attended one session at a rehabilitation facility that included:
(a) structured interviews of demographics and personal factors; (b) clinical tests and
questionnaires regarding the severity of stroke symptoms, cognition, activities in daily
living, and functional mobility; and (c) the assessment of walking and non-ambulation
activities using AG accelerometers. All assessments were conducted by a physiotherapist
with experience in working with people post stroke.

Demographic data included sex, age, living situation, height, weight, employment
status, mobility status (unaided/walking aid), and information about stroke (i.e., years
since stroke, type of stroke and affected side). The severity of stroke and cognition was
assessed with the National Institutes of Health Stroke Scale (NIHSS) [27] and Montreal
Cognitive Assessment (MoCA) [28], respectively. Additionally, personal activities of daily
living (e.g., bathing, dressing and toileting) and instrumental activities of daily living (e.g.,
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shopping, cleaning and transportation) were assessed using the Katz ADL Index Extended
(KATZ Index) [29].

Participants performed three non-ambulation activities and two different walking
tests (see Table 1). The non-ambulation activities were chosen due to their occurrence in
daily living, and the duration was chosen to reach steady state. For the walking activities,
the 6-minute walk test was used since it is an established clinical assessment of functional
ability [30]. Prior to the assessment of these activities, participants were fitted with two
AG accelerometers (model GT3X+, ActiGraph Corp., Pensacola, FL, USA). The position
of the accelerometers was guided by the work of Webber and St. John [31], with the AG
accelerometers attached around the right waist (above the iliac crest) and ankle (proximal
to the lateral malleolus) on the side of the body not affected by the stroke symptoms (see
Figure 1). These placements of AG accelerometers have been the most commonly used
in previous studies of PA in people post stroke [23,32,33]. The AG devices recorded time-
series acceleration data in three axes at a sampling rate of 30 Hz [9]. During the assessment
of non-ambulation activities and walking, the test leader noted the start and stop times
to extract the corresponding data from the AG sensor signal. During the assessment of
walking, the test leader recorded the distance for the self-selected and brisk walking trials.

Table 1. Non-ambulation and walking test conditions.

Task Description and Instructions

Non-ambulatory 1

Sitting (5 min)
The test leader conducted structured interviews related to
demographics and personal factors while the participants were
seated on a regular chair in front of a table.

Setting the table (3 min)

Participants sat on a chair with three kitchen crockery set placed
in front of them and were asked to align all items as if they were
setting the table for dinner. After completing this, participants
returned the items back to the starting position and repeated the
task.

Washing dishes (6 min)

Participants were equipped with a dish-cleaning brush and stood
in front of a kitchen sink with a kitchen crockery set positioned on
the left-hand side of the sink. The participants were asked to
wash the dishes, dry the dishes with a cloth and position them on
the right-hand side of the sink. This process was repeated, this
time while moving the dishes from the right to the left-hand side.

Walking 2

Self-selected walking speed
(6 min)

Participants were asked to “walk at their normal comfortable
walking speed for 6 min”.

Brisk walking speed (6 min) Participants were asked to “walk as fast as they can in a safe
manner, without running, for 6 min”.

1 The non-ambulatory activities are detailed in the work of Bezuidenhout et al. [34]. 2 The walking was performed
on a track with 180 degree turns every 60 m, and participants were allowed to use a walking aid if needed.
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2.3. Data Management and Analysis

ActiGraphs’ corresponding software (ActiLife®, version 6.13.4, ActiGraph Corp., Pen-
sacola, FL, USA) was used to download and manage the AG waist and ankle data. To
extract PA movements and attenuate artifacts, ActiLife software uses a bandpass filter be-
tween 0.25 and 2.5 Hz [35]. The raw acceleration signal (positive and negative) is digitized
by a 12-bit analog-to-digital converter, which corresponds to 4096 levels of acceleration
measurements (i.e., 212 = 4096), where zero acceleration (i.e., no movement) is associated
with the center of the analog-to-digital scale (i.e., 4096/2 = 2048). The acceleration in both
positive and negative directions, which is proportional to the vector component of the
acceleration, deviates the signal from the zero acceleration. The acceleration signal is then
converted to counts, where a count is defined as the acceleration signal crossing a ActiLife
proprietary amplitude threshold. The AG count data for three axes (vertical, anterior–
posterior, and medio-lateral) and vector magnitude (i.e., summation of counts for all three
axes, VM) were then summed to 15 s and 1 min epochs and exported as a MATLAB file
using ActiLife. The 15 s and 1 min epochs were chosen to account for both frequent short-
and long-duration walking bouts occurring in daily living. The AG data were obtained
using both the default filter (0.25–2.5 Hz) and the low-frequency extension filter [36,37].
The latter is recommended for low-intensity activities [38], such as slow walking [34].

The AG data were segmented into the individual activities (i.e., the total duration of
each walking or non-ambulatory activity) using the start and stop times recorded by the
test leader. The first and last 15 s of each activity were disregarded since they comprised the
initialization and termination of the activities and to ensure that steady-state movements
were reached. All the non-ambulation activities (tasks 1–3) were pooled together to form
one non-ambulatory category.

For the walking conditions, the speed of each trial was calculated by dividing the
distance walked by the time recorded to cover the distance, and all trials were assigned
to one of the following speed categories: 0.4–0.8 m/s, 0.81–1.2 m/s, and >1.2 m/s. These
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speed categories were selected because they are often used in stroke research to discrim-
inate between limited community ambulators (0.4–0.8 m/s) and unlimited community
ambulators (0.81–1.2 m/s) [39].

The vertical count of the waist placement (default filtering) is the most used variable
of AG sensors to measure PA [10], while ankle-worn sensors utilizing the low-frequency
extension filter have presented improved step detection during slow walking [40]. There-
fore, the cut-points were developed for both sensor placement and filtering settings in the
y-axis and VM. Receiver operating characteristic (ROC) curve analysis was used to develop
the cut-points for the ankle- and waist-worn AG sensors to distinguish non-ambulatory
activities from walking and between different group speeds. The cut-point was defined as
the point on the ROC curve that maximized the sensitivity and specificity, i.e., the point
nearest to sensitivity = 1 and 1-specificity = 0 (the point closest to the upper left corner of
the ROC curve) [41,42]. A test of perfect classification has sensitivity = 1, 1-specificity = 0,
and AUC = 1. The area under the curve (AUC) was used to provide an empirical basis for
determining the most appropriate cut-points, where an AUC < 0.7 = poor; 0.7–0.79 = fair;
0.8–0.89 = good; ≥0.90 = excellent; and 1 = perfect test [42,43]. Descriptive statistics were
used to describe the stroke participant and AG data.

3. Results
3.1. Study Participants

Forty-two people post stroke participated in this study (see Table 2 for participants’
characteristics). There was an almost even distribution between women (55%) and men (45%),
and most participants had experienced an ischemic stroke (74%) and were independent in
primary ADL (87%) but not in instrumental ADL (48%). Twelve (29%) participants used a
walking device (walking cane: n = 9; stroller: n = 3) while performing the walking tests. Five
participants were excluded due to failure to complete the 6 minutes of walking. Due to sensor
availability, 11 participants only used the waist AG accelerometer. The speed classification
along with the median counts per 15 s and 1 min epochs are presented in Table 3.

Table 2. Participant characteristics.

Variables People Post Stroke (n = 42)

Male sex, n (%) 19 (45)
Age (years), mean (SD) 63.4 (12.4)
Living alone, n (%) 15 (36)
Body mass index, mean (SD) 25.8 (3.5)
Mobility status, n (%)

Unaided 30 (71)
Walking aid 12 (29)

Years since stroke, mean (SD) 2.4 (3.9)
Type of stroke, n (%)

Ischemic 31 (74)
Hemorrhage 11 (26)

Affected side, n (%)
Right 15 (36)
Left 27 (64)

NIHS stroke scale 2.1 (1.6)
MOCA score, mean (SD) 24.6 (3.5)
KATZ, n (%)

Independent Primary ADL 35 (83)
Independent Instrumental ADL 20 (48)

Abbreviations: SD: standard deviation; n: number of participants; NIHSS: National Institutes of Health Stroke
Scale; MOCA: Montreal Cognitive Assessment; and KATZ: Katz ADL Index Extended.
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Table 3. Sample data used for the development of cut-points, including number of observations, me-
dian and confidence interval of ActiGraph counts in the non-ambulation and walking test conditions
for the waist and ankle vertical and vector magnitude counts.

15 s Epoch
Waist Ankle

n Median (95% CI) Median (95% CI)
Vertical VM

n
Vertical VM

Non-amb. 107 0
(7–39)

0
(15–70) 93 0

(7–22)
0

(15–39)

0.41–0.8 m/s 20 338
(283–441)

519
(495–790) 16 912

(724–1421)
1394

(1135–1890)

0.81–1.2 m/s 28 423
(341–477)

759
(621–847) 24 1898

(1444–2140)
2546

(2021–2774)

>1.2 m/s 22 555
(456–653)

1147
(976–1285) 15 3456

(2961–4354)
4045

(3479–4876)
1 min Epoch

Non-amb. 107 17
(41–157)

44
(78–280) 93 14

(41–89)
37

(78–158)

0.41–0.8 m/s 20 1204
(997–1634)

1908
(1735–2932) 16 3496

(2593–5287)
5393

(4029–7064)

0.81–1.2 m/s 28 1628
(1265–1793)

2758
(2287–3181) 24 6777

(5265–8037)
9660

(7392–10,474)

>1.2 m/s 22 2099
(1580–2450)

4244
(3348–4839) 15 13,178

(10,023–16,569)
15,576

(11,774–18,619)

Abbreviations: Non-amb (non-ambulation), n (numbers), CI (confidence interval), m/s (meter per second), and
VM (vector magnitude counts).

3.2. Cut-Points

Table 4 shows the sensitivity and specificity for each speed category for the waist- and
ankle-worn AG accelerometers using the vertical and VM counts for both 15 s and 1 min
epochs. Across all categories and regardless of the epoch length, the AUC for the waist-
worn AG accelerometer was poor-to-excellent (0.60–0.91) for both vertical and VM counts,
with the non-ambulatory category having the highest sensitivity and specificity (Table 4).
For the ankle-worn AG accelerometer, the AUC ranged from fair to excellent (0.76–0.99) for
both vertical and VM counts and epoch lengths. Table 5 shows the optimal recommended
cut-points for the waist- and ankle-worn AG accelerometers based on 15 s epochs. For the
waist-worn AG accelerometer, classification accuracy was excellent for the non-ambulation
threshold (Figure 2A), poor for 0.41–0.8 m/s (Figure 2B), and fair for 0.81–1.2 m/s threshold
(Figure 2C). For the ankle-worn AG accelerometer, classification accuracy was good-to-
excellent for all categories (Figure 2D–F). The results from the low-frequency extension
filter did not improve the accuracy of the classification.

Table 4. ROC analysis for different ambulatory categories for 15 s and 1 min epochs.

15 s
Waist Ankle

Axis Cat. Sen. Spec. AUC Cut-Point Sen. Spec. AUC Cut-Point
V Non-amb. 0.80 0.87 0.92 ≤41 0.96 0.99 0.99 ≤184

0.41–0.8 0.70 0.57 0.60 42–372 0.75 0.83 0.79 185–1363
0.81–1.2 0.58 0.74 0.66 373–502 0.79 0.91 0.91 1364–2851

VM
Non-amb. 0.95 0.93 0.97 ≤140 0.96 0.99 0.99 ≤401
0.41–0.8 0.76 0.59 0.61 141–572 0.82 0.88 0.83 402–1862
0.81–1.2 0.71 0.81 0.81 573–990 0.83 0.86 0.92 1863–3265
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Table 4. Cont.

1 min
Waist Ankle

Axis Cat. Sen. Spec. AUC Cut-Point Sen. Spec. AUC Cut-Point
V Non-amb. 0.77 0.92 0.91 ≤270 0.92 0.99 0.98 ≤570

0.41–0.8 0.65 0.65 0.60 271–1458 0.76 0.76 0.76 571–4445

0.81–1.2 0.53 0.79 0.63 1459–2055 0.73 0.89 0.84 4446–
10,793

VM
Non-amb. 0.92 0.91 0.95 ≤491 0.96 0.92 0.98 ≤779
0.41–0.8 0.72 0.66 0.61 492–2254 0.75 0.89 0.80 780–7200

0.81–1.2 0.64 0.90 0.76 2255–4058 0.80 0.86 0.84 7201–
12,487

Abbreviations: V (vertical counts), VM (vector magnitude counts), Cat (category), Sen (sensitivity), Spec (speci-
ficity), and Non-amb (non-ambulation). Speed categories are given in m/s.

Table 5. Developed walking speed cut-points for vector magnitude counts for waist- and ankle-worn
ActiGraph.

Waist VM Counts
/15 s

Ankle VM Counts
/15 s

Non-ambulation ≤140 ≤401
0.41–0.8 m/s 141–572 402–1862
0.81–1.2 m/s 573–990 1863–3265
>1.2 m/s ≥991 ≥3266
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ambulation, (B) 0.41–0.8 m/s, and (C) 0.81–1.2 m/s; ROC curves for the VM counts/15 s for the
ankle-worn AG accelerometer for (D) non-ambulation, (E) 0.41–0.8 m/s, and (F) 0.81–1.2 m/s.

4. Discussion

To our knowledge, this is the first study to provide AG cut-points for measuring
walking speeds in people post stroke. The results showed the VM counts using a 15 s
epoch length for both the waist- and ankle-worn AG accelerometers to be most sensitive in
differentiating between non-ambulatory and walking and in classifying different walking
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speed categories in people post stroke. Our findings also showed that the ankle-worn AG
accelerometers were more sensitive in distinguishing between walking speeds compared to
the waist-worn AG accelerometers, and the low-frequency extension filter did not improve
the accuracy. The resultant cut-points may be used to quantify PA behavior in people post
stroke and to ascertain regular free-living walking speed in this population.

The authors of previous studies have developed AG cut-points for walking conditions
in healthy older adults with speeds between 0.7 and 1.3 m/s [42,44] and people with
Parkinson’s disease at speeds between ≤1.04 and ≥1.31 [42], but no previous study has
defined cut-points for slow walking among people post stroke. Slow walking speeds have
been linked to dependency in daily living, declines in function, and health status after
stroke [6–8]. It is therefore important to accurately detect walking speeds in daily life in
order to identify individuals post stroke who have an increased risk of deteriorating health.
Compared to the AG cut-points defined by Nero et al. 2015 for walking speeds of older
people with Parkinson’s disease [42], the cut-points presented here for around 1.0 m/s are
higher. Nero et al. 2015 reported a VM cut-point for a waist-worn AG accelerometer of
470 counts/15 s and 851 counts/15 s to separate walking at 1.04 and ≥1.31 m/s, respec-
tively, whereas in our study, we reported between 573 and 990 counts/15 s to separate
walking at > 0.81–1.20 m/s and ≥991 counts per 15 s to separate walking at ≥1.20 m/s. The
difference in the developed cut-points could be attributed to the difference in gait-speed
groups and/or the two populations having different gait patterns. People post stroke often
present with an asymmetric gait pattern characterized by jerking movements of the trunk
and a reduced coordination and range of motion of the affected leg [45]. Hemiparetic gait
could in turn cause the movement of the body to induce high amplitudes of the accelerom-
eter signal. In contrast, people with Parkinson’s disease often present with reduced speed,
step length, and cadence during walking [46], which could reduce the accelerometer signal.
Furthermore, the waist AG cut-point (≤140.4 vector magnitude counts/15 s) developed in
the present study for differentiating slow walking (0.41–0.8 m/s) from sedentary behavior
is similar to previous cut-points reported for older adults [25].

For people post stroke, ankle-worn AG accelerometers have been proposed as an
alternative to the waist-worn AG accelerometers, which have been the most used in pre-
vious studies [12]. The ankle placement of the AG accelerometer compared to the waist
has been shown to be more accurate for step detection in people post stroke [23] and
in healthy individuals [40]. Our results are in line with these findings, with the present
results showing the ankle-worn AG accelerometers to be more sensitive in distinguishing
non-ambulation from walking and different walking speeds compared to the waist-worn
AG accelerometers. The difference in accuracy could be attributed to the attenuation of the
signal amplitude from the distal to proximal placement (i.e., higher signal amplitude at the
ankle compared to the waist-worn AG accelerometer). This is especially evident during
slow walking, where the acceleration signal at the waist-worn AG accelerometer is likely
not sufficient to cross the proprietary AG software amplitude threshold to determine a
count [40,47]. Although we consider using waist-worn AG accelerometers to measure PA
in daily living to be more feasible compared to ankle-worn AG accelerometers, our results
and previous findings suggest that ankle-worn AG accelerometers should be used for the
more accurate analysis of walking in daily life.

The present results demonstrate an overall higher sensitivity in differentiating between
non-ambulatory and walking and in classifying different walking speed using 15 s epochs
compared to 1 min epochs (Tables 3 and 4). In our study, we deliberately decided to
use a shorter epoch length (15 s) since populations with impaired gait rarely perform
steady-state walking in longer bouts. We also included the analysis of the longer epoch
length (i.e., 1 min) because it has been documented that longer epoch often results in the
improved accuracy of accelerometer cut-points when differentiating activity vs. sedentary
behavior [25]. However, 1 min cut-points are difficult to apply to people with stroke who
rarely walk in bouts of ≥60 s. AG cut-points reflecting a short epoch length might therefore
be better suited to measure frequent short-duration walking bouts with low numbers of
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sequential steps for people post stroke [26]. Since accelerometer cut-points for a given
epoch length and axis cannot simply be extrapolated to other epoch lengths or units [25],
we recommend that the cut-points defined in our study are applied using 15 s epochs.

The low-frequency extension filter increases the sensitivity of the accelerometer signal
during low-intensity movements and should theoretically be more sensitive in measuring
slow walking speeds. However, the present results do not support an improved accuracy
of classifying gait speed using the AG low-frequency-extension filter. Previous studies
have reported the improved accuracy of detecting steps while walking using the AG
low-frequency extension filter during slow walking in healthy individuals [40] but not
in people post stroke [23]. As discussed above, the high amplitudes of the accelerometer
signal despite slow walking are a plausible reason why this filter does not lead to a
better classification of walking speed in people post stroke. It is also worth noting that
12 participants used a walking device during the walking test, though sub-analysis showed
no difference in the sensitivity between the group using a walking device and the group
not using a walking device.

There is a general shift from traditional cut-point (i.e., ROC analysis) development
towards fusion algorithms (i.e., various filtering techniques) and machine learning ap-
proaches [48]. Such approaches could result in the better classification of different walking
speeds in people post stroke. However, the implementation of these algorithms (e.g.,
machine learning) requires programming skills and specific software amongst health re-
searchers and healthcare professionals that are sometimes absent in research or clinical
settings [48]. While our results showed the ankle-worn AG accelerometer to be the most
sensitive in distinguishing walking from non-ambulation and different walking speed
categories, data fusion considering different axes could yield more sensitive outcomes,
especially in individuals who have ankle-related joint problems. Although future work
will entail analyzing raw acceleration data and the use of machine learning, the developed
cut-points in this study are easy to implement and provide valuable information regarding
which AG variables can be used to classify walking speed in people post stroke.

Our study had some limitations, including the relatively small sample size that con-
sisted of people with chronic stroke; therefore, our results are not generalizable to the
overall stroke population. Another limitation was that the developed cut-points can only
be used for AG accelerometers, especially since the AG software uses a proprietary ampli-
tude threshold to determine a count. However, AG is one of the most used accelerometers
to measure PA [10–12]. Although the AG proprietary threshold-based algorithm lacks
adaptability and the use of other sensors (i.e., foot switcher) might be more sensitive in
classifying different ambulation states, AG accelerometers have several benefits to clinical
practices (i.e., could be worn on different body positions and measure PA for up to 6 weeks).
The stroke participants also walked for 6 min, and it is unclear whether walking for such
a prolonged time hindered their steady-state walking, especially when walking briskly.
Moreover, individuals with stroke have a high variation in walking, especially people who
walk slowly due to hemiparesis. This could decrease the robustness of the walking speed
classifications, especially during shorter epoch lengths (e.g., 15 s). However, shorter epoch
lengths might better reflect the variable nature of steady-state walking in daily living than
longer epochs. We suggest that future work should also entail validating and applying the
present AG cut-points in daily living in people post stroke. Such an analysis will ideally
include an assessment of the activity counts variability to inform future calibration studies
about reasonable epoch length in the stroke population.

5. Conclusions

Our results showed that the VM counts for the ankle-worn AG accelerometers to be
most sensitive in differentiating between non-ambulatory and walking and in classifying
different walking speeds in people post stroke. The resultant cut-points may be used to
quantify PA behavior in people post stroke and to ascertain regular free-living walking
speed in this population. In the clinical setting, the developed cut-points can be used as a
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complimentary measure to the clinical assessment of walking through clinical tests (e.g.,
6 min and 10 m walk tests). The classification of walking speeds in daily living is of clinical
interest post stroke due to the strong association between walking speeds and the risk of
deteriorating health.
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