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Despite the availability of an abundant literature on singularly perturbed problems,

interest toward non-linear problems has been limited. In particular, parameter-uniform

methods for singularly perturbed semilinear problems are quasi-non-existent. In this

article, we study a two-dimensional semilinear singularly perturbed convection-diffusion

problems. Our approach requires linearization of the continuous semilinear problem

using the quasilinearization technique. We then discretize the resulting linear problems

in the framework of non-standard finite difference methods. A rigorous convergence

analysis is conducted showing that the proposedmethod is first-order parameter-uniform

convergent. Finally, two test examples are used to validate the theoretical findings.

Keywords: semilinear singularly perturbed problems, two-dimensional partial differential equations, fitted

operator finite difference method, quasilinearization, error analysis, uniform convergence

1. INTRODUCTION

The study of singularly perturbed problems has flourished since the publication of Prandtl’s seminal
work in 1904 on “boundary layers” [1]. Many researchers have paid attention to the theoretical and
computational aspects of those problems. The usual task has been to provide means of dealing with
the challenges that come with the perturbation parameter and its impact on the solution behavior.
While countless successes have been recorded in the case of linear singularly perturbed problems
[see for example [2–7]], little attention has been paid to the non-linear case.

In this article, we study the two-dimensional singularly perturbed semilinear convection-
diffusion problems

− ε(uxx + uyy)+ a1(x, y)ux + a2(x, y)uy = −f (x, y, u(x, y)), (x, y) ∈ � : = (0, 1)× (0, 1), (1.1)

subject to boundary conditions

u(x, y) = u0(x, y), (x, y) ∈ ∂�, (1.2)

where ε is the perturbation parameter with 0 < ε ≪ 1. The semilinear source term f (x, y, u(x, y))
and the coefficient functions a1(x, y), a2(x, y) are assumed to be sufficiently smooth and satisfy
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a1(x, y) > α1 > 0, a2(x, y) > α2 > 0, ∀ (x, y) ∈ �̄, (1.3)

fu(x, y, u) > β > 0, ∀ (x, y) ∈ �̄, (1.4)

where α1,α2 and β are constants and ∂� is the boundary of�.
Under these conditions (1.1)-(1.2) has a unique solution which
displays boundary layers at x = 1 and y = 1 when ε approaches
zero.

Problems such as (1.1)-(1.2) are encountered in diverse
areas of applied mathematics and engineering such as
aerodynamics, liquid crystal modeling, chemical reactor
theory, magnetohydrodynamics, oceanography, fluid mechanics,
heat conduction, quantum mechanics [see [8–13]]. The difficulty
with such problems is that researchers have to deal with both
the perturbation parameter and the complexity due to the
semilinearity, besides the higher-dimensional aspect. Perhaps,
that is the reason why only few people have shown some interest
in them.

Sirotkin and Tarvainen [14] proposed the parallel two-level
Schwarz methods and studied their convergence properties.
Boglaev proposed a number of methods. In [15], he constructed
a blocked domain decomposition algorithm. He achieved a first-
order rate of convergence on both meshes. In [16], he proposed a
uniform monotone iterative method on layer adapted meshes. In
[17], he developed a monotone Schwarz algorithm. Boglaev and
Duoba [18] designed a multi-domain decomposition algorithm
to solve a singularly perturbed advection-diffusion problem with
a parabolic layer. The authors achieved a first-order convergence
result. Kopteva [19] and Stynes [20] propose finite element
methods. Also, Newton and Picard methods were described as
the numerical solver for the concerned problems by Vulkov and
Zadorin in [21].

All the methods above are based on the use of non-uniform
meshes and are essentially first order accurate. Due to the
design of the mesh-grid and hence, that of the methods,
the order of convergence is usually affected adversely by a
logarithmic factor. In this article, we propose a method based
on the non-standard finite difference rules of Mickens [22].
It is worth mentioning that these methods are designed on
uniform grids. To the best of our awareness, this is the
first time that such methods are used on elliptic singularly
perturbed semilinear problems in two dimensions. These
methods were used in [23, 24] for linear elliptic reaction-diffusion
and reaction-convection-diffusion problems in two dimensions,
respectively.

We adopt the quasilinearization approach to convert the
semilinear problem into a sequence of linear problems. Then,
we design a fitted operator numerical method on the converted
problems. We show that the method is first order uniformly
convergent in both x and y variables with respect to the
perturbation parameter. Numerical experiments corroborate the
theoretical results.

The rest of the article is structured as follows: In Section 2, we
use the quasilinearization technique to linearize the concerned
problem and present some qualitative properties of the solution

and its derivatives. In Section 3, we present the proposed fitted
operator finite difference method while in Section 4, we perform
the convergence analysis. In Section 5, we provide some test
models to show the efficiency of the presented scheme as well
as to validate the theoretical result. The article ends with a brief
conclusion in Section 6.

2. QUASILINEARIZATION

We transform the semilinear equation (1.1) using the
quasilinearization approach. We choose a reliable initial guess
u(0)(x, y) = u0(x, y) ≡ u(0). Then, we consider a truncated Taylor
series expansion of f (x, y, u) about the initial approximation as
follows.

f (x, y, u(1)) = f (x, y, u(0))+ (u(1) − u(0))

(

∂f

∂u

)

(x,y,u(0))
+ · · · .

(2.1)
We then derive the following iterates through the process by
deriving the steps that involve u(2)(x, y), u(3)(x, y), and so on.
Assuming that this process converges, we obtain the recurrence
relations

f (x, y, u(r+1)) = f (x, y, u(r))+ (u(r+1)− u(r))

(

∂f

∂u

)

(x,y,u(r))
+ · · · ,

(2.2)
where r is the iteration number (or iteration index) with r =

0, 1, · · · .
Substituting (2.2) into (1.1) results in a 2D linear singularly

perturbed convection diffusion problem of the form

Lu(x, y) ≡ −ε
(

uxx + uyy
)

+ a1(x, y)ux + a2(x, y)uy

+b(x, y)u = z(x, y), (x, y) ∈ �̄,
(2.3)

u(x, y) = u0(x, y), (2.4)

where

b(x, y) =
∂f

∂u
, and z(x, y) = f (x, y, u(r))− u(r)

∂f

∂u
. (2.5)

We solve the linear problem (2.3)–(2.4) using fitted operator
finite difference scheme. The successive iteration of the 2D linear
equations(2.3)–(2.4), with iteration function (2.5) converges to
the solution of the semilinear problem (1.1)–(1.2). We take the
convergence stopping criteria as

‖ur+1 − ur‖< Tol,

where Tol is the tolerance.
The solution of (2.3)-(2.4) enjoys the properties below [25].

Lemma 2.1. (Continuous maximum principle) Assume that
ν(x, y) is sufficiently smooth function which satisfy ν(x, y) >

0, ∀ (x, y) ∈ ∂�. Then Lν(x, y) > 0, ∀ x ∈ �, implies that
ν(x, y) > 0,∀ (x, y) ∈ �̄.
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Lemma 2.2. (Uniform stability estimate) Let u(x,y) be the solution
of (2.3)-(2.4) then we have

‖u(x, y)‖ 6 α−1‖z‖, ∀x ∈ �, (2.6)

where α = min{α1,α2} is independent of ε.

Lemma 2.3. Let u(x,y) be the solution of (2.3)-(2.4) and
a(x), b(x), z(x) be smooth functions. Then

|u(i,j)(x, y)| 6 C

(

1+ ε−(i+j) exp

(

−
α1(1− x)

ε

)

exp

(

−
α2(1− y)

ε

))

, (x, y) ∈ �̄,

(2.7)

where α1,α2 and C positive constant independent of ε.

3. SCHEME FOR THE PROBLEM

Let n and m be two positive integers, we partition the domain
� : = [0, 1] × [0, 1] into n and m equal intervals so the step
sizes are h = 1/n and k = 1/m, we obtain the nodes as xi =

x0+ ih, i = 1, . . . , n−1 and yj = y0+ jk, j = 1, . . . ,m−1 where
x0 = y0 = 0 and xn = yn = 1. We denote the approximation of
u(xi, yj) at the grid points of xi and yj by the unknown Uij.

We write the discrete version of (2.3)–(2.4) as

L
h,k(Ui,j) ≡− ε

[

Ui+1,j − 2Uij + Ui−1,j

(φij)2h

]

− ε

[

Ui,j+1 − 2Uij + Ui,j−1

(φij)2k

]

+ a1ij
Uij − Ui−1,j

h

+ a2ij
Uij − Ui,j−1

k
+ bijUij = zij , i = 1, . . . , n− 1, j = 1, . . . ,m− 1,

(3.1)

with boundary conditions of the four sides as

Ui,0 = U0,j = Ui,m = Un,j = u0ij, i = 0, 1, . . . , n, j = 0, 1, . . . ,m.
(3.2)

The denominator functions φ2
ij are given by

(φij)
2
h =

εh

a1ij

(

exp

(

a1ijh

ε

)

− 1

)

= h2 +O

(

h3

ε

)

, (3.3)

and

(φij)
2
k =

εk

a2ij

(

exp

(

a2ijk

ε

)

− 1

)

= k2 +O

(

k3

ε

)

. (3.4)

We rewrite (3.1) in five term recurrence relation as

−rh+
l

Ui+1,j − rh−
l

Ui−1,j + rclUij − rk+
l

Ui,j+1 − rk−
l

Ui,j−1 = zij,

i = 1(1)n− 1, j = 1(1)m− 1,

(3.5)

where

rh+l =
ε

(φij)2h
, rh−l =

(

ε

(φij)2h
+

a1ij

h

)

, rk+l =
ε

(φij)2k
, rk−l =

(

ε

(φij)2k
+

a2ij

k

)

,

rcl =
2ε

(φij)2h
+

2ε

(φij)2k
+

a1ij

h
+

a2ij

k
+ bij , and l = (i− 1)(m− 1)+ j.

We form a linear system

AU = G,

where U = [Ui0, . . .Un−1,0;U1,1 . . .Un−1,1; . . . ;U1,j . . .Un−1,m−1]
T .

A is pentadiagonal matrix of size (n−1)(m−1)×(n−1)(m−1)
and G is a column vector of size (n− 1)(m− 1) with their entries
respectively described as follows.

Al,l+1 = −rk+
l

, i = 1(1)n− 1, j = 1(1)m− 2,

Al,l−1 = −rk−
l

, i = 1(1)n− 1, j = 2(1)m− 1,

Al,l = rcl , i = 1(1)n− 1, j = 1(1)m− 1,

Al,l+(n−1) = −rh+
l

, i = 1(1)n− 2, j = 1(1)m− 1,

Al,l−(n−1) = −rh−
l

, i = 2(1)n− 1, j = 1(1)m− 1,

(3.6)

and

Gl = zl + rh−l × U(0, y1)+ rk−l × U(x1 , 0), i = 1, j = 1,

Gl = zl + rh−l × U(0, yj), i = 1, j = 2(1)m− 2,

Gl = zl + rh−l × U(0, ym−1)+ rk+l × U(x1 , 1), i = 1, j = m− 1,

Gl = zl + rk−l × U(xi , 0), i = 2(1)n− 2, j = 1,

Gl = zl , i = 2(1)n− 2, j = 2(1)m− 2,

Gl = zl + rk+l × U(xi , 1), i = 2(1)n− 2, j = m− 1,

Gl = zl + rh+l × U(1, y1)+ rk−l × U(xn−1 , 0), i = n− 1, j = 1,

Gl = zl + rh+l × U(1, yj), i = n− 1, j = 2(1)m− 2,

Gl = zl + rh+l × U(1, ym−1)+ rk+l × U(xn−1 , 1), i = n− 1, j = m− 1.

(3.7)

We provide some results that we will use to prove the
convergence of the proposed method. These results are similar
to those presented in [24] and can be proven in a similar manner.

Lemma 3.1. (Discrete maximum principle). Let ϑi,j be a discrete
function define on � satisfying ϑ0,j > 0, ϑn,j > 0, j = 1(1)m −

1, ϑi,0 > 0, ϑi,m > 0, i = 1(1)n − 1 and L
h,kϑi,j 6 0, ∀ i =

1(1)n− 1, j = 1(1)m− 1 then ϑi,j > 0 ∀ i = 0(1)n, j = 0(1)m.

Lemma 3.2. (Uniform stability estimate) if µi,j is any mesh

function such that µi,j = 0 on ∂�(N,M). Then

|µl,s| 6
1

α
max

1≤j≤n−1, 1≤j≤m−1
|Lh,kµi,j| ∀l = 0(1)n, s = 0(1)m,

(3.8)
where α = min{α1, α2}.

4. CONVERGENCE ANALYSIS

The truncation error of the scheme presented in Section 3 is
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TABLE 1 | Maximum pointwise errors and rate of convergence for Example 5.1

when n = m = {4, 8, 16, 32, 64, 128, 512, 1, 024}.

↓ ε 8 16 32 64 128 512 1,024

1 4.89E-04 1.18E-04 2.95E-05 7.38E-06 1.84E-06 4.61E-07 1.16E-07

2.05 2.00 2.00 2.00 2.00 1.99

10−1 3.90E-03 1.39E-03 5.71E-04 2.54E-04 1.17E-04 5.48E-05 2.61E-05

1.49 1.28 1.17 1.12 1.09 1.07

10−2 4.70E-02 1.16E-02 6.14E-03 3.30E-03 1.80E-03 9.71E-04 5.35E-04

2.01 0.92 0.91 0.91 0.89 0.86

10−3 3.69E-02 1.89E-02 5.17E-03 1.40E-03 5.05E-04 1.93E-04 7.78E-05

0.97 1.87 1.84 1.47 1.39 1.31

10−4 3.69E-02 1.90E-02 9.63E-03 4.81E-03 2.41E-03 1.20E-03 6.00E-04

0.96 0.98 0.99 1.00 1.00 1.00

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−15 3.69E-02 1.90E-02 9.63E-03 4.81E-03 2.41E-03 1.20E-03 6.00E-04

0.96 0.98 0.99 1.00 1.00 1.00

En 3.69E-02 1.90E-02 9.63E-03 4.81E-03 2.41E-03 1.20E-03 6.00E-04

Pn 0.96 0.98 0.99 1.00 1.00 1.00

L
h,k(u− U)ij = (L−L

h,k)uij

= −ε(uxx)ij − ε(uyy)ij + a1ij(ux)ij + a2ij(uy)ij

+
ε

(φij)2h
(ui+1,j − 2uij+ ui−1,j)+

ε

(φij)2k
(ui,j+1 − 2uij+ ui,j−1)

−
a1ij

h
(uij − ui−1,j)−

a2ij

k
(uij − ui,j−1)

= −ε(uxx)ij − ε(uyy)ij +

(

ε

h2
−

a1ij

h
+

a21ij

ε
−

a31ij

ε2

)

×

(

h2(uxx)ij +
h4

12
(uxxxx)ijη1ij

)

+

(

ε

k2
−

a2ij

k
+

a22ij

ε
−

a32ij

ε2

)

×

(

k2(uyy)ij +
h4

12
(uyyyy)ijη2ij

)

+

(

a1ijh

2
(uxx)ij +

a1ijh
2

6
(uxxx)ij

)

+

(

a2ijk

2
(uyy)ij +

a2ijk
2

6
(uyyy)ij

)

where η1ij ∈ (ui+1,j , ui−1,j), η2ij ∈ (ui,j+1 , ui,j−1)

= −
a1ijh

2
(uxx)ij +

(

a21ij

ε
(uxx)ij −

a21ij

6
(uxxx)ij +

ε

12
(uxxxx)ijη1ij

)

h2

+

(

a1ij

12
(uxxxx)ijη1ij −

a31ij

ε3
(uxx)ijη1ij

)

h3 +

(

a21ij

12ε
(uxxx)ij

)

h4

−

(

a31ij

12ε2
(uxxxx)ijη1ij

)

h5 −
a2ijk

2
(uyy)ij

+

(

a22ij

ε
(uyy)ij −

a22ij

6
(uyyy)ij +

ε

12
(uyyyy)ijη2ij

)

k2

+

(

a2ij

12
(uyyyy)ijη2ij −

a32ij

ε3
(uyy)ijη2ij

)

k3 +

(

a22ij

12ε
(uyyy)ij

)

k4

−

(

a32ij

12ε2
(uyyyy)ijη2ij

)

k5

Applying the bound on the solution and its derivatives in
Lemma 2.3 and by Lemma 5.2 of [26], we obtain

|Lh,k(u− U)ij| 6 C(h+ k).

TABLE 2 | Maximum pointwise errors and rate of convergence for Example 5.2

when n = m = {4, 8, 16, 32, 64, 128, 512, 1, 024}.

↓ ε 8 16 32 64 128 512 1,024

1 2.38E-03 6.44E-04 1.65E-04 4.15E-05 1.04E-05 2.56E-06 6.44E-07

1.88 1.97 1.99 2.00 2.00 2.01

10−1 1.89E-02 6.30E-03 1.73E-03 4.42E-04 1.12E-04 2.80E-05 6.98E-06

1.59 1.87 1.96 1.98 2.00 2.01

10−2 3.41E-02 2.31E-02 1.42E-02 6.37E-03 2.80E-03 1.11E-03 3.89E-04

0.56 0.71 1.16 1.20 1.33 1.50

10−3 3.41E-02 2.32E-02 1.56E-02 1.02E-02 5.80E-03 3.10E-03 1.60E-03

0.56 0.57 0.61 0.81 0.90 0.95

10−4 3.41E-02 2.32E-02 1.56E-02 1.02E-02 5.80E-03 3.10E-03 1.61E-03

0.56 0.57 0.61 0.81 0.90 0.95

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−15 3.41E-02 2.32E-02 1.56E-02 1.02E-02 5.80E-03 3.10E-03 1.61E-03

0.56 0.57 0.61 0.81 0.90 0.95

En 3.41E-02 2.32E-02 1.56E-02 1.02E-02 5.80E-03 3.10E-03 1.61E-03

Pn 0.56 0.57 0.61 0.81 0.90 0.95

Now, using Lemma (3.2) we have

max
0≤i≤n, 0≤j≤m

|(u− U)ij| 6 C(h+ k). (4.1)

The analysis above is the proof of the following theorem:

Theorem 4.1. Let u(x, y) be the solution of (2.3)-(2.4) and U(x, y)
be the numerical approximation of u(x, y) using the scheme (3.1)-
(3.2). If a1(x, y), a2(x, y), b(x, y) and z(x, y) are sufficiently smooth
functions, then there exists a constant C independent of ε , h and k
such that

max
0≤i≤n, 0≤j≤m

|(u− U)ij| 6 C(h+ k). (4.2)

5. NUMERICAL RESULTS

In order to validate and confirm our theoretical results, we
present two test examples. Since the exact solutions of our models
are not available; we oblige to use the double mesh principle
[27] to evaluate the maximum pointwise error and the ε-uniform
error as follows

En,mε = max
(xi ,yj)∈�̄n,m

∣

∣

∣
Un,m
i,j − U2n,2m

i,j

∣

∣

∣
, En,m = max

ε
En,mε , (5.1)

where Un,m
i,j is the discrete solution on the mesh �n,m and U2n,2m

i,j

is the discrete solution on the mesh �2n,2m. The corresponding
rate of convergence and the ε-uniform rate of convergence are
formulated as

Pn,mε = log2

(

En,mε

E2n,2mε

)

, Pn,m = max
ε

Pn,mε . (5.2)

We define the iteration stopping criterion as

‖U(r+1) − U(r)‖ 6 10−8, r = 1, 2, . . . . (5.3)
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FIGURE 1 | Plots of the approximate solution of Example 5.1 with n = m = 32. (A) ε = 1. (B) ε = 10−1. (C) ε = 10−2. (D) ε = 10−4.

Example 5.1. Boglaev [16], Consider the following singularly
perturbed semilinear problem

−ε(uxx + uyy)+ a1(x, y)ux + a2(x, y)uy + f (x, y, u) = 0,

(x, y) ∈ � : = (0, 1)2,

u = 1 on ∂�,

where a1(x, y) = a2(x, y) = 0.1, f (x, y, u) =
u− 4

5− u
.

Example 5.2. Boglaev [15], Consider the following singularly
perturbed semilinear problem

−ε(uxx + uyy)+ a1(x, y)ux + a2(x, y)uy + f (x, y, u) = 0,

(x, y) ∈ � : = (0, 1)2,

u = 1 on ∂�,

where a1(x, y) = a2(x, y) = 1, f (x, y, u) = 1− exp(−u).
To demonstrate the efficiency of the proposed scheme, we

tabulate the maximum pointwise errors and the corresponding
order of convergence. For the sake of simplicity, we considered
same values of m and n as shown in Tables 1, 2. These tables
indicate a first-order uniform rate of convergence that conforms
to the theoretical findings in Section 4. In producing our tables,
we were limited by the software used as it could not handle
large matrices. Had we been able to produce the tables for
larger values of n and m (say, 64, 128, 512, etc.), we would
have seen that the rate of convergence is one for Example 5.2
as well.

Figures 1, 2 are plots of the numerical solution of
examples 5.1 and 5.2, respectively, for n = m =

32 and different values of ε. These plots exhibit
the layer behavior of the numerical solution as ε

approaches zero.
We wished to compare our results with those existing in

the literature however we noticed that authors that published
work on this problem focused more on the number of iterations
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FIGURE 2 | Plots of the approximate solution of Example 5.2 with n = m = 32. (A) ε = 1. (B) ε = 10−1. (C) ε = 10−2. (D) ε = 10−4.

while our focus is on maximum nodal errors and rates
of convergence.

6. CONCLUSION

In this article, we constructed a fitted operator finite
difference method to solve two-dimensional semilinear
singularly perturbed convection-diffusion problems. First,
we converted the semilinear problems into a sequence of linear
two-dimensional singularly perturbed convection-diffusion
problems via the quasilinearization technique. Next, we
discretized the problem using the presented non-standard
numerical scheme. Then, we performed the error analysis
of the method and found that it is first order uniformly
convergent in both x and y variables with respect to the
perturbation parameter ε. We used two test examples to
illustrate the robustness of the method and to validate the
theoretical findings.
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