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Abstract: This paper searches for optimal strategies for the minimization of the number of high-risk
latent and active tuberculosis (TB) infectious individuals using real data from Ethiopia. Optimal
control theory is harnessed for investigation and analysis of the optimal combination of interventions
for controlling the transmission of TB using distancing, case finding, and case holding as controls.
We calculate and compare the incremental cost-effectiveness ratio (ICER) for each of the strategies
to determine the most effective combination of interventions for curbing the spread of the disease.
Our findings suggest that, for optimal cost-effective management of the TB disease, the government
of Ethiopia must focus more on prevention strategies such as isolation of infectious people, early
TB patient detection, treatment, and educational programs. The optimal strategy is quantified
through simulation.
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1. Introduction

Tuberculosis (TB) is still a significant public health problem and is one of the top
10 causes of illness and death. Globally, in 2019, 10 million people were infected with TB,
and 1.4 million died [1]. In Ethiopia, tuberculosis is still a major health problem and one
of the leading causes of death [2]. Furthermore, Ethiopia is one of the 30 high-burden
countries, and there were an estimated 157,000 (140 per 100,000 of the population) incident
cases of TB in 2019 [1]. Therefore, effective prevention measures are needed to stop the
spread of tuberculosis in Ethiopia. This study aims to identify the most cost-effective
combination of interventions for curbing the spread of TB in Ethiopia.

Among the many different forms of action in the fight against TB, distancing, case
finding, and case holding are the most important [3]. Distancing control is an essential
strategy to curb the spread of airborne contagious diseases such as TB, influenza, COVID-19,
etc., by reducing the opportunities for close contact between people. Case finding is another
important controlling method of TB [4], which is the process of screening and treating
latent TB patients. Finally, case holding includes the activities and techniques we can apply
to help patients complete the treatment they have started.

Infectious diseases can exhibit complex nonlinear dynamics, and it is possible to
examine, explain, and predict the transmission dynamics of infectious diseases using math-
ematical models [5–11]. An optimal control problem entails the identification of a feasible
scheme, policy, program, strategy, or campaign to achieve the optimal possible outcome
of a system [12]. Numerous scholars (for example [3,13–17]) have applied the optimal
control theory to predict suitable control strategies and to analyze their cost-effectiveness
in mitigating the TB disease. Sunhwa Choi and Eunok Jung [3] developed a mathematical
model for the transmission dynamics of TB in South Korea and considered three different
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control strategies (distancing, case finding, and case holding efforts). The results showed
that distancing control, such as isolation of infectious people, early TB patient detection,
and educational programs/campaigns constitute the most effective combination of inter-
ventions for the prevention of TB transmission in South Korea. In [13] a mathematical TB
model with control was developed and analysed based on the Philippines’s real data. The
result of their study showed that enhancing active case finding instead of the case holding
control together with distancing has significant potential for curtailing the spread of TB in
the Philippines. Gao and Huang [14] analyzed a TB model that incorporates vaccination,
case finding, and case holding controls. Their result revealed that the combined implemen-
tation of three controls is the most effective and less expensive among different strategies.
The mathematical model [15] for the transmission dynamics of TB in Angola considered
two control strategies (case finding and case holding controls). Their results showed that
the combined strategy that involves both controls is preferable. Doyo Kereyu and Seleshi
Demie [16] developed and analyzed a TB model for Haramaya district, Ethiopia. They
considered three control strategies (distancing, case finding, and treatment efforts). The
results suggested that a combination of all interventions makes for the best strategy to
eradicate TB disease from the community at an optimal level with minimum cost.

All the above studies showed that the strategies we use to control the spread of TB may
vary depending on the situation in the country. Therefore, each government must adopt
a better and more cost-effective approach based on its realities. In this study, based on
Ethiopian TB data, we propose effective methods to eliminate the disease from the country.

2. TB Model with Controls

The following model (1) of TB disease dynamics was proposed and analyzed in [11].
This model forms the basis of our investigation in the current paper, and we include it for
completeness.

The total population size N(t) is partitioned into four subclasses: susceptible (S),
high-risk latent (E), infectious (I), and low-risk latent (L). We aggregated the two groups,
the recovered and the low-risk latent, in a class called low-risk individuals (L).

dS
dt = Λ− βψSI

1+bI − µS
dE
dt = βψSI

1+bI + (1− p)rI + σL− (k + α + µ)E
dI
dt = kE− (µ + r + δ)I

dL
dt = prI + αE− (µ + σ)L

N = S + E + I + L,

(1)

with ψ = (1− ε + θε).
The recruitment rate to the susceptible population is assumed to be constant Λ . We

assume that all classes have the same natural death rate µ, with disease-induced mortalities
occurring only in the I-class at a rate δ. The susceptible individual acquires the TB bacteria
through contact with infected individuals with a nonlinear transmission rate βI

1+bI . It is
assumed that the BCG vaccine will be administered to susceptible individuals (at a rate εS).
People who have been vaccinated can become infected because the vaccine is imperfect and
does not completely protect against the disease. The vaccinated individuals are infected at
a rate θεβSI where 0 ≤ θ ≤ 1 is the loss of vaccine protection. Newly infected individuals
(with a latent level) will develop active TB (at a rate k). We assume that patients at the
latent stage will move to the L-class with a rate of αE when treated. Here r is the treatment
coverage rate, p represents the successful treatment rate for active TB infected individuals,
and σ represents the relapse rate.

We modified the model (1) by including three control strategies, ui = ui(t), for
i ∈ {1, 2, 3}. The controls represent the intensities of different public health interventions.
The function u1(t) is a distancing control associated with the effort to reduce susceptible
individuals that become infected, and such effort includes an isolation policy, wearing a
face mask, or public educational program. A case finding control (u2(t)) represents the
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effort of decreasing the number of latently infected individuals that may develop active TB.
Such activities include screening and treatment of latent individuals who are at high risk
of developing active TB. The third strategy is a case holding control, denoted by u3(t). It
refers to efforts to prevent the failure of treatment in infectious individuals (e.g., patient
supervision, including activities used to ensure the regularity of drug intake until the last
treatment stage is attained).

This leads to the following system of ODEs, with all the parameters constant and in
which we have suppressed the time variable:

dS
dt = Λ− (1−u1)βψSI

1+bI − µS
dE
dt = (1−u1)βψSI

1+bI + (1− (1 + u3)p)rI + σL− (k + (1 + u2)α + µ)E
dI
dt = kE− (µ + r + δ)I

dL
dt = (1 + u3)prI + (1 + u2)αE− (µ + σ)L

N = S + E + I + L,

(2)

with initial conditions S0, E0, I0, L0 ≥ 0.
Let
U = {(u1, u2, u3 )| u1, u2 and u3 are Lebesgue integrable functions on the interval

[0, ∞), with 0 ≤ ui ≤ 1, i = 1, 2, 3}.
We searched for an optimal control

(
u∗1 , u∗2 , u∗3

)
∈ U that minimizes the objective

functional J(u1, u2, u3)

where

J(u1, u2, u3) =
∫ t f

t0

[
E(t) + I +

1
2

B1u2
1 +

1
2

B2u2
2 +

1
2

B3u2
3

]
dt. (3)

In Equation (3), the values of t0 and t f are taken as 0 and 20, respectively, to determine
Ethiopia’s 20-year (2019–2038) effective TB control strategies. The constants Bi, i = 1, 2, 3,
are positive weight constants, which balance the cost factors associated with the controls
u1, u2 and u3, respectively. The functions 1

2 B1u2
1, 1

2 B2u2
2 and 1

2 B3u2
3 are the costs of the

controls u1, u2 and u3, respectively. The cost terms are assumed to be nonlinear quadratic
functions (as in [17–19]).

2.1. Existence of an Optimal Control

Theorem 1. There exists an optimal control
(
u∗1 , u∗2 , u∗3

)
that minimizes the objective functional

J(u1, u2, u3) subject to the control system (2).

Proof. Let us denote the right-hand side of the system (2) by y(t,
→
x ,
→
u ). Then following

the same procedure as in [14], we prove the existence of an optimal control (u∗1 , u∗2 , u∗3). To
achieve this, we must first show that the following conditions are met.

i. y is of class C1 and there exists a constant c such that

|y(t, 0, 0)| ≤ c,
∣∣∣y→x (t,

→
x ,
→
u
)∣∣∣ ≤ c

(
1 +

∣∣∣→u ∣∣∣),
∣∣∣ y→

u

(
t,
→
x ,
→
u
)∣∣∣ ≤ c,

ii. The set of all solutions to system (2) with corresponding control in U is nonempty,

iii. There exist functions a1 and a2 such that y(t,
→
x ,
→
u ) = a1(t,

→
x ) + a2(t,

→
x )
→
u ,

iv. The control set U = [0, 1]× [0, 1]× [0, 1] is closed, convex and compact,
v. The integrand of the objective function is convex in U.

To verify the first conditions, let us write

y
(

t,
→
x ,
→
u
)
=


Λ− (1−u1)βψSI

1+bI − µS
(1−u1)βψSI

1+bI + (1− (1 + u3)p)rI + σL− (k + (1 + u2)α + µ)E
kE− (µ + r + δ)I

(1 + u3)prI + (1 + u2)αE− (µ + σ)L

,
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Then we can easily show that y
(

t,
→
x ,
→
u
)

is of class C1 and |y(t, 0, 0)| = Λ.
Moreover, we will have the following

∣∣∣y→x (t,
→
x ,
→
u
)∣∣∣ =

∣∣∣∣∣∣∣∣∣∣


−µ− (1−u1)βψI

1+bI 0 − (1−u1)βψS
(1+bI)2 0

(1−u1)βψI
1+bI −k− α− µ− αu2

((1−p)r−pru3)(1+bI)2+(1−u1)βψS
(1+bI)2 σ

0 k −(r + δ + µ) 0
0 α(1 + u2) pr(1 + u3) −(µ + σ)


∣∣∣∣∣∣∣∣∣∣
,

and

∣∣∣y→u (t, →x ,
→
u )
∣∣∣ =

∣∣∣∣∣∣∣∣∣


βψSI
1+bI 0 0
− βψSI

1+bI −αE −prI
0 0 0
0 αE prI


∣∣∣∣∣∣∣∣∣.

Since S, E, I, and L are bounded, there exists a constant c such that

|y(t, 0, 0)| ≤ c,
∣∣∣y→x (t,

→
x ,
→
u
)∣∣∣ ≤ c

(
1 +

∣∣∣→u ∣∣∣),
∣∣∣ y→

u

(
t,
→
x ,
→
u
)∣∣∣ ≤ c.

This shows that condition (i) is satisfied.
According to condition (i), there is a unique solution for the constant controls, which

will ensure that condition (ii) is met.
Besides,

y(t,
→
x ,
→
u ) =


Λ− Sµ− βψSI

1+bI

−(k + α + µ)E + σL + I
(

r− pr + βψS
1+bI

)
kE− I(r + δ + µ)

αE + prI − L(µ + σ)

+


βψSI
1+bI 0 0
− βψSI

1+bI −αE −prI
0 0 0
0 αE prI

×
u1

u2
u3

.

This verifies condition (iii). The subset U of R3 is closed and bounded, and hence
compact. Thus condition (iv) is fulfilled. We proceed with verification of condition (v), the
convexity of the integrand of the objective functional. We must prove that for any two values
→
u and

→
v of the control vector, and a constant q ∈ [0, 1], the following inequality holds:

(1− q)g
(

t,
→
x ,
→
u
)
+ qg

(
t,
→
x ,
→
v
)
≥ g

(
t,
→
x , (1− q)

→
u + q

→
v
)

,

where
g
(

t,
→
x ,
→
u
)
= E + I +

1
2

B1u2
1 +

1
2

B2u2
2 +

1
2

B3u2
3.

Further,

(1− q)g
(

t,
→
x ,
→
u
)
+ qg

(
t,
→
x ,
→
v
)
= E +I + 1

2 (1− q)
[
B1u2

1 + B2u2
2 + B3u2

3
]

+ 1
2 q
[
B1v2

1 + B2v2
2 + B3v2

3
]
,

And

g
(

t,
→
x , (1− q)

→
u + q

→
v
)
= E + I + 1

2 B1[(1− q)u1 + qv1]
2 + 1

2 B2[(1− q)u2 + qv2]
2

+ 1
2 B3[(1− q)u3 + qv3]

2,
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Then

(1− q)g
(

t,
→
x ,
→
u
)
+ qg

(
t,
→
x ,
→
v
)
− g
(

t,
→
x , (1− q)

→
u + q

→
v
)

= (1− q)
[

B1
2 u2

1 +
B2
2 u2

2 +
B3
2 u2

3

]
+ q
[

B1
2 v2

1 +
B2
2 v2

2 +
B3
2 v2

3

]
−
[

B1
2 [(1− q)u1 + qv1]

2 + B2
2 [(1− q)u2 + qv2]

2 + B3
2 [(1− q)u3 + qv3]

2
]
,

= B1
2

{
(1− q)u2

1 + qv2
1 − [(1− q)u1 + qv1]

2
}
+ B2

2

{
(1− q)u2

2 + qv2
2 − [(1− q)u2 + qv2]

2
}

+ B3
2

{
(1− q)u2

3 + qv2
3 − [(1− q)u3 + qv3]

2
}

,

= B1
2
{

q(1− q)u2
1 − 2q(1− q)u1v1 + q(1− q)v2

1
}

+ B2
2
{

q(1− q)u2
2 − 2q(1− q)u2v2 + q(1− q)v2

2
}

+ B3
2
{

q(1− q)u2
3 − 2q(1− q)u3v3 + q(1− q)v2

3
}

,
= B1

2

{
q(1− q)(u1 − v1)

2
}
+ B2

2

{
q(1− q)(u2 − v2)

2
}
+ B3

2

{
q(1− q)(u3 − v3)

2
}
≥ 0.

Consequently, condition (v) is satisfied, and this completes the proof. �

2.2. Characterization of an Optimal Control

To find the best cost-effective strategies for reducing the number of high-risk latent (E)
and infectious (I), we use optimal control theory. In this section, we derive the necessary
conditions for the optimal control by using Pontryagin’s Maximum Principle [20,21]. We
formulate the Hamiltonian

H(S, E, I, L , u1 , u2 , u3, λ) = E + I + 1
2 B1u2

1 +
1
2 B2u2

2 +
1
2 B3u2

3

+λ1

[
Λ− (1−u1)βψSI

1+bI − µS
]

+λ2

[
(1−u1)βψSI

1+bI + (1− (1 + u3)p)rI + σL− (k + (1 + u2)α + µ)E
]

+λ3[kE− (µ + r + δ)I]
+λ4[(1 + u3)prI + (1 + u2)αE− (µ + σ)L].

(4)

Here, λ = (λ1, λ2, λ3, λ4) ∈ R4 are the adjoint functions.

Theorem 2. For the optimal control (u∗1 , u∗2 , u∗3) and the corresponding solutions to the vari-
ables S, E, I, L, that minimizes the Equation (3), there exist adjoint variables λ1, λ2, λ3, and
λ4 satisfying

dλ1
dt = (1−u1)βψI

1+bI λ1 + µλ1 − (1−u1)βψI
1+bI λ2

dλ2
dt = [k + µ + (1 + u2)α]λ2 − kλ3 − (1 + u2)αλ4 − 1

dλ3
dt = (µ + r + δ)λ3 +

[
(u1−1)βψbSI

(1+bI)2 + (1−u1)βψS
1+bI

]
λ1

+
[
(1−u1)βψbSI

(1+bI)2 + (u1−1)βψS
1+bI − (1− (1 + u3)p)r

]
λ2 − (1 + u3)prλ4 − 1

dλ4
dt = (µ + σ)λ4 − σλ2

(5)

with transversality conditions

λ1

(
t f

)
= λ2

(
t f

)
= λ3

(
t f

)
= λ4

(
t f

)
= 0, (6)

Furthermore,

u∗1 = min
{

max
{

0, (λ2−λ1)βψSI
(1+bI)B1

}
, 1
}

,

u∗2 = min
{

max
{

0, (λ2−λ4)αE
B2

}
, 1
}

,

u∗3 = min
{

max
{

0, (λ2−λ4)prI
B3

}
, 1
}

.

(7)
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Proof. By applying Pontryagin’s Maximum Principle, we obtain the adjoint system (5)
as follows:

dλ1

dt
= −∂H

∂S
,

dλ2

dt
= −∂H

∂E
,

dλ3

dt
= −∂H

∂I
,

dλ4

dt
= −∂H

∂L
, (8)

with
λi

(
t f

)
= 0, i = 1, 2, 3, 4. (9)

Evaluating the optimal control and corresponding state variables, we obtain the adjoint
system (5) and the transversality conditions (6).

Finally, by applying the optimality condition

∂H
∂u1

=
∂H
∂u2

=
∂H
∂u3

= 0,

And using the bounds for the controls u1, u2 and u3, we can derive the optimal control(
u∗1 , u∗2 , u∗3

)
as in Equation (7). �

3. Numerical Results and Discussion

Using Matlab2019b, the optimal control system is solved by applying the forward-
backward sweeping technique. According to [7], in the total population of Ethiopia, the
classes E0 and L0 comprise 16.37% and 30% of the population, respectively. Based on these
percentages we can deduce values for E0 and L0.

The values of parameters and the initial values of the variables used in our simulations
are presented in Table 1. The algorithm used for the solution is based on the approach
proposed in [20,22].

Table 1. Values of variables and parameters.

Symbols Description Units Value Reference

N0 Total population Humans 1.12× 108 [23]
S0 Susceptible Humans 5.85× 107 Estimated
E0 High-risk latent Humans 1.83× 107 [7]
I0 Infected Humans 1.57× 105 [23]
L0 Low-risk latent Humans 3.36× 107 [7]
Λ Recruitment rate Humans/year 1.4× 106 [7]
β Effective contact rate 1

year 1.646× 10−7 [7]
ε Vaccination rate of new-borns dimensionless 0.715 [24]
θ Loss of protection for vaccination dimensionless 0.5 [11]
µ Natural mortality rate 1

year 0.016 [7]
k Transfer rate from E to I 1

year 0.023 [7]
r Treatment rate of I 1

year 0.546 [7]
p Recovery rate of I dimensionless 0.832 [25]
α Treatment rate of E 1

year 0.153 [7]
δ Death rate due to TB 1

year 0.17 [26]
σ Relapse rate 1

year 0.0013 [7]
b Saturation constant 1

Humans 0.0004 [11]
u1 Distancing control dimensionless [0, 1] Assumed
u2 Case finding control dimensionless Assumed
u3 Case holding control dimensionless [0, 1] Assumed

Studies show that applying combined strategies rather than single strategies is more
effective in curbing the spread of TB [13,16]. Therefore, to examine the impact of each
control on the elimination of TB, we test the following four control strategies, and we search
for an optimal combination of these interventions.

Strategy A: distancing and case holding controls (u1 and u3), with u2(t) = 0.
Strategy B: case finding and case holding controls (u2 and u3), with u1(t) = 0.



Axioms 2022, 11, 343 7 of 14

Strategy C: distancing and case finding controls (u1 and u2), with u3(t) = 0.
Strategy D: Using all the control efforts (u1, u2 and u3).
We assume a value for the weight parameters B1 = B2 = 105. Since the case holding

control u3 targets active TB patients undergoing treatment, the numbers in these groups
are smaller than the others. Hence it is reasonable to take B3 as being far smaller than B1
and B2, and we assigned a value B3 = 103.

The dynamics of the total infected population (E + I) are shown in Figure 1. It can be
observed that the number of infected individuals can be significantly decreased when the
three control inputs (u1, u2, and u3) are used simultaneously. Like Strategy D, Strategies
B and C play a significant role in reducing the number of high-risk latent individuals. In
contrast, Strategy A has the least impact on reducing the number of patients. This shows
that it is beneficial to use case finding control in combination with other strategies to
prevent the disease.
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Figure 1. The dynamics of the total infected population under different control strategies.

3.1. Strategy A: Use of Distancing and Case Holding Controls

In this strategy, the distancing and the case holding controls are used to optimize the
objective function J while we set case finding control (u2) to zero. Figure 2a shows that the
total number of infected people (E + I) has a significant difference when we compare with
control and without control. Specifically, when this strategy is implemented, 4.32× 105 total
infected people are averted. The total cost for the combined effects of these two controls
is given in Figure 2b. The simulation results in Figure 2c suggest that this strategy would
require both distancing and case holding controls to be at maximum for almost the entire
period of intervention.
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3.2. Strategy B: Control with Case Finding and Case Holding

Figure 3a shows the significant difference in the numbers of the total infected popula-
tion with control and without control. More precisely, the total number of infected people
with and without controls at the end of the simulation period is 3.16× 105 and 1.011× 106,
respectively. To achieve this, the control profile u2 and u3 should be implemented at a max-
imum (Figure 3c). The cost function for this strategy is shown in Figure 3b. The total cost
when the strategy is implemented throughout the simulated time horizon is $6.5012× 107.
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3.3. Strategy C: Use of Distancing and Case Finding Control

As shown in Figure 4a, there is a significant difference in the number of infected
individuals with control and without control. By applying this strategy, 8.22× 105 infected
people are averted. The cost function for this strategy is shown in Figure 4b. The simulation
result in Figure 4c shows that this strategy would require that the case finding u2 should
be at maximum for almost the entire period of intervention, while distancing controls u1
should start at 0.4679 and gradually increase to the maximum.
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3.4. Strategy D: Using All the Controls

In this strategy, we have implemented a combination of all the three controls. This
method helps us to save more people from disease than any other strategy. As we can see
from Figure 5a, it averts about 8.38× 105 infected people. The cost and control functions of
this strategy are displayed in Figure 5b,c.
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4. Cost-Effectiveness Analysis

Controlling and eliminating the spread of infectious diseases in a community requires
time and money. Therefore, it is essential to identify and implement cost-effective strategies
to prevent the spread of the disease. In addition, community awareness and lifestyle
are critical factors determining the spread of disease. As a result, effective methods of
controlling the spread of disease may vary from country to country. In this study, we
identified cost-effective ways to prevent the spread of tuberculosis in Ethiopia. We used
the incremental cost-effectiveness ratio (ICER) to do this. The ICER is defined as the cost
per health outcome [27], which is given by:
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ICER =
The difference in cos ts between strategies

Total number of infections averted
.

Table 2 calculates the total number of infections averted by each strategy and the
total cost of implementing the strategy. We calculated the number of infections averted
by subtracting the number of infections with control from without control. On the other
hand, the total cost of each strategy was obtained using the cost function B1

2 u2
1(t),

B2
2 u2

2(t),
and B3

2 u2
3(t).

Table 2. Cost-effectiveness of the control strategies.

Strategy Total Infection Averted Total Cost ($)

A (u1 and u3) 4.32× 105 1.0479× 108

B (u1 and u2) 6.95× 105 6.5012× 107

C (u2 and u3) 8.22× 105 6.782× 107

D (u1, u2, and u3) 8.38× 105 6.5122× 107

To implement the ICER method, we first needed to rank the control strategies based
on averted infection, as shown in Table 2. Based on this rank, we first compared the ICER
of strategy A and strategy B as follows.

ICER(A) = 1.0479×108

4.32×105 = 242.57.

ICER (B) = 6.5012×107−1.0479×108

6.95×105−4.32×105 = −151.25.

Which shows that strategy B is less costly than strategy A. Strategy A was then ignored,
and the analysis continued by comparing strategy B with C as:

ICER(B) = 6.5012×107

6.95×105 = 93.54.

ICER(C) = 6.782×107−6.5012×107

8.22×105−6.95×105 = 22.11.

This indicates that Strategy C is cheaper and more effective than Strategy B and hence,
strategy B was ignored, and the analysis continued by comparing strategy C and strategy D
as follows:

ICER(C) = 6.782×107

8.22×105 = 82.5.

ICER(D) = 6.5122×107−6.782×107

8.38×105−8.22×105 = −168.62.

Finally, the comparison result revealed that strategy D is less costly and more effective
than strategy C. In conclusion, of the four strategies mentioned, strategy D (combining the
three controls simultaneously) is the most effective way in combating the spread of TB
in Ethiopia.

5. Conclusions

The Ethiopian government is working with partners and the community to eliminate
TB by 2035. Therefore, it is vital to identify and implement effective strategies to eradicate
the disease. This paper has developed a mathematical model by including three control
strategies (distancing, case finding, and case holding). After that, using Pontryagin’s
maximum principle, the conditions for optimal control of the disease were analyzed. The
optimal solution to the system was then illustrated by numerical simulations using available
data from Ethiopia. From the numerical simulation result (Figure 1), one can deduce that
considering the combination of distancing and case holding controls (Strategy A), does not
lead to the best results in decreasing the number of TB infected individuals. On the other
hand, we can understand from this analysis that the combination of all the three controls
(Strategy D) is an effective way to eradicate tuberculosis from the community.

Finally, we investigated the cost-effectiveness of the control strategies by using the
ICER technique. Based on the results of these analyses, we concluded that applying the
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combination of the three controls (distancing, case finding, and case holding) is less costly
and more effective than other strategies. This suggested that intervention strategies, such as
isolation of infectious people, early TB patient detection, treating high-risk latently infected
individuals, educational campaigns, and preventing treatment failure of active TB patients
are essential in Ethiopia to control the spread of the disease.

The paper [16] presents a theme similar to the theme of this paper. However, an
essential difference is that the structure of the model and the control variables are not the
same, and the model of [16] is calibrated to a single district in Ethiopia. In contrast, we
consider Ethiopia as a whole in the current paper. It may be wise to consider more controls
than the three we included in this paper. Accuracy of the dynamics of the disease may be
improved by considering more compartments in the population, such as considering age
structure or multi-group models, in which the smaller groups are more homogeneous.
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