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a b s t r a c t 

Phenomenological and deterministic models are often used for the estimation of transmission param- 

eters in an epidemic and for the prediction of its growth trajectory. Such analyses are usually based 

on single peak outbreak dynamics. In light of the present COVID-19 pandemic, there is a pressing need 

to better understand observed epidemic growth with multiple peak structures, preferably using first- 

principles methods. Along the lines of our previous work [Physica A 574 , 126014 (2021)], here we apply 

2D random-walk Monte Carlo calculations to better understand COVID-19 spread through contact interac- 

tions. Lockdown scenarios and all other control interventions are imposed through mobility restrictions 

and a regulation of the infection rate within the stochastically interacting population. The susceptible, 

infected and recovered populations are tracked over time, with daily infection rates obtained without 

recourse to the solution of differential equations. 

The simulations were carried out for population densities corresponding to four countries, India, Serbia, 

South Africa and USA. In all cases our results capture the observed infection growth rates. More impor- 

tantly, the simulation model is shown to predict secondary and tertiary waves of infections with reason- 

able accuracy. This predictive nature of multiple wave structures provides a simple and effective tool that 

may be useful in planning mitigation strategies during the present pandemic. 

© 2022 Elsevier Ltd. All rights reserved. 

1

c

m

s

d

m

i

n

m

m

t

p

d

t

b

(

e

H  

s

t

m

β
S

L

b

m

o

h

0

. Introduction 

In the midst of the current COVID-19 pandemic, there is a 

ontinuing need to accurately model region-specific infection and 

ortality data, so that intervention methods and containment 

trategies can be planned accordingly. The simplest picture of epi- 

emic growth is at most times provided by phenomenological 

odels that are based on logistic growth [1–7] . However, real-time 

nterventions that may affect the trajectory of the growth curve are 

ot incorporated in such models. More commonly, epidemiological 

odeling uses compartmentalized populations based on the SIR 

odel [8] and its variants (see, for example [9–11] ) that follow the 

ime evolution of susceptible (S) , infected (I) and recovered (R ) 

opulations, among others [12] . Usually such deterministic models 

o not involve a stochastic formulation, which takes into account 

he random aspects of human mobility. Based on the early work 

y Bartlett [13] , such randomness can be incorporated through the 
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quations [14–16] 

∂S 

∂t 
= D S ∇ 

2 S − βSI (1) 

∂ I 

∂t 
= D I ∇ 

2 I + βSI − μI. (2) 

ere, ∇ 

2 = 

(
∂ 2 

∂x 2 
+ 

∂ 2 

∂y 2 

)
, S(x, y, t) and I(x, y, t) are the spatial den-

ities of the susceptible and infectious components of the popula- 

ion. The D S,I ∇ 

2 (S, I) diffusion terms represent the spatial move- 

ent of both susceptibles as well as infectives. The parameters 

and μ represent the infection and recovery rates respectively. 

uch formulations have also been extended to biased [17] and 

évy [18] random walks. More recently, stochastic models have 

een developed using Markovian chains [19,20] , contact and com- 

unity networks [21,22] , Bayesian modeling [23] etc. The effects 

f mobility restrictions have also been studied using Monte Carlo 

echniques [24–26] that inherently include the diffusion terms 

entioned above. In most studies, the analyses that are solely 

ased on single epidemic growth curves do not adequately explain 

he multiple wave structures seen in global COVID-19 data. For ex- 

mple, it was recently proposed that a superposition of epidemic 

https://doi.org/10.1016/j.chaos.2021.111785
http://www.ScienceDirect.com
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1 We only consider events where the disease trajectory extends beyond day 500. 
aves [27] could be used to describe COVID-19 growth curves. 

owever this does not describe the observed multiple waves of in- 

ection for individual countries, that are well separated in time. 

The present work uses an uncorrelated random walk approach 

o study COVID-19 infection spread via contact interactions. Our 

imulations show that the number of successive waves of COVID- 

9 infection in specific countries depend on their underlying effec- 

ive population density, the intermixing rate, and most importantly 

he timing and the duration of the control interventions imposed 

n/by the population. The effects of these interventions are visi- 

le as modulations in the infection rate. As test cases, we compare 

ur simulation results with reported data from India, Serbia, South 

frica and USA. We show that multiple peak structures of the pan- 

emic waves are reasonably well reproduced by the simulations. 

. The random walk Monte Carlo method 

Our random walk simulation model is described in our pre- 

ious paper [25] and similar in approach to the work reported 

n Ref. [28] . Briefly, people belonging to a region of population 

, are described as points that execute random walks on a 2- 

imensional plane. The speed of infection growth depends on the 

ump distance l for each point, which we assume is a multiple of 

he mean separation 〈 r〉 between points. In Cartesian coordinates, 

he jump components are simply l cos θ and l sin θ , with θ gener- 

ted randomly between 0 and 2 π from a uniform distribution. Un- 

ike other approaches [29,30] , we do not consider a lattice or apply 

eriodic boundary conditions. Instead, if a jump takes a point out 

f the area considered, it is reflected back into the system in a 

andom direction. In all cases we consider individuals in a 1 km 

2 

nit area element. Therefore we can use the words population and 

opulation density interchangeably. For N random walkers per unit 

rea, 〈 r〉 = 

√ 

1 /N in units of km. A separation distance of ≤ 2 m 

etween individuals is taken as the ‘contact’ distance [25] . 

The simulation starts with the introduction of an infected indi- 

idual in state I. The disease then spreads through contact inter- 

ctions, resulting in a drop in the number of susceptible points, S, 

hich at time t = 0 equals N − 1 . Each time step corresponds to

ne random jump executed by all the points and we take that as 

ne day. The number of infected points increase with such steps, 

ased on the number of contacts between susceptible and infec- 

ious individuals. The populations in S, I and R states are N s , N i and

 r respectively, so that N = N s + N i + N r is preserved at all times.

his results in an SIR compartmentalization. 

In the next step of the simulations, a recovery rate was in- 

orporated in a slightly different manner than used previously in 

ef. [25] . We assume that 80% of the infected population (picked 

t random) ultimately recover, becoming immune, and keep track 

f the number of time-steps (days) taken by an infected point 

efore it goes into a recovered state. The time period is taken 

o be 35 days, and determined from a comparison of our simu- 

ated results with data. This choice of μ = 1 / 35 day 
−1 

is not un-

ounded. The incubation period of the coronavirus disease (after 

hich symptoms develop) for infected individuals is found to be 

n the range of 8.2–15.6 days at the 97 . 5 th percentile level [31] .

urthermore, recent studies have shown that COVID-19 recovery 

imes have an average value of about 25–28 days [32,33] . Given 

hat these recovery times are evaluated after symptoms develop, a 

otal of 35 days after infection is a reasonably accurate estimate. 

From here on, one can follow two equivalent approaches to in- 

orporate the various intervention and mitigation strategies, usu- 

lly employed after the start of an epidemic such as COVID-19. A 

ecisive criterion is the strict imposition of a lockdown that places 

ignificant mobility constraints on a majority of the population. 

his effectively moderates the growth in N i , so that it is compen- 

ated by the recovery rate μ. Other interventions such as vacci- 
2 
ations, mask mandates and behavioral changes by the population 

social distancing, bubbles, etc.) additionally contribute to stalling 

he epidemic growth. 

In our earlier work [25] , we studied contact-interactions be- 

ween random walkers on a plane, with β equal to unity. This 

pproach can be modified to incorporate the effects of all control 

nterventions, exclusively via mobility restrictions on the stochas- 

ic agents. Such restrictions would impede the growth of the epi- 

emic curve, during which time the number of recoveries continue 

o rise. However this is never a permanent solution. In more real- 

stic scenarios the restrictions are relaxed from time to time (such 

s with lockdowns). In such a situation the epidemic growth con- 

inues, usually with a steep rise in the number of infections that is 

hifted in time. 

An alternative approach would be to assume β values that are 

 1 for specific cases under consideration, during the times that 

he control interventions and mitigation strategies are followed. 

or example, vaccinations, mask mandates, etc. lead to a drop in 

he number of susceptible individuals that can be infected. The ef- 

ect of this drop can also be incorporated within the parameter β . 

his fractional β is implemented by invoking a random number r

niformly between 0 and 1, such that a change in state from S → I

nly occurs when r ≤ β . We show below that both approaches 

ield similar results with regard to predicting multiple infection 

aves. However we prefer the second approach, as the former may 

islead the reader in terms of the difference between actual lock- 

owns imposed on a population and effective mobility restrictions 

n the random walkers in the simulations. 

The simulations were performed for comparison with reported 

ata for India, South Africa, Serbia and USA. The adjustable param- 

ters were the population density (two values were used for this 

ork, N = 5k and 10k), β , the percentage of mobile walkers, the 

uration during which mobility was restricted and the jump length 

. The recipe for the simulations was as follows. We consider the 

tart date of the growth curve to be D 0 . The intervention and miti- 

ation strategies during this initial phase would effectively produce 

 first wave peak in N i on date D 1 , which is obtained from reported

ata. The parameters in the simulation are then adjusted, so that 

he Monte Carlo results reproduce the observed first wave peak in 

he fractional daily infection rate. 1 The simulated results are ob- 

ained from [ N r (t + �t) − N r (t)] /N, for �t = 1 day. Here, it should

e noted that since ∂ N r /∂ t ∝ N i , the peaks in N i roughly coincide

ith the daily infection rate peaks along the time axis. These sim- 

lated results are compared to scaled-down data from the World 

ealth Organization (WHO) [34] . This comparison is then used to 

nfer if secondary or tertiary pandemic waves subsequently appear 

t later dates, due to the control interventions imposed in pre- 

ious time windows. This is based on the premise that the con- 

rol interventions and mitigation strategies would reduce the slope 

f the growth curve in the time duration that they are imposed 

or followed). At the end of each such duration (when restrictions, 

andates etc. are relaxed) there would be growth again. This ef- 

ectively results in growth curves with multiple peaks in daily in- 

ection rates, that are shifted in time and interpreted as epidemic 

aves. We discuss a few country specific results below. 

. Analysis 

.1. India 

We first consider the case of India, since the reported data 

how two distinct pandemic peaks. Furthermore, there has been a 

ot of speculation regarding the appearance of a large third wave, 
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Fig. 1. Simulated infected fractions for India, obtained for various parameter sets. 

The curves for whom the β values are not specifed in the legend were generated 

assuming β = 1 . The others were generated with the l = 1 〈 r〉 and 2 〈 r〉 combination, 

as described in the text. All results are for N = 10 k and averaged from five inde- 

pendent simulations. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. 2. Simulation results for India assuming two different densities ( N = 5 k and 

10k), compared with normalized WHO data. The simulated values were averaged 

over six sets. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 3. SIR fractions for the N = 10 k results in Fig. 2 . (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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ollowing the devastating second wave in 2021. The data show 

 first wave peak around Sep 15, 2020 and a second wave peak 

round May 06, 2021. These two structures contain in them all ef- 

ects of interventions and mitigation strategies, including imposed 

ockdowns. We take D 0 to be April 22, 2020, with the first peak 

 D 1 ) around day 150 (September 15, 2020). Since this was the first 

ountry that we studied, we performed several simulations to bet- 

er understand the general shapes of the curves, obtained for dif- 

erent parameter values. The first two sets of simulations used 

ump steps of l = 1 〈 r〉 and 2 〈 r〉 , with β = 1 . In the third set, we

sed l = 1 〈 r〉 from D 0 to D 1 and l = 2 〈 r〉 beyond D 1 . The fractional

 i results for different parameter values and N = 10 k are shown in

ig. 1 . As evident in the figure, a larger amplitude infection peak 

s obtained when l = 2 〈 r〉 step sizes are used, with a peak value of

pproximately 0.45 around day 140. For this case the number of in- 

ections drop to negligible levels after about 200 days. In compari- 

on, l = 1 〈 r〉 produces a broader and smaller peak that is shifted

o a later date (near day 230). On the other hand, the l = 2 〈 r〉
nd l = 1 〈 r〉 combination yields two distinct peak structures, as 

hown in the figure. In the next set of simulations we used this 

ombination, together with β values < 1 that account for inter- 

ention/mitigation strategies, which would lead to a drop in the 

 i fraction and consequently the daily infection rate. These results 

re also shown in Fig. 1 , for different values of β during the time

eriod D 1 to D 2 (the falling part of the first curve), with the later

ate representing the beginning of the second wave. Beyond D 2 we 

ssume β = 1 for the rise of the second wave. Guided by reported 

ata we take D 2 to be day 300. 

We observe that the shapes of the fractional N i curves, obtained 

ith β = 0 . 3 from dates D 1 to D 2 (magenta curve in Fig. 1 ) are

ery similar to scaled down daily infection rates obtained from the 

HO, including the relative amplitudes for the two peaks. This is 

urther validated in Fig. 2 , which shows a comparison between the 

eported daily rates and the simulated results (assuming β = 0 . 3 ). 2 

he excellent agreement between the simulations and the reported 

ata for the two waves is noteworthy. Similar agreement is not ob- 

ained from other parameter value combinations (such as the use 

f only l = 1 〈 r〉 or a population density N = 5 k for the 1 〈 r〉 + 2 〈 r〉
ump-step combination. The results from the latter simulations are 

hown in Fig. 2 for comparison). The infection rate β = 0 . 3 , used

or time periods when effective mitigation/intervention measures 
2 All data discussed in this work were smoothed over the transition periods when 

 change in β was incorporated. 

a

r

l

o

3 
re assumed in the simulations, is consistent with those obtained 

ith a deterministic SIQR k model that also took into account the 

uarantined and confirmed recovered portions of the population 

c.f. Table 2 in Ref. [33] .) 

It is also important to point out here that in addition to the 

forementioned agreement with data, the second wave peak in 

ig. 2 emerges naturally from our simulations, as a result of inter- 

entions imposed previously, mainly through the parameter β . Fur- 

hermore, the simulations also show no indication of a third peak 

hat may appear on applying additional interventions (through β) 

n the second wave. This is supported by Fig. 3 , which shows the 

ime development of the individual S, I and R components for these 

ata. One can see that after day 500 N i drops to nearly zero, while

 r saturates at ∼ 90% . It is apparent that at this point there are not

nough infectious agents remaining to drive the curve and infect 

he small remainder of the susceptible population. This does not 

ndicate a significant third wave. However, it may be noted that 

e assume all recovered individuals to be immune in our simula- 

ions. During the course of this work, several countries reported a 

urge in COVID-19 infections due to the emergence of the SARS- 

oV-2 Omicron variant [35] . This variant is characterized by an 

nusually large number of mutations in the spike protein and an 

bility to escape vaccine induced immunity [36] . In light of this 

ecent development, we performed additional simulations that al- 

ow reinfections. Our preliminary results show that a small fraction 

f reinfections ( � 0.5%) would increase the susceptible population 
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Fig. 4. Simulated daily rates of Serbia, compared with scaled down WHO data. The 

simulation results were averaged over 10 sets. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 5. Simulated results for South Africa, compared with scaled down WHO data. 

The simulations assumed N = 5 k and were averaged over 10 sets. The blue curve 

is generated assuming no control interventions beyond day 500. The green curve 

assumes such interventions ( β = 0 . 3 ) from day 50 0–60 0. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 6. Simulated rates for USA compared with scaled-down WHO data. These sim- 

ulations assumed N = 10k , l = 0 . 7 〈 r〉 and were averaged over 5 runs. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

y

a

f

i

h

n

b

w

v

a

3

f

t

i

o

F  

u

t

t  
ignificantly, enough to cause a third wave for India. 3 Further in- 

estigations that delve into this aspect and take into consideration 

he use of a different infection probability β (due to the waning of 

accine-induced immunity) will be useful in this regard. 

.2. Serbia 

Serbia is an interesting case study. The data show that the pan- 

emic trajectory comprises two small peaks followed by two large 

eaks [34] . The country was grappling with another wave of in- 

ections during the time of this work. It was therefore interesting 

o see whether the last wave is a consequence of the interven- 

ions imposed earlier. Here we take D 0 as March 04, 2020, fol- 

owing which there are four pandemic peaks in the daily rates 

excluding the latest wave). In our simulations these correspond 

o time domains where β values < 1 are used. We identify these 

o be days 50–100, 130–180, 250–320 and 380–450. Since Serbia 

as a much lower population density compared to India, we used 

 = 5 k/unit area and l = 2 〈 r〉 . Guided by the results for India, we

gain assumed β = 0 . 3 for the periods that correspond to system- 

tic drops in the observed rates, following each observed peak in 

he epidemic curve. 

The simulation results are shown in Fig. 4 , together with corre- 

ponding scaled down data reported by the WHO. One can clearly 

ee reasonable agreement between the two, with the simulations 

dequately predicting the peak of the fifth wave that was ongoing 

t the time of this work. 

.3. South Africa 

Next we looked at the data for South Africa, whose growth tra- 

ectory is interesting to follow, as the Omicron variant was first 

dentified in the region [35] . 

We took D 0 to be Mar 04, 2020. There are three pandemic 

aves, with peaks around days 150, 300 and 500. To simulate the 

nitial wave we used 

4 N = 5 k and effective interventions ( β = 0 . 3 )

rom day 150 to 250, with l = 2 〈 r〉 . On imposing a second period

f lower infections from day 320 to day 420, we obtain consistent 

esults for the first two waves. These are plotted in Fig. 5 . In com-

arison, the peak around day 500 was found to be too broad com- 

ared to the reported data from the WHO. We note that a further 

ntervention period from day 500 to day 600 (again with β = 0 . 3 )
3 For example, our preliminary simulations show that 0.2% of reinfections would 

ause a third wave peak for India around day 600. 
4 South Africa also has a relatively lower population density, similar to Serbia. 

a

t

s

o

4 
ields daily rates for the third wave that are in reasonably good 

greement with the WHO data. These results also show a clear 

ourth wave, whose position depends on the imposed intervention 

n the previous wave. This Omicron driven fourth COVID-19 wave 

as already been reported for South Africa [37] . It is interesting to 

ote that our predicted fourth wave is rather broad, similar to the 

lue curve obtained on assuming β = 1 beyond day 500. Although 

e have not carried out simulations with imposed control inter- 

entions beyond day 700, this similarity suggests the possibility of 

 fifth wave for South Africa. 

.4. USA 

Our final set of simulations were for USA, which presents a dif- 

erent challenge as each of its 50 states follow independent mitiga- 

ion and containment strategies. There are five observed waves of 

nfections, with the third peak being significantly larger than the 

thers. A scaled down version of the reported data is shown in 

ig. 6 . In our simulations we use N = 10 k and take D 0 to be Jan-

ary 1, 2020. Based on the WHO data, we introduce three interven- 

ion periods, between days 130–180, 230–280, and 400–550. For 

hese time periods we used l = 0 . 7 〈 r〉 and β = 0 . 3 . As Fig. 6 shows,

part from the small peak around day 470, all other features in 

he data are reasonably well reproduced by the simulations. The 

imulations also correctly predict a wave after day 500, which was 

ngoing during the time of this work. On the basis of our results 
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Fig. 7. Simulated daily rates for India obtained using the mobility restrictions as 

described in the text and l = 2 〈 r〉 . The N = 10 k results are averaged over 7 sets, 

while the N = 5 k results are from a single set, shown for comparison with normal- 

ized WHO data. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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ne can also anticipate a fresh wave of infections following the 

eak after day 600. Similar to the other cases studied, we observe 

hat control interventions following an increase in the daily rate 

f infections invariably lead to a new epidemic wave later in time, 

rovided there are enough agents available to infect the remaining 

usceptible fraction. 

. The equivalence between mobility restrictions on the 

andom walkers and imposition of a lower infection rate 

One can get similar results as above by using the other ap- 

roach that assumes β = 1 at all times. This is obtained by apply- 

ng mobility restrictions at different time ranges on most of the 

andom walkers, so that the primary infection peaks are repro- 

uced. However, it is important to keep in mind that these time 

anges are not the same as periods of imposed lockdowns by gov- 

rning bodies. We discuss below the results obtained using this 

nalogous approach, for the case of India. 

Here again two different sample populations with N = 5 k and 

0k were used to simulate the data for different jump lengths l. 

ll calculations were carried out for μ = 1 / 35 day −1 with a 20% 

obile population during the time period spanning from day 120 

o day 300. The remaining 80% remain frozen at their positions. 

ig. 7 shows the fractional daily rates obtained for the two popu- 

ations for the intervention period mentioned above, together with 

 jump distance of l = 2 〈 r〉 . The 10k results show excellent agree-

ent with reported data for the second wave. Similarly consistent 

esults are obtained for the other countries studied in this work. 

. Discussion 

The results presented in this work show that it is possible to 

redict the trajectory of an epidemic using a random walk Monte 

arlo approach that includes time periods of control interventions. 

wo equivalent simulation approaches (either using β < 1 or keep- 

ng a percentage of the population immobile when effective inter- 

entions were in place) can be followed, as they yield similar re- 

ults. We observe that for populous countries such as India and 

SA reasonably good results are obtained on using a higher pop- 

lation density (10k) in the simulations. 5 In comparison, for coun- 

ries such as Serbia and South Africa (whose population densities 
5 Although not shown explicitly, we find that a higher population of 20k per unit 

rea leads to poor results. 

R

5 
re much smaller) a N = 5 k works best for the simulations. Con- 

ervatively, both these numbers take into account higher floating 

ensities at localized places. In all cases, we show that the use of 

tep-sizes � 2 〈 r〉 yield optimal results. The bound on this parame- 

er value can be justified as below. 

In our earlier work [25] we showed that there are essentially 

wo limits of growth. If the jump step is too small then the 

rowth is purely quadratic in time [10] and if the jump step is too 

arge the growth is exponential due to homogeneous mixing [38] . 

he country-specific growth modes described here occur between 

hese two limits when there is sub-exponential behavior [9] due to 

he containment strategies employed. The power-law nature of the 

rowth is lost for jump steps ≥ 3 〈 r〉 . On the other hand when the

ensity becomes too high, since our simulations use jump lengths 

hat are proportional to the average inter-person separation, the 

pidemic growth approaches the quadratic (lower) limit. In such a 

cenario an alternative approach, such as in Ref. [24] may be better 

uited for studying the sub-features in a single wave. This may of- 

er an explanation as to why our simulated results for large jump 

engths or population densities fail to reproduce the observed data. 

It must also be added that in the present formalism the exact 

otal number of cases are not meaningful. Instead, the focus is on 

he rapid time-shifted increase in the number of infections follow- 

ng intervention periods. These correspond to new waves of infec- 

ion. On this basis the simulations are used to predict pandemic 

eaks at later dates, based on earlier data. If one chooses to use 

 calibration factor based on previously observed peaks, it is also 

ossible to roughly estimate the total number of people infected. 

. Conclusions 

To conclude, we use a random walk Monte Carlo simulation 

echnique to better understand contact-based epidemic spread. The 

odel of independent random walkers as infection carriers in two- 

imensional space is intuitive and shows promise in better un- 

erstanding infectious disease outbreaks [25] . It is more accessible 

han other models and has the ability to capture random interac- 

ions that are missed through more conventional approaches. The 

imulations are shown to predict reasonably accurate disease tra- 

ectories in terms of secondary and tertiary waves, for COVID-19 

ata from four countries with vastly different features. 
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