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3 INAF - Osservatorio Astronomico di Trieste, via Tiepolo 11, 34131, Trieste, Italy
4 IFPU - Institute for Fundamental Physics of the Universe, via Beirut 2, 34151,

Trieste, Italy
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Abstract
The Universe may feature large-scale inhomogeneities beyond the standard
paradigm, implying that statistical homogeneity and isotropy may be reached
only on much larger scales than the usually assumed ∼100 Mpc. This means
that we are not necessarily typical observers and that the Copernican princi-
ple could be recovered only on super-Hubble scales. Here, we do not assume
the validity of the Copernican principle and let cosmic microwave background,
baryon acoustic oscillations, type Ia supernovae, local H0, cosmic chronome-
ters, Compton y-distortion and kinetic Sunyaev–Zeldovich observations con-
strain the geometrical degrees of freedom of the local structure, which we
parametrize via the ΛLTB model—basically a non-linear radial perturbation of
a FLRW metric. In order to quantify if a non-Copernican structure could explain
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away the Hubble tension, we pay careful attention to computing the Hubble con-
stant in an inhomogeneous Universe, and we adopt model selection via both the
Bayes factor and the Akaike information criterion. Our results show that, while
the ΛLTB model can successfully explain away the H0 tension, it is favored
with respect to the ΛCDM model only if one solely considers supernovae in the
redshift range that is used to fit the Hubble constant, that is, 0.023 < z < 0.15.
If one considers all the supernova sample, then the H0 tension is not solved and
the support for the ΛLTB model vanishes. Combined with other data sets, this
solution to the Hubble tension barely helps. Finally, we have reconstructed our
local spacetime. We have found that data are best fit by a shallow void with
δL ≈ −0.04 and rout

L ≈ 300 Mpc, which, interestingly, lies on the border of the
95% credible region relative to the standard model expectation.

Keywords: cosmology: observations, cosmological parameters, cosmology:
theory

(Some figures may appear in colour only in the online journal)

1. Introduction

Accurate cosmological and astrophysical observations have revealed a discrepancy between
early- and late-time determinations of the Hubble constant. This discrepancy, with a signifi-
cance of 5σ if one considers CMB observations (Aghanim et al 2018) and the local cosmic
distance ladder (Riess et al 2021), is the so-called Hubble tension. In the absence of unknown
systematic errors, this discrepancy could suggest the existence of physics beyond the standard
paradigm of cosmology. This scenario has led cosmologists to propose and study new cos-
mological models, mainly, but not limited to, those that extend the ΛCDM model at early- or
late-times (see Abdalla et al 2022, for an up-to-date and extensive review).

Although many of the models proposed to solve the Hubble tension involve modifications
to dark matter and dark energy or changes to the theory of gravity, geometrical degrees of
freedom have also been considered. Indeed, within the standard model, the Universe is expected
to be homogeneous and isotropic only at scales �100 Mpc so that we may need to take into
account the local perturbed spacetime when analyzing observations at low redshifts. This may
be relevant for the Hubble tension as the H0 measurement of Riess et al (2021) is based on the
luminosity-distance-redshift relation in the redshift range 0.023 < z < 0.15.

At the linear level, an adiabatic perturbation in the density of our local spacetime causes a
perturbation in the expansion rate given by (Marra et al 2013):

δH0

H0
= −1

3
f (Ωm)

δρ(t0)
ρ(t0)

(1)

where f � 0.5 is the present-day growth rate for the concordance ΛCDM model. One can
then see how a local underdensity, δρ/ρ < 0, would cause a higher local expansion rate,
δH0/H0 > 0. However, perturbations are smaller on larger scales and the typical contrast—i.e.,
dictated by the amplitude of perturbations as constrained by CMB observations within the
standard ΛCDM model—quickly decreases so that the homogeneous FLRW limit is reached.
Theoretical computations (see Camarena and Marra 2018, and references therein) and numer-
ical simulations (see Odderskov and Hannestad 2017, and references therein) suggest that this

2



Class. Quantum Grav. 39 (2022) 184001 D Camarena et al

cosmic variance on H0 causes a 0.5%–1% systematic uncertainty when analyzing observations
in the redshift range 0.023 < z < 0.15, falling short of explaining the 9% difference between
early- and late-times constraints.

This failure in explaining away the Hubble tension is due to the fact that we assumed the
standard spectrum of perturbations which is based on a series of assumptions, such as the
Copernican principle, the use of the FLRW metric and standard slow-roll inflation. How-
ever, the Universe may feature large-scale inhomogeneities beyond the standard paradigm,
that is, statistical homogeneity and isotropy may be reached only on much larger scales than
the usually assumed 100 Mpc. In other words, we are not necessarily typical observers and
the Copernican principle could be recovered only on grander scales so that observations could
depend on the position of the observer and the notion of an average FLRW observer would
cease to be meaningful (Kolb et al 2010). This could tremendously modify our perception of
the cosmos and motivates us to take a pragmatic approach and test if a local inhomogeneity of
any size and depth could solve the H0 tension.

There has been growing observational evidence that the local Universe is underdense on
scales of several hundred megaparsecs, as reported by Frith et al (2003), Keenan et al (2013),
Whitbourn and Shanks (2014), Hoscheit and Barger (2018), Haslbauer et al (2020), Böhringer
et al (2020), Wong et al (2021). Furthermore, several anomalous signals in cosmological
observables have been emerging since the establishment of the ΛCDM model as the stan-
dard model of cosmology more than two decades ago. Besides the Hubble crisis, particularly
relevant here are the CMB anomalies and the cosmic dipoles (see Perivolaropoulos 2021, and
references therein). These signals are at odds with the standard paradigm according to which
the spacetime is well described by the homogeneous and isotropic FLRW metric on scales
larger than ≈100 Mpc.

In Camarena et al (2022), we tested if the Copernican principle is valid, that is, if we are
indeed ‘typical’ FLRW observers. Specifically, we have probed radial inhomogeneity around us
by constraining the ΛLTB model with the latest available data from CMB, BAO, type Ia super-
novae, local H0, cosmic chronometers, Compton y-distortion, and kinetic Sunyaev–Zeldovich
effect. The ΛLTB model is basically the ΛCDM model with the addition of an arbitrary
spherical inhomogeneity. We found that inhomogeneity around us approximately follows the
expectation of the standard model.

Here, we extend the results of Camarena et al (2022) in order to reconstruct our local
spacetime and test its implications for the Hubble tension. Special attention is given to the
method used to measure the local Hubble constant in an inhomogeneous Universe, Bayesian
model comparison, and a generalization of the LTB profile in order to better reconstruct our
cosmological neighborhood.

Similar analyses using the ΛLTB model were carried out by Tokutake et al (2018), Hoscheit
and Barger (2018), Kenworthy et al (2019), Luković et al (2020), Ding et al (2020), Cai et al
(2021), Castello and Högås (2021). Kenworthy et al (2019) looked at the luminosity distance-
redshift relation of 1295 SNe over a redshift range of 0.01 < z < 2.26 and concluded that data
is inconsistent at the 4–5σ confidence level with a large local underdensity with δ < −0.2
so that local H0 measurements are not affected by the local structure. Luković et al (2020)
confronted luminosity data from 35 000 galaxies in the range 0.005 < z < 0.2 with the ΛLTB
model, finding support for a deep void (Keenan et al 2013). However, the comparison with
supernova data did not confirm this finding. Cai et al (2021) obtained similar results when
comparing to supernova data. Finally, Castello and Högås (2021) fitted the ΛLTB model to
supernova and BAO data, together with a distance prior on the CMB. They also found that a
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local inhomogeneity cannot explain away the Hubble tension. Our analysis improves on previ-
ous work by considering subsets of supernova data, a more comprehensive set of observations
and by adopting an improved statistical analysis.

This paper is organized as follows. In section 2 we briefly review the ΛLTB model and
discuss how to estimate the Hubble constant in a inhomogeneous Universe, and in section 3
we discuss the observations used to constrain the ΛLTB model. We then show our results in
section 4 and discuss them in section 5. We conclude in section 6.

2. An inhomogeneous Universe

In this section, we briefly review the ΛLTB model. We place the observer at the center of the
inhomogeneous region, effectively neglecting anisotropic degrees of freedoms. We also discuss
and propose three different ways to compute the Hubble constant in an inhomogeneous but
isotropic Universe. Hereafter, we will use the prime to denote a partial derivative with respect
to the radial coordinate, r, while the dot will be used to denote a partial derivative with respect
to the time coordinate, t. Additionally, we set c = 1.

2.1. The ΛLTB model

The Lemaître–Tolman–Bondi metric (LTB) can be written as (see Marra et al 2022, for a
comprehensive review):

ds2 = −dt2 +
R′2(r, t)

1 + 2r2k(r)M̃2
dr2 + R2(r, t)dΩ (2)

where dΩ = dθ2 + sin2θ dφ2, M̃ is an arbitrary mass scale and k(r) is a free function. The Fried-
mann–Lemaître–Robertson–Walker metric (FLRW) can be recovered by imposing k(r) =
constant and R(r, t) = a(t)r, with a(t) being the FLRW scale factor. Besides the curvature pro-
file, k(r), the ΛLTB model has two more arbitrary functions: the mass function, m(r), and the
Big Bang time function, tBB(r). We set these functions following Camarena et al (2022), that
is, we adopt a homogeneous Big Bang time tBB(r) = 0 and set the radial coordinate gauge such
that m(r) = 4πM̃2r3/3. A homogeneous Big Bang time is necessary to ensure the absence of
large inhomogeneities at early times, in agreement with the standard paradigm of inflation
(Zibin 2008)

After fixing m(r) and tBB(r), one is left with the curvature function k(r), which we model
according to

k(r) = kb + (kc − kb)P3(r/rB, 0) (3)

where kb and kc are the curvature outside and at the center of the spherical inhomogeneity,
respectively, rB is the comoving radius of the inhomogeneity and the function Pn(x) follows
(Valkenburg et al 2014):

Pn(x) =

{
1 − exp

[
−(1 − x)n/x

]
0 � x < 1

0 1 � x.
(4)

This curvature profile describes a compensated spherical inhomogeneity, that is, our ΛLTB
model simply becomes a ΛCDM model at r � rB. Furthermore, equation (3) establishes the
existence of rL, the compensating scale, at which the central over/underdense region makes a
transition to the surrounding mass-compensating under/overdense region.
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Due to the radial dependence of R(r, t), the expansion of the Universe is not only inho-
mogeneous but also anisotropic. Then, there exists two scalar factors: the transverse one,
a⊥(r, t) = R(r, t)/r, and the longitudinal one, a‖(r, t) = R′(r, t). This means that there are also
two expansion rates defined as

H⊥(r, t) =
ȧ⊥(r, t)
a⊥(r, t)

(5)

H‖(r, t) =
ȧ‖(r, t)
a‖(r, t)

. (6)

Using the previous equations, we can define the present-day density parameters as:

ΩΛ,0(r) =
Λ

3H2
⊥(r, t0)

(7)

Ωm,0(r) =
2m(r)

R3(r, t0)H2
⊥(r, t0)

(8)

Ωk,0(r) =
2r2k(r)M̃2

R2(r, t0)H2
⊥(r, t0)

. (9)

For the sake of simplicity, hereafter we use a ≡ a⊥ and H ≡ H⊥, unless otherwise stated.
The matter density contrast is defined by

δρ(r, t) =
ρm(r, t)
ρm(rB, t)

− 1 (10)

and the mass (integrated) density contrast is given by

δ(r, t0) =
4π

∫ r
0 drδρ(r, t0)R2(r, t0)R′(r, t0)

4πR3(r, t0)/3

=
Ωm,0(r)H2

0(r)

Ωout
m,0Hout

0
2 − 1 (11)

where H0(r) ≡ H(r, t0). Hereupon, we use the superscript ‘out’ to denote quantities outside the
inhomogeneity, i.e. FLRW background quantities. We additionally define the FLRW comoving
coordinate at the present time as:

rout = R(r, t0)/aout(t0). (12)

The ΛLTB model is specified by the parameters that characterize the inhomogeneity, rB

and kc in equation (3), and by the standard six ΛCDM parameters. The latter are the Hubble
constant, the baryon density, the cold dark matter density, the optical depth, the amplitude of
the power spectrum, and its tilt. Regarding theΛLTB parameters, instead of rB and kc, we adopt
zB, which is the redshift corresponding to rB, and δ0, which is the contrast at the center. The
motivation for this change of independent variables is that zB and δ0 are easier to interpret as
far as the low-redshift Universe is concerned, the subject of this paper. In the following we
will show our results using rout

L , the compensating scale in FLRW comoving coordinates, and
δL ≡ δ(rL, t0), the mass density contrast at the aforementioned scale (for illustrative plots, see
Camarena et al 2022). Finally, in order to improve the convergence of the Monte Carlo Markov
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Chain (MCMC), we normalize δ0 such that, instead of −1 � δ0 < ∞, we use:

δ̃0 =

{
δ0 δ0 � 0

δ0/(1 + δ0) δ0 > 0
(13)

which satisfies −1 � δ̃0 < 1. The same normalization is applied for the δL. For the sake of
simplicity, hereafter we drop the tilde.

2.2. Anisotropies

As said earlier, we consider the observer at the center of a spherical structure, a scenario in
which observations are perturbed in a spherically symmetric way. As the Universe is both
radially inhomogeneous and anisotropic, one may argue that an anisotropic perturbation of
observations should be considered. To this point one may consider a more general metric such
as the quasi-spherical Szekeres model (Szekeres 1975), which features a dipole inhomogeneity
instead of a spherical one (Bolejko 2007), or simply displace the observer from the origin
(Alnes and Amarzguioui 2006).

Our modeling, however, is justified a priori by the fact that we wish to understand if a
local underdensity can explain away the Hubble tension. Indeed, this calls for a 9% increase
in the local Hubble rate, which means that the observer must be within a deep underdensity of
contrast ≈− 0.5, see equation (1), with subdominant anisotropic corrections. The smaller
axis of an underdense ellipsoid grows indeed faster as compared to the longer ones, with
the consequence that voids become increasingly spherical as they evolve. If then the observer
is misplaced from the center of such a structure, they will develop a peculiar velocity with
respect to the CMB of approximately v = ΔHdobs, where ΔH � 6 km s−1 Mpc−1 and dobs

is the distance from the center (Marra and Notari 2011). As the observed CMB dipole is
v/c � 1.2 × 10−3 (Aghanim et al 2020), this means that dobs � 60 Mpc, which is small as
compared to the size of the inhomogeneity (see figure 6): in the standard model a source at
z = 0.15, the maximum redshift considered in the local H0 determination by SH0ES, is at a
distance of ≈600 Mpc. We conclude that our modeling is adequate for testing the local-void
scenario. On the other hand, it is worth stressing that the local-void scenario fine-tunes the
position of the observer by ≈ (60/600)3 = 1/1000 chances. In other words, if successful, one
trades a one-in-a-million (5σ) inconsistency in data with a one-in-a-thousand fine-tuning.

2.3. The Hubble constant

Although the background FLRW expansion is well defined by the value of Hout
0 , due to the

radial dependency on the expansion rate, H0(r) �= constant, our model does not possess a unique
definition of the Hubble constant. In addition, there does not exist, a priori, any preferable scale,
rx , at which one can safely define H0 = H0(rx)—the definition of the Hubble constant remains
arbitrary.

Here, we use observational reasoning and extend FLRW concepts to propose three defini-
tions of the Hubble constant for a ΛLTB Universe. These approaches use a mock catalog of
supernovae in the redshift range 0.023 < z < 0.15, which is generated consideringΛLTB lumi-
nosity distances as the observed quantity, and the redshift distribution and covariance matrix
of the Pantheon dataset (Scolnic et al 2018). This mock data set is generated at each sampled
point of the parameter space in order to correctly account for the different cosmological model
and it is used only for the determination of the predicted Hubble constant.
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2.3.1. Mean Hubble constant HM
0 . Our first approach, dubbed as HM

0 , is an extension of the
one proposed in Valkenburg et al (2014). HM

0 is obtained from a weighted comparison between
the luminosity distance and a radial dependent cosmographic expansion over the range 0.023 <
z < 0.15:

c
HM

0

=

∫ 0.15

0.023
dL(z)W(z)

{
z +

1
2

[1 − q0(r)]z2

}−1

dz (14)

where W(z) is the normalized redshift distribution of the mock supernovae and the deceleration
parameter is defined as

q0(r) = Ωm,0(r)/2 − ΩΛ,0(r). (15)

2.3.2. SH0ES Hubble constant HR
0 . For our second definition we adopt the procedure pro-

posed in Redlich et al (2014), and lately in Efstathiou (2021), where the Hubble constant is
obtained by mimicking the typical cosmic distance ladder procedure (see for instance Riess
et al 2016), i.e., fitting the mock catalog using the FLRW cosmographic expansion and assum-
ing a constant deceleration parameter q0 = −0.55 along with a constant value for H0. This
determination, dubbed HR

0 , neglects any spatial degrees of freedom introduced by the LTB
metric and it could be used to identify if deviations of statistical homogeneity could substan-
tially bias cosmic distance ladder determinations. We would like to stress that, while Redlich
et al (2014) first presented this method in the context of inhomogeneous models, Efstathiou
(2021) proposed this approach to point out that the cosmic distance ladder technique does not
determine the Hubble rate at z = 0 but in a specific low-z range given by the set of supernovae
that is adopted in the cosmic distance ladder.

2.3.3. Local Hubble constant HL
0. Lastly, we propose HL

0 , which is determined as HR
0 but with

a radial dependent deceleration parameter:

q̃0(r, HL
0 ) = q0(r)

[
H0(r)
HL

0

]2

(16)

where the last factor enforces the constant HL
0 as the local Hubble rate when defining the density

parameters of equations (7) and (8).
Figure 1 shows HM

0 , HR
0 and HL

0 as a function of δ0 for two particular values of the boundary
redshift: zB = 0.2 (dashed lines) and zB = 0.4 (solid lines). One can note that HR

0 (blue lines)
and HL

0 (red lines) provide similar values for any pair of δ0 and zB. On the other hand, HM
0 (green

lines) enhances the deviations from Hout
0 , especially at |δ0|� 0.1. A local void with δ0 ≈ −0.5

and zB = 0.2 or δ0 ≈ −0.3 and zB = 0.4 can potentially solve the Hubble crisis by providing a
background expansion in agreement with the CMB, Hout

0 = HPlanck
0 , and a local rate that agrees

with SH0ES.

3. Observables

In order to constrain the ΛLTB model we use: Planck 2018 data coming from the high-� and
low-� TT + TE + EE power spectrum (Aghanim et al 2018); BAO measurements from 6dFGS
(Beutler et al 2011), SDSS-MGS (Ross et al 2015) and BOSS-DR12 (Alam et al 2017); cosmic
chronometers data from Moresco et al (2016), (2012), Simon et al (2005), Stern et al (2010),
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Figure 1. HM
0 , HR

0 and HL
0 as a function of the central contrast δ0 for zB = 0.2 and

zB = 0.4. A local void with δ0 ≈ −0.5 and zB = 0.2 or δ0 ≈ −0.3 and zB = 0.4 can
potentially solve the Hubble crisis by providing a background expansion Hout

0 = HPlanck
0

(horizontal black line) and a local rate that agrees with HSH0ES
0 (pink region).

Zhang et al (2014), Moresco (2015); 9 type Ia supernovae distances from Pantheon compilation
(Scolnic et al 2018); a 2σ upper limit prior on the Compton y-distortion provided by COBE-
FIRAS (Fixsen et al 1996); a prior on the amplitude of kSZ effect at � = 3000 (Reichardt
et al 2020); and the Cepheid calibration of the absolute magnitude of supernovae, MB, from
Camarena and Marra (2020), (2021). See Camarena et al (2022) for a thorough discussion of
this data and its ΛLTB theoretical description.

We will carry out our analyses using several combinations of the aforementioned data.
Moreover, we will also consider combinations of data including not the whole set of Pan-
theon supernovae but only supernovae in the redshift range 0.023 < z < 0.15—the so-called
Hubble flow supernovae that are used by SH0ES in the determination of H0. We dub this subset
of the Pantheon catalog as low-z supernovae. Additionally, we carried out analyses including
a prior on the Hubble constant, instead of a prior on MB. Specifically, we impose the SH0ES
determination H0 = 73.5 ± 1.4 km s−1 Mpc−1 (Reid et al 2019) on HL

0 . The aim of these extra
analyses is to demonstrate that both methods, either with a prior on MB or a prior on H0, are
statistically equivalent when the local H0 prior is implemented considering that the cosmic
distance ladder technique does not measure the Hubble rate at z = 0 but rather in a specific
redshift range (Efstathiou 2021).

4. Results

Data analysis is performed using the montelltb code (Camarena et al 2022), which con-
veniently wraps a modified version of the ΛLTB solver vd2020 (Valkenburg 2012) in mon-
tepython (Brinckmann 2018, Audren et al 2013). We explore via MCMC the parameter
space, and evaluate the convergence of our chains demanding (R − 1) � 0.05 for the inho-
mogeneous parameters and (R − 1) ∼ O(10−3) for the ΛCDM background parameters, where

9 See Moresco et al (2022) for the most recent compilation.
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Figure 2. Marginalized constraints, at 68% and 95% confidence level, on several param-
eters of interest when considering, in a flat background Universe, combinations of CMB
and supernova data, together with the local prior on the supernova absolute magnitude
MB. Shown are MB and the local Hubble rate HL

0 (top), the effective mass density contrast
δL and compensating scale rout

L of theΛLTB model (center), and background Hubble con-
stant Hout

0 and the local increase with respect to the background rate, ΔH = HL
0 − Hout

0
(bottom). Note that there is tension only when considering all supernovae and the CMB.
See section 4.1.

R is the Gelman–Rubin diagnostic (Gelman and Rubin 1992). Most of the plots displayed in
this section were generated using getdist (Lewis 2019).

We extend the assumptions made in Camarena et al (2022) and consider both a flat and
a curved ΛCDM background. Given that Planck data has showed a moderate evidence for a
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Figure 3. Apparent magnitude residuals of the Pantheon supernovae, as function of
the redshift, taking as a reference the best fit of the ΛCDM model to the combination
CMB + MB + SNe + all. One can see, from the left panel, that the best fit of the
ΛLTB model to CMB + MB + low-z SNe (blue line) fits well the supernovae in the
range 0.023 < z < 0.15 (green data points) and provides a solution to the Hubble crisis,
see section 4.1. However, the other supernovae (purple data points) constrain the ΛLTB
luminosity distance (red line) to a shape similar to the ΛCDM one. The result is that the
ΛLTB model cannot explain the Hubble tension. The right panel shows the case with-
out CMB data. While the full supernova sample does not prefer an underdensity (solid
curve), when only considering low-z supernovae one sees that the profile is compati-
ble with a local void (dashed black line). This is due to a fluctuation in the supernova
apparent magnitudes at 0.1 � z � 0.15.

closed Universe (Di Valentino et al 2019, Handley 2021), the question if our Universe is flat
or curved has been recently investigated (see, e.g., Vagnozzi et al 2021b, a). Additionally, the
FLRW curvature has been found to have a strong correlation with a possible change in the CMB
temperature, potentially pointing out the existence of a strong correlation with the parameters
of an inhomogeneous model (Bose and Lombriser 2021, Ivanov et al 2020).

As mentioned before, we considered several combinations of the data discussed in section 3.
We denote as base the combination of CMB, SNe and the local prior (either on H0 or MB).
We quantify the tension on H0 and MB assuming the one-dimensional Gaussian limit of the
index of inconsistency; a moment-based estimator that can be used to quantitatively measure
discordance (Lin and Ishak 2017).

4.1. Flat background FLRW metric

We start by considering a flat ΛCDM background (Ωout
k = 0) and only CMB and supernova

observations, together with the local prior on the supernova absolute magnitude MB. Figure 2
shows marginalized constraints on several parameters of interest for four observable combina-
tions10. Figure 3 shows the corresponding apparent magnitude residuals of the ΛLTB best fits
with respect to the ΛCDM best fit.

As it is well known, the freedom in defining the LTB curvature function allows one to fit any
luminosity-distance-redshift relation, that is, any supernova sample. If one adds a prior on MB,
then the latter simply constrains the supernova absolute magnitude, and so local H0, without
changing the fit to supernova data. We start by discussing this case for the full Pantheon sample
and its low-redshift subset (0.023 < z < 0.15). From figure 2 we see that the constraints on

10 See appendix A for the plot relative to the case with the local prior on H0.
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δL and rout
L from the full SN sample (solid black lines) are along the δL = 0 axis, not favoring

under- or overdensities. In particular, one has HL
0 ≈ Hout

0 ≈ HSH0ES
0 . In other words, there is no

local void nor H0 tension, as expected.
If one considers only low-z supernovae (dashed black lines), the situation is qualitatively

the same, albeit with weaker constraints. Note, however, that a local underdensity is somewhat
preferred: this is caused by a fluctuations in the supernova apparent magnitudes at 0.1 � z �
0.15, as evident from figure 3. Because of this allegedly random fluctuation, there is a small
shift between HL

0 and Hout
0 , see figure 2.

Next we add CMB observations, which are fit by a lower background H0 as compared with
HSH0ES

0 . If we consider low-z supernovae (blue curves), then one can have all the supernovae
inside a local underdensity and is free to fit any ΔH = HL

0 − Hout
0 , see figures 2 and 3. Specifi-

cally, the data favors a local underdensity and the local value of the Hubble rate is in agreement
with the local prior and the tension between CMB observations and the local prior is solved.
Note also that the local calibration of MB is not affected by CMB observations. Table 1 shows
the marginalized constraints for the relevant parameters, including HL

0 , HR
0 , and HM

0 . We also
show the change in the observed CMB temperature ΔT ≡ Tobs

0 − Tout
0 , with Tobs

0 being the
CMB temperature measured by the observer and Tout

0 = 2.7255 K the background tempera-
ture11. Indeed, analogous to other parameters, the observer at the center of the inhomogeneity
is expected to measure a different CMB temperature as compared with the expected FLRW
background temperature. This change in the temperature is strongly related to the features of
the inhomogeneity. Within this scenario one expects a ≈2 mK change in the CMB temperature.
It is worth pointing out that the fact that the analysis MB + low-z SNe also suggests a similar
underdensity is a coincidence: even without the fluctuation at 0.1 � z � 0.15 one would have
obtained here a similar result.

Then, we consider the full Pantheon sample. In this case, the luminosity-distance-redshift
relation mapped by the supernovae does not allow for a sufficiently large and deep underdensity
that can solve the H0 tension: a sudden change in the luminosity distance is not allowed by the
supernovae at z > 0.15, see figures 2 and 3. In particular, CMB data induce a lower value of
MB, at odds with the local prior, the so-called MB tension (Camarena and Marra 2021). Also, in
this case, the change in the CMB temperature is much smaller, approximately ≈0.01 mK. Our
results are that a local void is not favored by the data and the H0 tension is not solved. Note,
however, that ΔH = HL

0 − Hout
0 does prefer small but positive values, that is, and underdensity.

We will come back to this in section 5.3.
Finally, we include other observables, considering all the combinations discussed in

Camarena et al (2022). Table 1 presents the relevant results, including the corresponding χ2
min

and the resulting tensions on MB and H0, with respect to Camarena and Marra (2020) and Reid
et al (2019), respectively.

4.2. Curved background FLRW metric

We also study the case of a non-flat FLRW background. Results for these analyses are shown
in table 2 and figure 4. From table 2, we can see that the inclusion of the curvature does not
significantly change the overall results. In particular, the data favors a slightly open Universe
with Ωk,0 ≈ 0.002, compatible with the flat case at 2σ. In particular, in figure 4 we do not
observe a strong correlation between Ωk,0 and the other parameters, in particular ΔT, which
remains constrained around zero.

11 Note that we have neglected possible dynamical effects of radiation (Clarkson and Regis 2011).
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Table 1. 68% confidence level intervals for the relevant parameters for the different combinations of data here analyzed, considering both the prior
on H0 and MB. We also report the χ2

min and the tensions on H0 and MB in sigma units.

Parameter CMB + loc. prior + low-z SNe Base Base + BAO + Hz Base + y-dist. Base + kSZ Base + all

Prior on MB

MB (mag) −19.271+0.032
−0.035 −19.384+0.014

−0.014 −19.389+0.011
−0.012 −19.386+0.014

−0.014 −19.384+0.014
−0.014 −19.391+0.012

−0.012

HM
0 (km s−1 Mpc−1) 72.47+1.09

−1.10 69.06+0.53
−0.60 68.89+0.44

−0.46 69.01+0.58
−0.55 69.07+0.56

−0.54 68.77+0.40
−0.46

HL
0 (km s−1 Mpc−1) 72.29+1.11

−1.12 69.06+0.54
−0.57 68.89+0.43

−0.46 69.00+0.57
−0.53 69.07+0.55

−0.54 68.78+0.39
−0.44

HR
0 (km s−1 Mpc−1) 72.38+1.12

−1.14 69.06+0.52
−0.54 68.90+0.41

−0.44 69.00+0.54
−0.51 69.07+0.53

−0.50 68.79+0.37
−0.42

ΔT (mK) 1.861+0.639
−0.918 −0.017+0.042

−0.041 −0.007+0.027
−0.045 −0.009+0.025

−0.048 −0.023+0.023
−0.027 −0.022+0.022

−0.025

Tension on H0 0.7 3.0 3.1 3.0 2.9 3.2
Tension on MB 0.7 3.5 3.7 3.6 3.5 3.8
χ2

min 2996.1 3808.7 3826.7 3807.3 3808.0 3828.2

Prior on H0

MB (mag) −19.258+0.047
−0.044 −19.386+0.015

−0.015 −19.391+0.012
−0.012 −19.389+0.015

−0.015 −19.389+0.014
−0.014 −19.392+0.011

−0.012

HM
0 (km s−1 Mpc−1) 73.01+1.49

−1.53 69.09+0.56
−0.58 68.90+0.47

−0.49 68.98+0.59
−0.60 68.94+0.55

−0.51 68.83+0.43
−0.46

HL
0 (km s−1 Mpc−1) 72.83+1.53

−1.49 69.08+0.57
−0.56 68.88+0.44

−0.47 68.97+0.55
−0.58 68.94+0.54

−0.51 68.83+0.41
−0.44

HR
0 (km s−1 Mpc−1) 72.94+1.56

−1.51 69.08+0.54
−0.53 68.89+0.46

−0.46 68.98+0.54
−0.55 68.94+0.51

−0.48 68.84+0.39
−0.42

ΔT (mK) 2.145+0.869
−1.043 0.004+0.021

−0.065 0.007+0.024
−0.061 0.001+0.056

−0.067 −0.017+0.026
−0.032 −0.015+0.020

−0.036

Tension on H0 0.3 2.9 3.1 3.0 3.0 3.2
Tension on MB 0.4 3.6 3.8 3.6 3.6 3.8
χ2

min 2998.3 3803.8 3826.8 3805.0 3803.0 3824.5
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Figure 4. Marginalized constraints on the effective mass density contrast δL, compen-
sating scale rout

L , temperature deviation ΔT and background curvature Ωk,0 at 68% and
95% confidence levels.

Table 2. As table 1, but for a curved background, Ωk,0 �= 0.

Parameter Base + BAO + Hz Base + all

Prior on MB

Ωk0 0.0024+0.0016
−0.0016 0.0024+0.0017

−0.0017

MB (mag) −19.372+0.016
−0.016 −19.373+0.017

−0.015

HM
0 (km s−1 Mpc−1] 69.41+0.59

−0.61 69.38+0.62
−0.55

HL
0 (km s−1 Mpc−1) 69.42+0.58

−0.59 69.38+0.61
−0.53

HR
0 (km s−1 Mpc) 69.42+0.56

−0.58 69.39+0.59
−0.52

ΔT (mK) −0.016+0.026
−0.039 −0.020+0.020

−0.032
Tension on H0 2.7 2.7
Tension on MB 3.2 3.2
χ2

min 3828.4 3829.0

Prior on H0

Ωk0 0.0022+0.0017
−0.0017 0.0021+0.0018

−0.0017

MB (mag) −19.375+0.017
−0.017 −19.377+0.018

−0.015

HM
0 (km s−1 Mpc−1) 69.43+0.61

−0.65 69.30+0.60
−0.57

HL
0 (km s−1 Mpc−1) 69.41+0.59

−0.62 69.30+0.57
−0.56

HL
0 (km s−1 Mpc−1) 69.43+0.58

−0.61 69.31+0.57
−0.55

ΔT (mK) 0.004+0.028
−0.060 −0.014+0.016

−0.032
Tension on H0 2.7 2.8
Tension on MB 3.2 3.3
χ2

min 3820.1 3822.7

Finally, figure 5 shows the different values obtained for HL
0 and MB for our different anal-

yses, both considering a prior on MB and H0. For the sake of the comparison, we have also
included the results coming from analyses of the ΛCDM model. We can see how the ΛLTB
results follow the ones relative to the ΛCDM model.
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Figure 5. Constraints on HL
0 and MB at 95% confidence level for the cases here consid-

ered. The gray area corresponds to the value of the Hubble constant at 68% and 95%
confidence level inferred from the CMB observations (Aghanim et al 2018), while the
pink areas correspond to the H0 determination by SH0ES (Reid et al 2019) and the
corresponding calibration of MB (Camarena and Marra 2020).

Table 3. Results of the model selection analysis for the case of a flat background Uni-
verse (Δx = xΛLTB − xΛCDM).

Criteria CMB + MB + low-z CMB + H0 + low-z CMB + MB + all CMB + H0 + all
SNe SNe

χ2
ΛCDM 3014.3 3015.0 3830.0 3825.2

Δχ2 −18.2 −16.7 −1.8 −0.7
ΔAIC −14.2 −12.7 2.2 3.3
ln B01 −12.5 −17.3 3.0 2.2

5. Discussion

5.1. Model selection

We have seen how the Hubble tension is solved when only low-redshift supernovae are con-
sidered but it is no longer solved when all supernovae are included. Here, we will quantify
this statement using Bayesian model comparison between the ΛCDM and ΛLTB models. We
perform model selection using the Bayes ratio. Since the ΛCDM model is nested in the ΛLTB
model, we can simplify the computation of the Bayes ratio by using the Savage–Dickey density
ratio (SDRR) (Trotta 2008). This technique reduces the Bayes ratio to:

B01 =

∫
P(δ0, zB, θi)dθi

p(δ0)p(zB)

∣∣∣∣
δ0=0,zB=0

(17)
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Figure 6. Characterization of our local spacetime from the best fit to all data of the
ΛLTB analysis with the generalized profile with 0 < α < 1 (solid lines) and with α = 0
(dashed lines). The panel on the left shows the size rout

L and depth δL of the two best-
fit models as compared with the standard model expectation, which is quantified via
the Copernican prior convolved with the CMB likelihood (see Camarena et al 2022).
The panels in the middle show the matter and mass density contrasts (top) and the
deviations of Ωm,0 and Ωk,0 from the ΛCDM background (bottom) as functions of
the comoving FLRW coordinate rout. The dotted vertical lines mark the redshift range
0.023 < z < 0.15 that is used to determine H0. The panel on the right shows the rates
of expansion H‖(r, t0) and H⊥(r, t0) a function of rout. The purple and gray areas cor-
respond to constraints at 68% and 95% confidence level of the Hubble constant as
determined by the SH0ES (Reid et al 2019) and Planck collaboration (Aghanim et al
2018), respectively. See section 5.3 for details.

withP being the posterior of theΛLTB model, θi theΛCDM background parameters, and p the
prior function. Although the SDRR can be safely applied to nested models, one should bear in
mind that equation (17) assumes that priors are separable, i.e., p(δ0, zB, θi) = p(δ0)p(zB)p(θi).
Here, this assumption is fully satisfied since our analyses use wide flat priors over all
parameters12. Specifically, we impose zB ∈ [0, 0.5] and δ0 ∈ [−1, 1] such that the flat priors
result in p(δ0) = 1/2 and p(zB) = 2. In equation (17) it is B01 ∝ E0/E1, with 0 representing the
nested model, in our case the ΛCDM model, and 1 the more complex model, the ΛLTB model.
We qualitatively interpret the ratio B01 via the Jeffreys’ scale (Jeffreys 1998). Specifically, we
adopt the conservative version discussed in Trotta (2008), see table B1.

We also use the Akaike information criterion (AIC):

AIC = χ2
min + 2k, (18)

with k being the number of free parameters. The relative differences ΔAIC ≡ AICΛLTB −
AICΛCDM are qualitatively interpreted using the calibrated Jeffreys’ scale shown in table B2.

Results are shown in tables 3 and 4 for the flat and curvedΛCDM background, respectively.
Under the assumption of a flat background metric, we find a strong evidence, B01 = −12.5,
in favor of the ΛLTB model when the CMB + MB + low-z SNe data is considered. This is
confirmed by the ΔAIC which shows no support to the ΛCDM model. On the other hand,
the inclusion of the full supernova dataset removes the preference for the ΛLTB model. The
analysis relative to the combination CMB + MB + all shows a moderate evidence for the
ΛCDM model, B01 = 3.0, and a substantial support to the same model, ΔAIC = 2.2. Similar
results are obtained by considering a prior on H0. Finally, as can be seen from table 4, the

12 Except for HL
0 and MB, but the priors are still separable.
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Table 4. Results of the model selection analysis for the case of a curved background
Universe (Δx = xΛLTB − xΛCDM).

Criteria CMB + MB + all CMB + H0 + all

χ2
ΛCDM 3828.7 3824.9

Δχ2 0.4 −2.2
ΔAIC 4.4 1.8
ln B01 2.2 2.4

introduction of a non-vanishing background curvature does not qualitatively change the results
discussed above.

5.2. Generalized curvature profile

As discussed in section 2, the ΛLTB model has three arbitrary functions. We have set two of
them, m(r) and tBB(r), using a gauge choice and physical arguments. On the other hand, our
particular choice of k(r) is still arbitrary. Here, we study the impact, on the Hubble tension
problem, of such an assumption by performing an extra analysis that uses a generalization of
equation (3):

P3(x,α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for 0 � x < α

1 − exp

[
1 − α

x − α

(
x − α

1 − α
− 1

)3
]

for α � x < 1

0 for 1 � x

(19)

where 0 < α < 1 is a new parameter that modifies the smoothness of the transition between
the inner and background regions. Sharper profiles are obtained when α approximates unity.
Note that our main analysis with equation (3) can be recovered by setting α = 0.

Results are shown in table 5, where, for the sake of comparison, we also report the results
relative to α = 0. The addition of the parameter α leads to an increase in the value of HL

0
by 0.64 km s−1 Mpc−1 as compared with the previous analysis with α = 0. This, along with
the increment on the error, reduces the Hubble tension to 2.7σ. The tension on MB decrease
to 3.2σ. In other words, we find a small improvement with respect to the analysis, but the
ΛLTB cannot fully explain the tension. The assumption of the generalized curvature profile of
equation (19) reduces the χ2

min by 0.3 so that we obtain ΔAIC = 1.7 and B01 = 1.9 in favor
of the simplest model with α = 0. Namely, a weak evidence in favor of the curvature profile
given by equation (3) is found.

5.3. Mapping the local structure of the Universe

While Occam’s razor favors the ΛLTB model with α = 0, the generalized curvature profile is
useful to map the local matter distribution. Figure 6 shows the rates of expansion H‖(r, t0) and
H⊥(r, t0) (right panel), the matter and mass density (top mid panel), and the deviations of Ωm,0

and Ωk,0 from the ΛCDM background (bottom mid panel) as functions of the comoving FLRW
coordinate rout for the best fit of the analysis CMB + MB + all with equation (19) (solid lines).
Local fluctuations in the matter density parameters were found by Colgáin et al (2022) when
analyzing supernova data. We also display the same quantities considering the best fit of our
main analysis with α = 0 (dashed lines). The best-fit values are

{α, δL, rout
L ,Ωout

m,0, Hout
0 }={0.28,−0.038, 330, 0.304, 68.3} (20)
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Table 5. 68% confidence level intervals for the relevant parameters. See section 5.2 for
details.

Parameter α free α = 0

MB −19.372+0.016
−0.016 −19.391+0.012

−0.012

HM
0 69.41+0.59

−0.61 68.77+0.40
−0.46

HL
0 69.42+0.58

−0.59 68.78+0.39
−0.44

HR
0 69.42+0.56

−0.58 68.79+0.37
−0.42

ΔT (mK) −0.016+0.026
−0.039 −0.022+0.022

−0.025

Tension H0 2.7 3.2

Tension MB 3.2 3.8

χ2
min 3827.9 3828.2

for the case of the generalized profile of equation (19), and

{δL, rout
L ,Ωout

m,0, Hout
0 } = {−0.013, 294, 0.302, 68.4} (21)

for the case with α = 0.
The left panel of figure 6 shows size rout

L and depth δL of the two best-fit models as compared
with the standard model expectation, which is quantified via the Copernican prior convolved
with the CMB likelihood (see Camarena et al 2022). We can see that the data prefers a shallow
void with δL ≈ −0.04 and rout

L ≈ 300 Mpc, which, interestingly, lies on the border of the 95%
credible region relative to the standard model expectation.

Even though the analysis including α allows us to map the local distribution of matter in a
more general way, the local structure of the Universe could be restricted using a yet more gen-
eral profile, such as an n-node spline function (Redlich et al 2014) or a data-driven technique,
possibly including anisotropic degrees of freedom. Indeed, while our modeling is adequate to
test if a local underdensity can explain away the Hubble tension, see section 2.2, it may be
important to consider anisotropies when modeling a shallow structure such as the one depicted
in figure 6. This is also suggested by recent maps of our cosmological neighborhood (Courtois
et al 2013). We leave this problem to the future.

6. Conclusions

In Camarena et al (2022), we pursued a program to test one of the fundamental assumptions of
modern cosmology: the Copernican principle. In particular, we modeled the spacetime around
us without any prior on the parameters that describe the inhomogeneity,but rather letting obser-
vations constrain the local structure. Our analysis showed that current cosmological data can
tightly constrain radial deviations from the FLRW metric at almost the cosmic variance level.
We also showed that typical constraints on the ΛCDM parameters are not weakened if one
drops the Copernican hypothesis. Here, our aim was to quantify the impact of the Copernican
principle on the Hubble problem: can a non-Copernican structure explain away the Hubble
tension?

In order to robustly answer this question, we put care on how to compute the Hubble constant
in a inhomogeneous Universe, which we parametrize via the ΛLTB model—basically a radial
perturbation of a FLRW metric. We adopted three different definitions, which all give basically
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similar results. Then, in order to quantitatively conclude if the extra geometrical degrees of
freedom of the ΛLTB model are favored by the data, we carried out Bayesian model selection
via both the Bayes factor and the Akaike information criterion. Finally, we considered both
a flat and a curved background FLRW model. Our results show that the ΛLTB model can
successfully explain away the H0 tension and is favored with respect to the ΛCDM model only
if one solely considers supernovae in the redshift range that is used to fit the Hubble constant,
that is, 0.023 < z < 0.15. If one considers all the supernova sample then the H0 tension is not
solved and the support for the ΛLTB model vanishes. We have also carried out an analysis that
adopts a more general curvature profile. We have found that the inclusion of a new parameter,
that sharpen or smooth the transition between the inner inhomogeneity and the background
model, does not provide a solution to the Hubble constant problem, only slightly increasing
the local expansion rate. Our results are in good agreement with previous studies and improve
upon them by considering a thorougher statistical analysis and a more comprehensive set of
observations.

Finally, we have used the generalized curvature profile to reconstruct our local spacetime.
We have found that the best fit to current cosmological data corresponds to a shallow void with
δL ≈ −0.04 and rout

L ≈ 300 Mpc, which, interestingly, lies on the border of the 95% credible
region relative to the standard model expectation. A more generic reconstruction of the local
matter distribution of the Universe could be achieved using data-driven methods. We leave the
study of this topic for future research.
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Appendix A. Results with the prior on H0

Here, for completeness, we compare the constraints that are obtained using the prior on MB

with the ones obtained using the prior on local H0, see figure A1. We can see that the two
choices provide very similar constraints thanks to the way we implemented the prediction of
the local Hubble rate, see section 2.3.
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Figure A1. Marginalized constraints on the effective mass density contrast δL and com-
pensating scale rout

L of the ΛLTB model in a flat background Universe at 68% and 95%
confidence level.

Table B1. Conservative Jeffreys’ scale (Trotta 2008).

ln B01 Strength of evidence

>5 Strong evidence for ΛCDM
[2.5, 5] Moderate evidence for ΛCDM
[1, 2.5] Weak evidence for ΛCDM
[−1, 1] Inconclusive
[−2.5,−1] Weak evidence for ΛLTB
[−5,−2.5] Moderate evidence for ΛLTB
<− 5 Strong evidence for ΛLTB

Table B2. Qualitative interpretation of ΔAIC according to the calibrated Jeffreys’ scale
(Burnham and Anderson 2002).

|ΔAIC| Level of empirical support for the model with the higher AIC

0–2 Substantial
4–7 Considerably less
>10 Essentially none

Appendix B. Qualitative interpretation of Bayes ratio and ΔAIC

Tables B1 and B2 present the scales that we adopt for the interpretation of the quantitative
results from model selection via the Bayes ratio and ΔAIC.
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