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ABSTRACT
A strong correlation between the gamma-ray burster peak energy and the peak luminosity
of the associated supernova was discovered by Li for four GRBs. Despite the fact that the
formal significance level of the correlation is 0.3 per cent, the smallness of the data set requires
careful further evaluation of the result. Subject to the assumption that the data are bivariate
Gaussian, a 95 per cent confidence interval of (−0.9972, 0.02) for the correlation is derived.
Using data from the literature, it is shown that the distribution of known peak GRB energies is
not Gaussian if X-ray flashes are included in the sample. This leads to a proposed alternative
to the bivariate Gaussian model, which entails describing the dependence between the two
variables by a Gaussian copula. The copula is still characterized by a correlation coefficient.
The Bayesian posterior distribution of the correlation coefficient is evaluated using a Markov
chain Monte Carlo method. The mean values of the posterior distributions range from −0.33
to about zero, depending on the specifics of the supernova (SN) peak brightness distribution.
The implication is that the existing data favour a modest correlation between the GRB peak
energy and the SN peak brightness; confidence intervals are very wide and include zero.
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1 IN T RO D U C T I O N

Many long-duration gamma-ray bursts (GRBs) are accompanied
by Type Ic supernovae (SNe) (Woosley & Bloom 2006; Della Vella
2007). In a few cases, the spectroscopic signature of a supernova has
been seen in GRB afterglows (e.g. Li 2006 and references therein).
More commonly, the non-monotonic afterglow lightcurves of some
GRBs have been explained by the presence of a SN component: for
example, Ferrero et al. (2006) tabulates estimated luminosities for
13 SNe underlying GRBs with known redshifts.

Li (2006) investigated correlations between the properties of the
GRB and those of the associated SNe for four systems in which
the connection had been spectroscopically verified. The data are
reproduced in Fig. 1. The author found a correlation of r = −0.997
between the SN peak bolometric magnitude Mbol and the logarithm
of the intrinsic peak energy Ep of the GRB. It is well known that for
a bivariate Gaussian sample of size N,

T = r
√

N − 2√
1 − r2

(1)

has a t distribution with (N − 2) degrees of freedom. The signif-
icance level of the correlation is 0.3 per cent according to this t
test.

�E-mail: ckoen@uwc.ac.za

Although the correlation is very significantly non-zero, the data
set is quite small and it may be anticipated that any confidence in-
terval for the correlation should be large. This notion is supported
by the following argument. Consider again, as above, the null hy-
pothesis of a zero population correlation (ρ = 0). Equation (1) can
be rewritten as a probability density function (PDF) for r:

f (r) = �[(N − 1)/2]√
π�[(N − 2)/2]

(1 − r2)(N−4)/2 − 1 ≤ r ≤ 1, (2)

where � is the gamma function (e.g. Muirhead 1982). Since the
sign of the correlation coefficient is not of interest, the PDF

f (|r|) = 2�[(N − 1)/2]√
π�[(N − 2)/2]

(1 − r2)(N−4)/2 0 ≤ |r| ≤ 1 (3)

of the absolute value is more relevant. For a data set of size N = 4,
this reduces to a uniform distribution – if the true correlation ρ is
zero, then any observed value of r is equally likely. This means, for
example, that if the true correlation ρ = 0, then the probability of
measuring |r| > 0.95 is the same as that of measuring |r| < 0.05.

The purpose of this paper is to determine confidence intervals for
the correlation between log Ep and Mbol as shown in Fig. 1. As is
demonstrated in Section 2, this is relatively easy if the joint distri-
bution of the two variables is bivariate Gaussian. The assumption of
normality is examined in Section 3, where the marginal distributions
of log Ep and Mbol are studied. This draws on all currently available
data on the SN magnitudes and GRB peak energies from the liter-
ature. The conclusion is that the joint distribution is not Gaussian,
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Figure 1. The four data points from Li (2006). Sources of the data are given
in table 1 of Li (2006).

since the marginal distributions are not Gaussian. A model for the
joint distribution of the two variables is proposed in Section 4. A
Markov chain Monte Carlo (MCMC) technique which can then be
used to deduce the posterior distribution of ρ, given the data, is de-
scribed in Section 5. The MCMC results are presented in Section 6,
and conclusions are given in Section 7.

The methodology can, in principle, be used to obtain the posterior
distribution of the correlation between two quantities with arbitrary
marginal distributions, for any sample size.

2 BIVARIATE G AU SSIAN DATA

In order to derive confidence intervals for ρ, the distribution of r for
non-zero ρ is required. This is given by

f (r) = (N − 2)�(N − 1)√
2π�(N − 1/2)

(1 − ρ2)(N−1)/2(1 − ρr)−(2N−3)/2

× (1 − r2)(N−4)/2H
[

1

2
,

1

2
; N − 1

2
;

1

2
(1 + rρ)

]
, (4)

whereH is the hypergeometric function (e.g. Muirhead 1982). Since
N = 4,

f (r) = 16
√

2

15π
(1 − ρ2)3/2(1 − ρr)−5/2H

[
1

2
,

1

2
;

7

2
;

1

2
(1 + rρ)

]
.

(5)

In order to obtain the posterior distribution of ρ, given the data,
use is made of Bayes’ theorem:

P (ρ|D) = P (D|ρ)P (ρ)

/∫ 1

−1
P (D|ρ)P (ρ)dρ, (6)

where P denotes probability and D the data; P(a|b) indicates the
(conditional) distribution of a given b and P(ρ) is the ‘prior’ dis-
tribution of ρ (e.g. Gelman et al. 1995). Throughout this paper, we
follow the custom of assuming a uniform prior P(ρ): this implies
that, in the absence of any data, all values appear to be equally
likely. Setting P(D|ρ) = f (r) = f (r|ρ),

P (ρ|D) = f (r|ρ)

/∫ 1

−1
f (r|ρ)dρ

= f (r = r∗|ρ)

/∫ 1

−1
f (r = r∗|ρ)dρ, (7)
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Figure 2. The posterior PDF of the correlation, given four measurements
with r = −0.997.
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Figure 3. The posterior CDF of the correlation, given four measurements
with r = −0.997.

where r∗ = −0.997 is the observed value of the correlation coeffi-
cient. Equations (5) and (7) can also be compared to the posterior
distribution derived by Jeffreys (1983).

The PDF (7) and corresponding cumulative distribution function
(CDF),

F (x) =
∫ x

−1
P (ρ|D)dρ, (8)

are plotted in Figs 2 and 3. Examination of the CDF in Fig. 3,
in particular, shows that there is a small, but not negligible, prob-
ability that the true correlation could be quite small in absolute
value (e.g. about a 10 per cent chance that |ρ| < 0.4). The 95 and
99 per cent confidence intervals for ρ are (−0.9972, 0.02)
and (−0.9989, 0.43), respectively; both of these include zero
correlation.

It is interesting to contrast these results with those obtained by
the standard approach of using the Fisher statistic, z = arctanh (r).
For large bivariate Gaussian samples, z is approximately normally
distributed with mean η = arctanh (ρ) and variance 1/(N − 3). In
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Table 1. A comparison of SN bolometric peak magnitudes with the lumi-
nosities derived by Ferrero et al. (2006). The bolometric magnitudes, from
Li (2006), are with respect to the peak magnitude of Supernova 1998bw. The
factors k are the peak luminosities, scaled to the luminosity of Supernova
1998b, and the �M are the corresponding magnitudes. Scale factors k for
Supernova 2006aj were calculated using two different models: both R-band
results from Ferrero et al. (2006) are shown in the table.

GRB/SN �Mbol Luminosity ratio k �M

980425/1998bw 0 1 0
030329/2003dh −0.14 1.50 −0.44
031203/2003lw −0.27 1.28 −0.27
060218/2006aj +0.49 0.62, 0.74 0.33, 0.52

the present case, z = −3.25 and a 95 per cent confidence interval of
(−5.21, −1.29) for η follows. Since ρ = tanh (η), this translates into
the approximate interval (−0.9999, −0.86) for the true correlation.
The discrepancy with the above results points to the breakdown of
this approximation for small samples.

3 MA R G I NA L D I S T R I BU T I O N S

3.1 SN peak magnitudes

Table 1 compares the peak bolometric magnitudes of the four SNe
from Li (2006) with magnitudes derived from table 3 of Ferrero
et al. (2006). The latter were obtained by fitting Supernova 1998bw
template lightcurves to the optical observations of the GRB after-
glows/SN lightcurves. There is good agreement between the two
sets of magnitudes, except for the case of Supernova 2003dh. Study
of the literature (see Bloom et al. 2004; Deng et al. 2005 and refer-
ences therein and Kann, Klose & Zeh 2006) reveals that there are
differences in the Supernova 2003dh host galaxy extinction used
by different authors. In particular, Deng et al. (2005) (on which
the result in Li 2006 is based) assume zero host galaxy extinction,
whereas Kann et al. (2006) (as used by Ferrero et al. 2006) obtained
AV = 0.39 ± 0.15 mag. This difference seems sufficient to account
for the single discrepancy in Table 1.

In view of the above, it appears reasonable to use the set of nine
extinction-corrected luminosity ratios (i.e. luminosities measured
with respect to that of Supernova 1998bw) from table 3 in Ferrero
et al. (2006) to deduce a distribution of peak magnitudes for GRB
SNe. Adding k = 1 for Supernova 1998bw and k = 0.68 for Super-
nova 2006aj, the mean offset from Supernova 1998bw is −0.11 mag
and the spread (standard deviation) is 0.46 mag. If four GRB SNe
without extinction corrections are included, the mean and standard
deviation change to 0.17 and 0.62 mag, respectively. Ferrero et al.
(2006), on the basis of these data, speculated that the width of the
GRB SN luminosity function is at least two magnitudes.

In what follows, it will be assumed that the SN peak bolo-
metric magnitude distribution has a mean in the range −18.5 to
−18.75 and a standard deviation between 0.45 and 0.6 mag. Be-
cause the sample size is too small to reliably deduce the form of
the distribution, the standard assumption of Gaussianity will be
adopted: quantile–quantile plots (Figs 4 and 5) show this to be quite
reasonable.

As a point of interest, the SN peak magnitude–log Ep correlations
for these data are mentioned in passing: for the nine extinction-
corrected cases with well-determined Ep (i.e. Amati 2006, table 1),
r = −0.30; adding the four cases with no extinction correction gives
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Figure 4. A normal distribution quantile–quantile plot of all the available
extinction-corrected SN peak magnitudes, measured with respect to the
peak brightness of SN 1998bw. The four spectroscopically identified SNe
are marked by squares. The fact that the data show no gross systematic
deviations from the line indicates that the magnitudes are roughly Gaussian.
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Figure 5. As in Fig. 4, but including four SNe for which extinction correc-
tions have not been made.

r = −0.21 and including the two GRBs with poorly determined Ep

(Amati 2006, table 2), r = −0.20.

3.2 GRB peak energies

Intrinsic peak GRB energies were taken from table 1 of Amati
(2006). Both long bursts and X-ray flashes were included. An ad-
ditional 12 values were collected from Rossi et al. (2008), and
GRB 060218 was added from Li (2006); this gave 56 data points
in total. There are discrepancies in the values for GRB 030329
[79 keV in Li (2006) and 100 keV in Amati (2006)] and GRB 031203
[159 keV in Li (2006) and 158 keV in table 2 of Amati (2006)].
In both cases, values from Li (2006) are used for consistency with
his/her analysis.

Aside from the three extremely sub-energetic sources XRF
020903 (3.37 keV), GRB 060218 (4.9 keV) and GRB 050416A
(25.1 keV), the logarithmic data can be well represented by a
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Figure 6. A normal distribution quantile–quantile plot of the available GRB
peak intrinsic energies. The four GRB, which are the focus of this paper,
are marked by squares. There are 56 data points. Systematic deviations of
the extreme energy data points from the line suggest that the log Ep are not
Gaussian.
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Figure 7. As in Fig. 6, but excluding the three faintest sources. The small
scatter around the line indicates that these data are roughly normally dis-
tributed.

Gaussian distribution with mean 5.79 and standard deviation 0.88
(Figs 6 and 7). If only the two lowest energy objects are excluded,
these numbers change to 5.74 and 0.94, respectively. However, if
the bulk of the data are treated as Gaussian, then the energies of
both XRF 020903 and GRB 060218 are extremely low-probability
events (p < 10−5). Given that both of these GRBs had associated
SNe (e.g. Ferrero et al. 2006), it is clearly inappropriate to de-
scribe the data in terms of a Gaussian defined by the higher energy
sources. It is also not acceptable to model the entire distribution by a
Gaussian, as Fig. 6 clearly shows. The full empirical distribution
will therefore be used in what follows.

Three caveats should be mentioned. The first is the fact that
not all long-duration GRBs necessarily have associated SNe (see
e.g. Della Valle et al. 2006; Fynbo et al. 2006; Gal-Yam et al. 2006,
and the discussions in Modjaz et al. 2008 and Dado et al. 2008).

This may mean that the subset of GRBs, which do have SNe, may
have a different distribution of peak intrinsic energies. Secondly, it
has been suggested that low-energy GRBs are physically distinct
from their higher-energy counterparts [see Liang et al. (2007) for
a recent discussion of the relevant literature]. Given the current
state of knowledge, it is not possible to say whether this would
necessarily invalidate the analysis below. Thirdly, GRBs for which
only upper or lower limits on Ep are known have not been included
in the derived distribution. This can, in principle, be remedied, but
will not be done here.

4 J OI NT DI STRI BU TI ON

In a bivariate normal distribution, the interdependence between the
components is fully described by the pairwise correlations. How-
ever, this is not the case for bivariate distributions in general. Instead,
the interdependence is generally described by a distribution func-
tion known as a copula (e.g. Clemen & Reilly 1999; Genest & Favre
2007). The joint distribution H(x, y) of x and y is then given by

H (x, y) = C[Fx(x), Fy(y)] , (9)

where C is the copula and Fx , Fy are the marginal distribution
functions of x and y, respectively. A wide range of copula families
are available. In the present context, where the primary interest is
in the correlation between two variables, the Gaussian copula

C(u, v) = �U,V ,ρ[�−1(u),�−1(v)] (10)

seems a good choice. In (10), �−1 is the inverse of the standard
normal CDF, and �U,V,ρ is the bivariate normal CDF with covariance
matrix

R =
[

1 ρ

ρ 1

]
, (11)

and u = Fx(x), v = Fy(y). The joint PDF corresponding to (9)–(11)
is

f (x, y) = fx(x)fy(y)|R|−1/2 exp −
[

1

2
z′(R−1 − I)z

]
(12)

(e.g. Clemen & Reilly 1999), where I is the identity matrix and

z =
[

�−1[Fx(x)]
�−1[Fy(y)]

]
. (13)

The marginal PDFs of x and y are denoted by fx and fy , respectively.
For a specified correlation coefficient ρ, equation (12) can now

be used to find the joint probability P of a set of measurement pairs
(log Ep,j , Mj ) (j = 1, 2, . . . , N) of GRB intrinsic peak energies and
associated SN peak bolometric magnitudes:

P = |R|−N/2
N∏

j=1

fE(log Ep,j )fM(Mj ) exp −
[

1

2
z′

j

(
R−1 − I

)
zj

]

zj =
[

�−1[FE

(
log Ep,j

)
]

�−1[FM(Mj )]

]
. (14)

In (14), fE and fM are the marginal PDFs of the peak GRB (log)
energy and the peak SN magnitude, respectively, as obtained in the
previous section of the paper. The corresponding CDFs are FE and
FM.

Since the distribution of SN magnitudes Mj is assumed to be
Gaussian, it follows that

�−1[FM(Mj )] = (Mj − M)

σM
, (15)

C© 2009 The Author. Journal compilation C© 2009 RAS, MNRAS 393, 1370–1376



1374 C. Koen

where M and σ M are the mean and standard deviation of the mag-
nitudes. The right-hand side of (15) is the normal ‘score’ of Mj .

The CDF of the GRB peak energies can be estimated by the
empirical CDF

F̂E(log Ep,j ) = 1

M

M∑
k=1

#(Ep,k ≤ Ep,j ) (16)

(i.e. the fraction of the sample which is smaller than, or equal to,
Ep,j ). The size of the available sample of GRB peak energies is
denoted by M (M = 56 in Section 2.2).

5 TH E M A R KOV C H A I N MO N T E C A R L O
M E T H O D

Only an abbreviated description of MCMC methodology follows
– the interested reader is referred to e.g. Gelman et al. (1995) for
detail. Astronomical applications can be found in e.g. Ford (2005)
and Croll (2006). In essence, MCMC is a Bayesian technique which
can be used to obtain marginal posterior distributions of parameters
of interest, given a data set and a form (which may be quite compli-
cated) for the joint posterior distribution of the entire parameter set.
Most of the discussion below will refer to the bivariate Gaussian as
an example distribution.

Denote by θ = {θ1, θ2, . . . , θT } the set of parameters character-
izing the full data distribution. In the case of bivariate normal data,
for example, T = 5 – two mean values (μx , μy), two variances (σ 2

x ,
σ 2

y ) and the correlation ρ. The joint posterior distribution of the
components of θ is given by Bayes’ theorem as

P (θ |D) ∝ P (θ )P (D |θ) . (17)

The term P(θ) is the prior distribution of θ .
For the bivariate normal, standard assumptions are ‘flat’ (i.e.

constant) priors for the means and for ρ, while P(σ 2) ∝ σ−2 in the
case of the variances. The factor P(D | θ ) is the likelihood of the
data, given by

P (D |θ) ∝ |
|−N/2 exp

{
−1

2

N∑
j=1

[xj − μx yj − μy]

×
−1[xj − μx yj − μy]′
}

, (18)

where the data consist of the pairs of measurements (xj , yj ) (j = 1,
2, . . . , N). The covariance matrix in this case is


 =
[

σ 2
x ρσxσy

ρσxσy σ 2
y

]
. (19)

The marginal distributions of the individual θj can be obtained
from (17) in at least two ways: conceptually, the simplest is to in-
tegrate with respect to the remainder of T − 1 parameters. In the
case of the bivariate normal, this would require four-dimensional
integrals, which would be tedious to evaluate numerically. The al-
ternative we pursue is the MCMC method. In essence, candidate
values of the θj are drawn randomly from ‘proposal’ distributions
and the candidates are then either accepted or rejected. The accep-
tance probability of the jth draw is

p = min

[
1,

P
(
D |θ (j )

)
P

(
D |θ (j−1)

)]
. (20)

Thus, for example, θ (j ) will definitely be accepted if its posterior
probability is larger than the posterior probability of the previous
draw.

An important ingredient of the MCMC method is the specification
of the proposal distribution from which candidate members θ are
drawn. As a test, the method was applied to the bivariate normal
distribution. For the means and standard deviations, the ‘Metropolis
sampler’ (Metropolis et al. 1953) based on normal distributions was
used: for the jth draw of the kth parameter

θk,(j ) ∼ N
(
θk,(j−1), S

2
k

)
, (21)

i.e. θk,(j ) is drawn from a Gaussian centred on the previously ac-
cepted value. The scale Sk of the Gaussian is adjusted to give quick
convergence of the distributions [for details, see e.g. Gelman et al.
(1995), Ford (2005) or Croll (2006)]. An ‘independence sampler’
(Tierney 1994) seemed to work best for ρ: each candidate is drawn
independently of previous draws from a uniform distribution on the
interval [−1, 1]. The MCMC results agreed well with the known
forms (e.g. Gelman et al. 1995) for the marginal posterior distribu-
tions of the five parameters of the bivariate normal distribution.

6 R ESULTS

The MCMC theory described in Section 5 is now applied to the
bivariate distribution (14), with the data D being the four Mbol −
log Ep pairs studied by Li (2006). Substitution of (14) into (20)
shows that the acceptance probability is independent of the two
marginal distributions, and the vector of parameters θ reduces to
the scalar ρ:

p = min

{
1,

[ |R(j−1)|
|R(j )|

]N/2

exp −
[

1

2

∑
k

z′
k

(
R−1

(j ) − R−1
(j−1)

)
zk

]}
.

(22)

Markov chains were generated for a range of parameter values
for the Gaussian marginal distributions of the SN brightnesses (see
Section 3.1). All the 99 per cent confidence intervals for the corre-
lation comfortably included zero (Table 2). The implication is that
the information contained in the marginal distributions does not
support the strong correlation between the GRB peak energy and
the SN brightnesses seen in the four data points from Li (2006).

Example posterior probability densities are shown in Fig. 8. Each
of these is based on 200 000 MCMC-generated values.

7 C O N C L U S I O N S

The main findings of this paper are as follows.

(i) Bivariate Gaussian data sets have the remarkable property that
if the x and y variables are independent, then for a sample size N =
4, all observed correlations are equally likely. This means that any
measured correlation for such small data sets should be taken with
a pinch of salt.

(ii) The large-sample Fisher’s arctanh transformation cannot be
used to obtain confidence intervals for ρ for samples as small as
N = 4 – it returns intervals which are far too narrow.

(iii) Although the correlation r = −0.997 found by Li (2006) is
extremely strong, the confidence intervals for the population corre-
lation ρ are indeed very wide, as shown in Section 2 (assuming a
bivariate Gaussian distribution).

(iv) Although the peak magnitudes of SNe associated with GRB
may have a Gaussian distribution (Figs 4 and 5), the same cannot
be said for the (log) GRB peak energies (Fig. 6). This implies that
these two variables cannot have a joint Gaussian distribution.

(v) A more appropriate description of the joint distribution of
the SN peak magnitude and log Ep is provided by equation (14);

C© 2009 The Author. Journal compilation C© 2009 RAS, MNRAS 393, 1370–1376
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Table 2. Summaries of the posterior distributions of the correlation coefficient ρ, for various parameters of
the Gaussian describing the marginal distribution of the GRB-associated SNe. For each model, 10 parallel
MCMC chains of length 25 500 each were generated. The first 500 values were discarded to eliminate
contamination by start-up values.

μM σM ρ̂ 95 per cent confidence interval 99 per cent confidence interval

−18.75 0.45 −0.33 −0.79, 0.33 −0.85, 0.48
−18.75 0.60 −0.27 −0.77, 0.40 −0.83, 0.54

−18.65 0.45 −0.18 −0.70, 0.45 −0.78, 0.58
−18.65 0.60 −0.15 −0.69, 0.50 −0.78, 0.62

−18.50 0.45 0.04 −0.55, 0.60 −0.65, 0.69
−18.50 0.60 0.03 −0.57, 0.61 −0.68, 0.71
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Figure 8. Example posterior distributions of the GRB peak energy–SN
peak magnitude correlation for various parameters describing the marginal
distribution of the SN peak brightness. Top left panel: (μM = −18.75, σM =
0.45). Top right panel: (μM = −18.75, σM = 0.6). Bottom left panel: (μM =
−18.65, σM = 0.45). Bottom right panel: (μM = −18.5, σM = 0.45).

the connection between the two variables is still characterized by a
correlation, but the two individual distributions need no longer be
Gaussian.

(vi) The two marginal distributions deduced in Sections 3.1 and
3.2 were substituted into (14), and a MCMC method was used to
produce a posterior distribution of ρ from the four data pairs given
by Li (2006). The correlations found are not particularly strong, and
the confidence intervals are very wide (Table 2 and Fig. 8).

(vii) The implication of point (vi) is that the two observed
marginal distributions, and the four specific data points of Li (2006),
do not together imply a strong correlation between the peak SN
magnitude and log Ep.

There are a number of points worth further work.

(i) The quoted measurement errors in the Ep,k and Mk have not
been incorporated into the above analysis. Effectively, the above
analysis was therefore performed on the data, which have con-
volved distributions. Note that the same applies to the calculations
in Li (2006). There are some improvements which could be ex-
plored. First, the two underlying marginal distributions discussed in
Section 3 could be estimated by deconvolution, taking into account
the individual measurement error specifications. Secondly, if bivari-
ate normality is assumed, then the example MCMC calculations of

Section 5 could be simply extended by adding the measurement
error variances to the (log Ep, M) covariance matrices.

Aside from random errors, widely different results have been ob-
tained from the observational material by different authors. To give
but two examples, Watson et al. (2004) derive Ep < 20 keV for GRB
031203 [as opposed to 159 keV used by Li (2006)], and Kaneko
et al. (2007) find Ep ∼ 122 keV for GRB 980425 [as opposed to
55 keV used by Li (2006)]. Of course, this will also contribute to
the uncertainty in ρ.

(ii) In principle, it is also possible to improve on the results in
Section 6 by modelling the uncertainties in the two marginal dis-
tributions. This could be accomplished by running simultaneously
MCMC chains for each of the two marginal distributions, and for
the dependence structure. In the case of the marginal distributions,
the two data sets of Sections 3.1 and 3.2 would be used, while the
Li (2006) data set would be used to obtain the posterior distribution
of ρ (as in Section 6). The distribution of the SN magnitudes is
Gaussian, and MCMC chains could be used to obtain the posterior
distributions of the mean and variance (which were fixed in the
Section 6 calculations). As far as the GRB peak energies are con-
cerned, a beta distribution, or perhaps a mixture of normals, could be
used. Posterior distributions of the parameters would again follow
from MCMC chains.

(iii) An important point regarding Li’s (2006) study, which has
not been addressed above, is the effect of multiple hypothesis test-
ing. The GRB peak energy–SN magnitude correlation is in fact the
strongest of a number of pairwise correlations between different
variables studied (including the GRB isotropic equivalent energy
and the SN kinetic energy.) Clearly, the significance level of the
maximum of a number of correlation coefficients is less impressive
than that of a single pre-selected correlation coefficient. The p value
of 0.3 per cent referred to in Section 1 is therefore overly optimistic.

The methodologies presented in Sections 2, 4, 5 and 6 are not
specific to the problem discussed in this paper and could therefore,
at least in principle, be used to obtain small sample confidence
intervals for correlation coefficients in general.
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