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Abstract
Intensity maps of the 21 cm emission line of neutral hydrogen are lensed by
intervening large-scale structure, similar to the lensing of the cosmic microwave
background temperature map. We extend previous work by calculating the
lensing contribution to the full-sky 21 cm bispectrum in redshift space. The
lensing contribution tends to peak when equal-redshift fluctuations are lensed
by a lower redshift fluctuation. At high redshift, lensing effects can become
comparable to the contributions from density and redshift-space distortions.
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1. Introduction

The cosmic microwave background (CMB) has been an invaluable probe for developing and
testing cosmological models. Its main constraining power comes from the primary anisotropies
that are imprinted at z ∼ 1000. In addition to this, it also contributes to low-redshift constraints
via the lensing of the CMB temperature by large-scale structure [1]. The integrated 21 cm
emission from neutral hydrogen (HI) in the post-reionization era produces maps that are qual-
itatively similar to the CMB, but with multiple maps over a range of redshifts. 21 cm intensity
maps are also lensed by intervening large-scale structure. For surveys that detect individual
galaxies, the lensing effect on number density occurs at first order in perturbations and modi-
fies the tree-level power spectrum. In the case of the CMB and 21 cm intensity mapping, the
first-order lensing effect vanishes due to conservation of surface brightness [2, 3]: the lensing
effect in the CMB and 21 cm intensity arises at second order. As a result, the 21 cm power
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spectrum is only affected at one-loop level [4, 5]. By contrast, the tree-level 21 cm bispectrum
does carry an imprint of lensing, as pointed out in [5–7].

In this paper, our aim is to derive the lensing contribution to the 21 cm angular bispectrum
and present some numerical examples. The result includes redshift-space distortions (RSD).
Since we work in angular harmonic space, wide-angle correlations are naturally included, i.e.
there is no flat-sky approximation.

The HI temperature contrast observed in redshift space is denotedΔ ≡ ΔHI = ΔTHI/ 〈THI〉.
The lensed temperature contrast at redshift z and in direction n is related to the unlensed
one as

ΔL(z, n) = Δ (z, n +∇⊥φ(z, n)) , (1.1)

where ∇⊥ is the gradient operator on the two-sphere orthogonal to n, and φ is the lensing
potential. At first order (which is all that is needed for the tree-level bispectrum),

φ(1) = −
∫ r

0
dr̃

(r − r̃)
rr̃

[
Φ(1) +Ψ(1)

]
, (1.2)

where r is the comoving line-of-sight distance and the metric potentials in Poisson gauge are
given by (neglecting vector and tensor modes)

ds2 = a2
[
−(1 + 2Ψ)dη2 + (1 − 2Φ)dx2

]
. (1.3)

At first order, (1.1) implies that ΔL(1) = Δ(1), so that up to second order we have

ΔL(z, n) = Δ(1)(z, n) +Δ(2)(z, n) −
〈
Δ(2)

〉
(z) + L(2)(z, n) −

〈
L(2)

〉
(z), (1.4)

where our convention is Δ = Δ(1) +Δ(2) and we have subtracted averages in order to ensure
that

〈
ΔL(z, n)

〉
= 0. The unlensed temperature contrasts are [4–6]

Δ(1) = b1δ
(1) +

1
H∂2

r V (1), (1.5)

Δ(2) = b1δ
(2) +

1
2

b2
[
δ(1)

]2
+ bss

2

+
1
H∂2

r V (2) +
1
H2

([
∂2

r V (1)
]2

+ ∂rV
(1)∂3

r V (1)
)

+
1
H

[
∂rV

(1)∂rδ
(1) + δ(1)∂2

r V (1)
]
, (1.6)

where δ is the matter density contrast, ∂r = n · ∇ and the velocity potential is defined so that
the peculiar velocity is v = ∇V . Terms with radial gradients of V constitute the RSD contri-
bution. The linear and quadratic clustering bias parameters are assumed scale-independent, i.e.
bi = bi(z). The tidal contribution to clustering bias has bias parameter bs(z) multiplying
s2 = si jsi j, where the tidal field is

sij =

(
∂i∂ j −

1
3
δij∇2

)
∇−2δ(1). (1.7)
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In the case of galaxy surveys, the lensing contribution to number count fluctuations at first
and second orders includes the lensing convergence,

κ = −1
2
∇⊥a∇a

⊥φ. (1.8)

By contrast, lensing of HI intensity fluctuations at leading order (i.e. second order) does
not include the lensing convergence. Instead, it is given purely by a coupling of the lensing
deflection angle ∇a

⊥φ with the screen-space gradient of the observed temperature contrast
∇⊥aΔ [4, 6]:

L(2)(z, n) = ∇a
⊥φ

(1)(z, n)∇⊥aΔ
(1)(z, n). (1.9)

The same form of lensing contribution arises in the CMB. However, in the CMB case, the
coupling in (1.9) is negligible, since there is effectively no correlation between primary CMB
temperature fluctuations ∇⊥aΔ

(1)
cmb, that are generated at z ∼ 1000, and the lensing deflections

∇a
⊥φ

(1), that are induced by the large-scale structure at low z [5] (see the review [8] for further
details). This correlation is not negligible for post-reionization 21 cm intensity mapping, since
the fluctuations ∇⊥aΔ

(1) are growing after reionization, i.e. at z � 6, where lensing deflections
from large-scale structure are also growing. (For further details on the cosmological evolution
of 21 cm intensity fluctuations from recombination through reionization to the present time, see
e.g. the review [9].) Thus we expect that the lensing contribution to the bispectrum is nonzero
at tree level.

The full-sky redshift-space bispectrum based on (1.4)–(1.6) has not been previously pre-
sented, as far as we are aware. A partial result was given in [6], where HI clustering bias and
RSD were neglected in the lensing contribution. In [7], the redshift-space bispectrum with HI
clustering bias was presented, but the lensing contribution was omitted.

The article is structured as follows. In section 2, we derive the expression of the lensing
contribution to the bispectrum in redshift space. We show that the lensing contribution is typ-
ically much smaller than the unlensed bispectrum. However, it can become significant when
high-redshift correlations are lensed by a lower redshift fluctuation. We conclude in section 3.
In appendix B, we present the lensing contribution to the 21 cm intensity four-point corre-
lation function, which is relevant for the variance of the lensed HI intensity mapping power
spectrum.

In this article, we consider a fiducial flat ΛCDM cosmology with dimensionless Hub-
ble constant h = 0.67, baryon and cold dark matter density paramaters Ωb = 0.05 and
Ωcdm = 0.27, primordial scalar amplitude and tilt As = 2.3 × 10−9 and ns = 0.962, evaluated
at pivot scale k∗ = 0.05Mpc−1.

2. Lensed bispectrum

The lensed three-point correlation function is

BL(z1, n1, z2, n2, z3, n3) =
〈
ΔL

1Δ
L
2Δ

L
3

〉
where Δi ≡ Δ(zi, ni)

= 〈Δ1Δ2Δ3〉+ δB(z1, n1, z2, n2, z3, n3). (2.1)

At tree level, the lensing correction is

δB(zi, ni) =
〈
Δ(1)

1 Δ(1)
2

[
L(2)

3 −
〈

L(2)
3

〉]〉
+ 2 perms. (2.2)
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Using (1.9) in (2.2) and applying Wick’s theorem, we find that

δB(zi, ni) =
〈
Δ(1)

1 ∇a
⊥φ3

〉 〈
Δ(1)

2 ∇⊥aΔ
(1)
3

〉

+
〈
Δ(1)

2 ∇a
⊥φ3

〉 〈
Δ(1)

1 ∇⊥aΔ
(1)
3

〉
+ 2 perms. (2.3)

The corresponding lensing correction to the angular bispectrum is given by

δB(zi, ni) =
∑
�imi

δBm1m2m3
�1�2�3

(z1, z2, z3) Y�1m1 (n1) Y�2m2 (n2) Y�3m3 (n3). (2.4)

We now derive the expression for δBm1m2m3
�1�2�3

(z1, z2, z3), starting with the first term of (2.3):

〈
Δ(1)

1 ∇a
⊥φ3

〉 〈
Δ(1)

2 ∇⊥aΔ
(1)
3

〉

=
∑ 〈

Δ�1m1 (z1)φ�3m3 (z3)
〉
〈Δ�2m2 (z2)Δ�4m4 (z3)〉

× Y�1m1 (n1) Y�2m2 (n2)∇a
⊥ Y�3m3 (n3)∇⊥a Y�4m4 (n3). (2.5)

The harmonic expansion of gradients of the spherical harmonics can be computed using
spin spherical harmonics and the lowering and raising operators [6] (see appendix A for further
details). This leads to

∇a
⊥Y�3m3 (n)∇⊥aY�4m4 (n)

= −1
2

√
�3�4(�3 + 1)(�4 + 1)

∑
�m

(−1)m Y�m(n)
[
1 + (−1)�3+�4+�

]

×
√

(2�+ 1)(2�3 + 1)(2�4 + 1)
4π

(
�3 �4 �
m3 m4 −m

) (
�3 �4 �
1 −1 0

)
, (2.6)

where the 3 × 2 matrices are Wigner 3j symbols (evaluated with the wigxjpf code [10]). The
second term of (2.3) follows similarly.

Using (2.5) and (2.6), together with their counterparts for the second term of (2.3), we find
that the lensing contribution to the angular bispectrum is

δBm1m2m3
�1�2�3

= −
[
CΔΔ
�1

(z1, z3) CΔφ
�2

(z2, z3) + CΔφ
�1

(z1, z3) CΔΔ
�2

(z2, z3)
]

×
(
�1 �2 �3

1 −1 0

)(
�1 �2 �3

m1 m2 m3

)

×
√

�1�2(�1 + 1)(�2 + 1)(2�1 + 1)(2�2 + 1)(2�3 + 1)
4π

+ 2 perms. (2.7)

Here the first-order angular power spectra CXY
� are defined by

〈X�m(z) Y�′m′ (z′)〉 = (−1)m CXY
� (z, z′) δ��′ δm,−m′ , (2.8)

where Δ denotes Δ(1)
HI and φ denotes φ(1), so that CΔΔ

� is the HI intensity auto power spectrum
and CΔφ

� is the cross power spectrum of the lensing potential with HI intensity.
Statistical isotropy allows us to define the reduced lensing contribution to the bispectrum:

δBm1m2m3
�1�2�3

(z1, z2, z3) = Gm1m2m3
�1�2�3

δb�1�2�3 (z1, z2, z3), (2.9)
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Figure 1. Lensing contribution δb��� to the 21 cm intensity bispectrum in the equilateral
configuration, with three equal redshifts (left) and z1 = z2 = 0.6 fixed with varying z3
(right). Colour bar shows the � value.

where the Gaunt integral is

Gm1m2m3
�1�2�3

=

√
(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

(
�1 �2 �3

m1 m2 m3

) (
�1 �2 �3

0 0 0

)
. (2.10)

From (2.7) and (2.9), it follows that the lensing contribution to the reduced bispectrum is
given by

δb�1�2�3 = −
[
CΔΔ
�1

(z1, z3) CΔφ
�2

(z2, z3) + CΔφ
�1

(z1, z3) CΔΔ
�2

(z2, z3)
]

×
(
�1 �2 �3

0 0 0

)−1 (
�1 �2 �3

1 −1 0

)

×
√
�1�2(�1 + 1)(�2 + 1) + 2 perms. (2.11)

This is our main result. It extends the result of [7], which presented and computed the unlensed
b�1�2�3 for 21 cm intensity maps, and it recovers the special case in [6], where the RSD and
clustering bias effects were neglected in δb�1�2�3 .

Examples of the absolute value of the reduced bispectrum (2.11) are shown in figures 1–3.
We used CLASS [11, 12] for the lensed contribution δb�1�2�3 and the Byspectrum code3 [7,
13] for the unlensed bispectrum b�1�2�3 . Following [7], we modelled the HI clustering bias
parameters as

b1(z) = 0.754 + 0.0877z + 0.0607z2 − 0.002 74z3, (2.12)

b2(z) = −0.308 − 0.0724z − 0.0534z2 + 0.0247z3, (2.13)

bs(z) = −2
7

[b1(z) − 1] . (2.14)

Here b1, b2 are cubic fits to halo model predictions, while bs is the simplest tidal bias model,
corresponding to vanishing initial tidal bias.

Figure 1 displays the lensing contribution to the reduced bispectrum in the equilateral con-
figuration, colour-coded according to the multipole values �, with all three redshifts the same

3 https://gitlab.com/montanari/byspectrum.
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Figure 2. 21 cm intensity mapping bispectrum in the equilateral configuration and for
various redshift triples: without lensing (b���, orange), lensing contribution (δb���, blue).

Figure 3. As in figure 2, for isosceles configurations with �1 = 4, �2 = �3 ≡ �. Squeezed
configurations have � 
 4.

(left) and with z1 = z2 = 0.6 and varying z3 (right). The left panel shows that the lensing con-
tribution in the equal-redshift case decreases as z and � increase. The right panel shows that
for two equal redshifts, the signal is greater when the third redshift is smaller—i.e. when the
equal-redshift fluctuations are lensed by the lower redshift fluctuation. This is consistent with
examples for galaxy surveys given in [6].

Figure 2 compares the lensing contribution to the unlensed reduced bispectrum in the equi-
lateral configuration for various redshift triples. Appropriate smoothing of the unlensed bis-
pectrum with a 15-point average filter has been performed where necessary (see [7, 13] for
discussion of numerical issues in the redshift-space angular bispectrum). The bottom panels
show a striking example of how the relative lensing contribution peaks when equal-redshift

6
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fluctuations are lensed by a lower redshift fluctuation. With high equal redshifts (z ∼ 3), the
lensing contribution can become comparable to, or even dominate over, the density and RSD
contributions.

In figure 3, the lensing contribution in isosceles configurations, �2 = �3 ≡ � with �1 = 4, is
illustrated for the same redshift triples as the bottom row of figure 2. For � 
 4, we approach
the squeezed limit. This case shows a similar behaviour to the equilateral, although the relative
lensing contribution is higher in the equilateral case.

3. Discussion and conclusion

We derived the lensing contribution to the full-sky HI intensity mapping bispectrum in redshift
space, at tree level, as given in (2.11). This generalizes earlier results to include all RSD effects,
as well as the clustering bias up to second order (including tidal bias). We presented some
numerical examples for the equilateral configuration in figures 1 and 2, and for the isosceles
(including squeezed) configuration in figure 3.

These examples suggest that the lensing contribution is greatest when two equal-redshift
fluctuations are lensed by a lower redshift fluctuation, as expected from previous work on the
galaxy bispectrum. For example, in the equilateral case with z1 = z2 = 3, z3 = 0.5, the lensing
contribution dominates in amplitude over the density and RSD contributions for � � 100.

For other redshift configurations, including three equal redshifts, the lensing contribution is
orders of magnitude below the unlensed contribution. Equation (2.11), shows that the 21 cm
lensing arises from terms of the form CΔΔ

� CΔφ
�′ . The lensing contribution is only in CΔφ

�′ , and

for equal redshifts CΔΔ
� 
 CΔφ

�′ (for equal redshifts CΔφ
� > 0). As a consequence, the lensing

effect is swamped by the contributions of density and RSD. A way out of this is if the redshifts
are unequal, when it is possible (as shown in our examples) that the contribution of CΔΔ

� is
heavily suppressed while the lensing deflection can lead to an enhanced CΔφ

�′ .
The relative 21 cm lensing effect is typically much smaller than in galaxy surveys, for two

reasons.

• There is a first-order lensing contribution for galaxies, proportional to the lensing conver-
gence κ(1) [3], which is absent from 21 cm intensity.

• At second order, the lensing effect in the 21 cm bispectrum is from a single contribution,
L(2) = ∇a

⊥φ
(1) ∇⊥aΔ

(1), whereas for galaxies, there are many more contributions, fromκ(2),
[κ(1)]2, κ(1)Δ(1), ∇a

⊥κ
(1) ∇⊥aφ

(1) (see [6]). It follows that the lensing effect for galaxies has
pure-lensing and lensing × (density + RSD) contributions, whereas for 21 cm intensity,
we have only a single lensing × (density + RSD) contribution.

In our numerical examples we have used infinitely thin redshift bins. In the case of the galaxy
angular power spectrum, it is known that increasing the width of redshift bins suppresses the
density and RSD signals, but can increase the lensing contribution [14–16]. Similar behaviour
is seen in the galaxy angular bispectrum [6]. By contrast, in the 21 cm bispectrum the lensing
contribution is typically suppressed by increasing the bin width.

The reason for this is again rooted in the fact that 21 cm lensing is sourced by terms of the
form CΔΔ

� CΔφ
�′ . Although the cross-power spectrum with lensing, CΔφ

�′ , may be enhanced by
increasing the bin width, it is always multiplied by a non-lensing auto-power spectrum CΔΔ

� ,
which is suppressed by increasing the bin width.

This is illustrated by using redshift bins of width δz = 0 (Dirac delta window), 0.1 and 0.01,
with a top-hat window function. We compute two equilateral examples as follows.

7
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Figure 4. Effect of varying the z-bin width, using a top-hat window function, for an
equilateral configuration and equal redshifts. Top: the 2 angular power spectra in the
lensing reduced bispectrum (3.1). Bottom: the product of the power spectra.

zi = z = 3: the reduced lensing bispectrum (2.11) is

δb���(z, z, z) = 3α� CΔΔ
� (z, z) CΔφ

� (z, z), (3.1)

α� ≡ −2�(�+ 1)

(
� � �
0 0 0

)−1 (
� � �
1 −1 0

)
. (3.2)

Figure 4 shows the 2 power spectra in (3.1) (top panels) and then their product (bottom panel),
which is proportional to the lensing contribution to the bispectrum. It can be seen that although
the cross-power spectrum of lensing with HI intensity increases with bin width (top right panel),
this contribution is overpowered by the effect of the HI auto-power spectrum, which decreases
with bin width (top left). The lensing contribution to the bispectrum thus decreases with bin
width, as follows from the bottom panel and (3.1).

z1 = z2 ≡ z = 3, z3 ≡ z′ = 0.5: The reduced lensing bispectrum (2.11) is

δb���(z, z, z′) = α� C�(z, z′), (3.3)

C�(z, z′) ≡ CΔΔ
� (z, z′) CΔφ

� (z, z′) + CΔΔ
� (z′, z) CΔφ

� (z, z)

+ CΔΔ
� (z, z) CΔφ

� (z′, z). (3.4)

8
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Figure 5. As in Figure 4, but with z1 = z2 ≡ z = 3, z3 ≡ z′ = 0.5. The angular power
spectra in the lensing reduced bispectrum (3.4), in addition to the 2 in figure 4, are shown
in the top and bottom left panels. The bottom right panel shows C�, defined in (3.4).

In this case, the two angular power spectra of (3.1) are included in (3.4), together with three
further power spectra, noting that CΔΔ

� (z′, z) = CΔΔ
� (z, z′). These three additional power spec-

tra appearing in (3.4) are shown in figure 5 (top panels and bottom left panel). The bottom left
panel hows an example of a lensing contribution that decreases with bin width. Once again
the total lensing contribution decreases with bin width, as follows from the bottom right panel
and (3.4).

We have only considered a single redshift triple in our examples. In practice, the correlations
from many triples will be added and this may enhance the lensing contribution. The 21 cm bis-
pectrum has been shown to be detectable by SKA (phase 1) and HIRAX in [7], and therefore it
could be measured using standard estimators in the literature. Detectability of the lensing con-
tribution requires significant further work. Our initial rough estimates indicate that the signal
to noise ratio of the lensing signal in equal-redshift bins for SKA1 and HIRAX is small and
cross-bin correlations will need to be included for the possibility of a future detection.
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Appendix A. Derivation of (2.6)

The scalar product of screen-space derivatives of two spherical harmonics, which is needed to
obtain the lensing contribution to the bispectrum in (2.6), can be written in terms of lowering
and raising operators as [6]

∇a
⊥Y�3m3 (n)∇⊥aY�4m4 (n) =

1
2

[
�∂∗Y�3m3 (n) �∂Y�4m4 (n)+ �∂Y�3m3 (n) �∂∗Y�4m4 (n)

]
. (A.1)

The effect of raising and lower operators on spherical harmonics is

�∂Y�m =
√
�(�+ 1) 1Y�m, (A.2)

�∂∗Y�m = −
√
�(�+ 1) −1Y�m, (A.3)

where sY�m are spin-weighted spherical harmonics, which obey the product rule

s1
Y�1m1s2

Y�2m2 =
∑
s�m

sY
∗
�m

√
(2�1 + 1)(2�2 + 1)(2�+ 1)

4π

×
(
�1 �2 �
m1 m2 m

) (
�1 �2 �
−s1 −s2 −s

)
. (A.4)

Using (A.2)–(A.4), and symmetry properties of the Wigner 3j symbol, we obtain (2.6).

Appendix B. Lensing correction to the tree-level four-point correlation
function

We denote by O(n) a perturbation of order n. Assuming that O(1) perturbations are Gaus-
sian, the HI intensity mapping four-point correlation function at tree level is 〈O(6)〉, i.e.
〈O(1)O(1)O(2)O(2)〉 and 〈O(1)O(1)O(1)O(3)〉. We need to expand the lensed HI fluctuations
to fourth order:

ΔL(z, n) = Δ (z, n +∇⊥φ(z, n))

= Δ(z, n) +
4∑

m=1

1
m!

[
∇a1
⊥ φ · · · ∇am

⊥ φ∇⊥a1 . . .∇⊥am Δ
]

(z, n) − average

= Δ(z, n) +
4∑

m=1

L(m)(z, n) −
〈
L(2)

〉
(z) −

〈
L(4)

〉
(z), (B.1)

where all orders of φ and Δ that add to 4 or less are included in the sum and we assume that
the average of Δ has been removed.

10
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The lensing contribution to the four-point correlation function only requires L(2) and L(3),
and for these we need the lensing potential up to second order. At first order the lensing potential
is given by (1.2). At second order,

φ(2)(z, n) = −2
∫ r

0
dr1

r − r1

rr1
ϕ(2)(z1, n)

− 2
∫ r

0
dr1

r − r1

rr1
∇a
⊥φ

(1)(z1, n)∇⊥aϕ
(1)(z1, n), (B.2)

whereϕ = (Φ+Ψ)/2 and ri ≡ r(zi). Here the terms which include∇a
⊥ϕ are the so-called post-

Born terms, since they take into account the fact that the photon is not propagating along the
unperturbed direction n. With these expressions, the lensing correction to Δ at third order is

L(3) = ∇a
⊥φ

(1) ∇⊥aΔ
(2) +

1
2
∇a

⊥φ
(1)∇b

⊥φ
(1) ∇⊥a∇⊥bΔ

(1) +∇a
⊥φ

(2)∇⊥aΔ
(1), (B.3)

In a ΛCDM cosmology at late times, the Weyl potential and the metric potentials are equal
at first order: ϕ(1) = Φ(1) = Ψ(1). This also holds at higher order on sub-Hubble scales. Fur-
thermore, the screen-space Laplacian of ϕ is well approximated by the 3D Laplacian on
sub-Hubble scales and the Poisson equation maintains its Newtonian form. This implies that

∇2
⊥ϕ

(n) � ∇2ϕ(n) � ∇2Φ(n) � 3
2
ΩmH2δ(n), (B.4)

whereΩmH2 = Ωm0H2
0/a and δ(n) is the Newtonian density contrast [17]. The lensed four-point

correlation function in redshift space is written as

TL(zi, ni) =
〈
ΔL

1Δ
L
2Δ

L
3Δ

L
4

〉
+ δT(zi, ni). (B.5)

Here δT is the lensing correction to the unlensed T. At tree level, the four-point correlation
function is of the form 〈O(1)O(1)O(1)O(3)〉+ 〈O(1)O(1)O(2)O(2)〉. In detail

TL(zi, ni) =
〈
Δ(1)

1 Δ(1)
2 Δ(1)

3

[
Δ(3)

4 + L(3)
4

]〉
+ 3 perms

+
〈
Δ(1)

1 Δ(1)
2

[
Δ(2)

3 + L(2)
3 −

〈
L(2)

3

〉] [
Δ(2)

4 + L(2)
4 −

〈
L(2)

4

〉]〉

+ 5 perms. (B.6)

The tree-level lensing correction is thus made up of two parts:

δT[1](zi, ni) =
〈
Δ(1)

1 Δ(1)
2 Δ(1)

3 L(3)
4

〉
+ 3 perms, (B.7)

δT[2](zi, ni) =
〈
Δ(1)

1 Δ(1)
2 Δ(2)

3 L(2)
4

〉
−

〈
Δ(1)

1 Δ(1)
2 Δ(2)

3

〉 〈
L(2)

4

〉

+
〈
Δ(1)

1 Δ(1)
2

〉 〈
L(2)

3

〉 〈
L(2)

4

〉

+
〈
Δ(1)

1 Δ(1)
2 L(2)

3 Δ(2)
4

〉
+

〈
Δ(1)

1 Δ(1)
2 L(2)

3 L(2)
4

〉

−
〈
Δ(1)

1 Δ(1)
2 L(2)

3

〉〈
L(2)

4

〉
−

〈
Δ(1)

1 Δ(1)
2 Δ(2)

4

〉 〈
L(2)

3

〉

−
〈
Δ(1)

1 Δ(1)
2 L(2)

4

〉〈
L(2)

3

〉
+ 5 perms. (B.8)
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First consider δT [1], which is obtained by using (B.3) in (B.7):

δT[1](zi, ni) =
〈
Δ(1)

1 Δ(1)
2 Δ(1)

3 ∇a
⊥φ

(1)
4 Δ⊥aΔ

(2)
4

〉

+
1
2

〈
Δ(1)

1 Δ(1)
2 Δ(1)

3 ∇a
⊥φ

(1)
4 ∇b

⊥φ
(1)
4 ∇⊥a∇⊥bΔ

(1)
4

〉

+
〈
Δ(1)

1 Δ(1)
2 Δ(1)

3 ∇a
⊥φ

(2)
4 Δ⊥aΔ

(1)
4

〉
+ 3 perms. (B.9)

The other terms can be similarly obtained.
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