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We study the cosmological constraints on the variation of Newton’s constant and on post-Newtonian
parameters for simple models of the scalar-tensor theory of gravity beyond the extended Jordan-Brans-
Dicke theory. We restrict ourselves to an effectively massless scalar field with a potential V ∝ F2, where
FðσÞ ¼ N2

pl þ ξσ2 is the coupling to the Ricci scalar considered. We derive the theoretical predictions for

cosmic microwave background anisotropies and matter power spectra by requiring that the effective
gravitational strength at present is compatible with the one measured in a Cavendish-like experiment and by
assuming an adiabatic initial condition for scalar fluctuations. When comparing these models with Planck
2015 and a compilation of baryonic acoustic oscillations data, all these models accommodate a
marginalized value for H0 higher than in ΛCDM. We find no evidence for a statistically significant
deviation from Einstein’s general relativity. We find ξ < 0.064 (jξj < 0.011) at 95% CL for ξ > 0 (for
ξ < 0, ξ ≠ −1=6). In terms of post-Newtonian parameters, we find 0.995 < γPN < 1 and 0.99987 <
βPN < 1 (0.997 < γPN < 1 and 1 < βPN < 1.000011) for ξ > 0 (for ξ < 0). For the particular case of the
conformal coupling, i.e., ξ ¼ −1=6, we find constraints on the post-Newtonian parameters of similar
precision to those within the Solar System.
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I. INTRODUCTION

The astrophysical and cosmic tests for the change of the
fundamental physical constants are improving thanks to the
increasing precision of observations [1,2]. In most of
the cases these tests cannot compete with the precision
which can be achieved in laboratories, but they can probe
lengths and/or timescales otherwise unaccessible on
ground. There are however exceptions: For instance,
current cosmological data can constrain the time variation

of the Newtonian constant at the same level of experiments
within the Solar System such as Lunar Laser ranging [3,4].
As far as cosmological tests are concerned, one work-

horse model to test deviations from general relativity (GR)
is the extended Jordan-Brans-Dicke (eJBD) [5,6] theory,
which has been extensively studied [3,4,7–12]. The eJBD is
perhaps the simplest extension of GR within the more
general Horndeski theory [13]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
G2ðσ; χÞ þG3ðσ; χÞ□σ

þG4ðσ; χÞR − 2G4;χðσ; χÞð□σ2 − σ;μνσ;μνÞ

þG5ðσ; χÞGμνσ
;μν þ 1

3
G5;σðσ; χÞð□σ3

−3σ;μνσ;μν□σ þ 2σ;μνσ
;νρσ;μ;ρÞ þ Lm

�
; ð1Þ
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where χ ¼ −gμν∂μσ∂νσ, “;” denotes the covariant
derivative, R is the Ricci scalar, Gμν ¼ Rμν − gμνR=2,
and Lm is the density Lagrangian for the rest of the matter.
The eJBD theory corresponds to G3 ¼ G5 ¼ 0, G2 ¼
ωBDχ=σ − VðσÞ, G4 ¼ σ [in the equivalent induced gravity
(IG) formulation with a standard kinetic term, the last two
conditions become G2 ¼ χ=2 − VðσÞ, G4 ¼ ξσ2=2 with
ξ ¼ 1=ð4ωBDÞ].
Cosmology puts severe tests on eJBD theories. The

constraints from Planck 2015 and a compilation of baryon
acoustic oscillations (BAO) data lead to a 95% CL upper
bound ξ < 0.00075, weakly dependent on the index for a
power-law potential [4] (see [3] for the Planck 2013
constraints obtained with the same methodology). In
terms of the first post-Newtonian parameter γPN ¼
ð1þ ωBDÞ=ð2þ ωBDÞ ¼ ð1þ 4ξÞ=ð1þ 8ξÞ, the above
95% CL constraint reads as jγPN − 1j < 0.003 [4]. With
the same data, a 95% CL bound is obtained on the relative
time variation of the effective Newton’s constant
1013j _Geff=Geff j≲ 6 × 10−3H0 at 95% CL with an index
for a power-law potential in the range [0, 8]. The combi-
nation of future measurements of CMB anisotropies in
temperature, polarization, and lensing with Euclid-like
(galaxy clustering and weak lensing) data can lead to
constraints on γPN at a slightly larger level than the current
Solar System constraints [14] (see also [15] for forecasts for
different experiments with different assumptions).
However, theoretical priors can play an important role in

the derivation of the cosmological constraints and need to
be taken into account in the comparison with other
astrophysical or laboratory tests. Indeed, for eJBD theories
only the first post-Newtonian parameter γPN is nonzero and
fully encodes the deviations from GR, with the second
post-Newtonian parameter βPN ∝ dγPN=dσ. In this paper we
go beyond the working assumption of βPN ¼ 0 implicit
within eJBD theories. For this purpose we therefore
consider nonminimally coupled (NMC) scalar fields with
2G4 ¼ N2

pl þ ξσ2 as a minimal generalization of the eJBD
theories. NMC scalar fields with this type of coupling are
also known as extended quintessence models in the context
of dark energy (DE) [16–20]. As for eJBD, NMC scalar
fields are also within the class of Horndeski theories
consistent with the constraints on the velocity of propaga-
tion of gravitational waves [21–23], which followed the
observation of GW170817 and its electromagnetic counter-
part [24] (see also [25,26]).
The outline of this paper is as follows. In Sec. II we

discuss the background dynamics and the post-Newtonian
parameters γPN and βPN for this class of scalar-tensor
theories. We study the evolution of linear fluctuations in
Sec. III. We show the dependence on ξ of the CMB
anisotropies power spectra in temperature and polarization
in Sec. IV. We present the Planck and BAO constraints on
these models in Sec. V. We conclude in Sec. VI. The initial

conditions for background and cosmological fluctuations
are collected in the Appendix.

II. DARK ENERGY AS AN EFFECTIVELY
MASSLESS SCALAR FIELD NONMINIMALLY

COUPLED TO GRAVITY

We study the restriction of the Horndeski action (1) to a
standard kinetic term and G3 ¼ G5 ¼ 0. We also assume

2G4 ≡ FðσÞ ¼ N2
pl þ ξσ2; ð2Þ

where ξ is the coupling to the Ricci scalar which is
commonly used in extended quintessence [16–20]. For
simplicity, we denote by a tilde the quantities normalized to
Mpl ≡ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
, where G ¼ 6.67 × 10−8 cm3 g−1 s−2 is

the gravitational constant measured in a Cavendish-like
experiment. We also introduce the notation Ñpl ≡ 1 ∓
ΔÑpl for ξ≷0.
The field equations are obtained by varying the action

with respect to the metric:

Gμν ¼
1

FðσÞ
�
Tμν þ ∂μσ∂νσ −

1

2
gμν∂ρσ∂ρσ

−gμνVðσÞ þ ð∇μ∇ν − gμν□ÞFðσÞ
�
: ð3Þ

We obtain the Einstein trace equation

R ¼ 1

F
½−T þ ∂μσ∂μσ þ 4V þ 3□F�; ð4Þ

where T is the trace of the energy-momentum tensor. The
Klein-Gordon (KG) equation can be obtained by varying
the action with respect to the scalar field:

−□σ −
1

2
F;σRþ V;σ ¼ 0; ð5Þ

and substituting the Einstein trace equation, one obtains

−□σ

�
1þ 3

2

F2
;σ

F

�
þ V;σ − 2

VF;σ

F

þ F;σ

2F
½T − ∂μσ∂μσð1þ 3F;σσÞ� ¼ 0: ð6Þ

In this paper, we do not consider a quintessence-like inverse
power-law potential (see for instance [16–18,20]), but we
restrict ourselves to a potential of the type V ∝ F2 in which
the scalar field is effectively massless. This case generalizes
the broken scale invariant case [27–29] to the NMC scalar
field and is a particular case of the class of models with
V ∝ FM admitting scaling solutions [19]. Note that
although for the form of FðσÞ used in the paper and for
large values of σ, this potential looks similar to that in the
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Higgs inflationary model [30], in fact it is crucially
different since it is exactly flat in the Einstein frame1 in
the absence of other matter and cannot support a metastable
inflationary stage in the early Universe. In contrast, this
model may be used for the description of dark energy in the
present Universe.

A. Background cosmology

We consider cosmic time and a flat FLRW metric for
which the unperturbed cosmological spacetime metric is
given by

ds2 ¼ −dt2 þ aðtÞ2dxidxi: ð7Þ

The Friedmann and the KG equations are then given by

3H2F ¼ ρþ _σ2

2
þ VðσÞ − 3H _F ¼ ρþ ρσ; ð8Þ

−2 _HF ¼ ρþ pþ _σ2 þ F̈ −H _F ¼ ðρþ pÞ þ ρσ þ pσ;

ð9Þ

σ̈ ¼ −3H _σ þ ξσ

F þ 6ξ2σ2

�
ρm þ 4V −

FV;σ

ξσ

− ð1þ 6ξÞ _σ2
�
: ð10Þ

In Fig. 1 the evolution of the scalar field σ is shown for
different values of ξ for both positive and negative values of
the coupling. The natural initial conditions for the back-
ground displayed in the Appendix neglect the decaying
mode, which would rapidly dissipate but would destroy
the Universe isotropy at sufficiently early times otherwise
(see for instance [29]). With this natural assumption the
scalar field is nearly at rest deep in the radiation era,
whereas it grows (decreases) for positive (negative) cou-
plings during the matter era and it reaches a constant value
at recent times. During the matter dominated era in the
regime ξσ2 ≪ N2

pl (which is the only one allowed by
observations, see Sec. V), the evolution of the scalar field
can be approximated as σ ∼ σi½1þ 2ξðln aþ 8Þ�, with σi
being the initial value of the scalar field in the radiation era.
In the bottom panel, we show the evolution of the scalar
field for the conformal coupling (CC) case with ξ ¼ −1=6
for different values of Npl. In this case the field is always
sub-Planckian for ΔÑpl ≲ 0.0005.
The above equations lead to the straightforward

associations:

ρσ ¼
_σ2

2
þ VðσÞ − 3H _F ¼ _σ2

2
þ VðσÞ − 6Hξσ _σ; ð11Þ

pσ ¼
_σ2

2

�
Fð1þ 4ξÞ þ 2ξ2σ2

F þ 6ξ2σ2

�
− 2Hξσ _σ

þ 2ξ2σ2

F þ 6ξ2σ2

�
ρm þ 4V −

FV;σ

ξσ

�
− V; ð12Þ

where in the equation for pσ we have explicitly substituted
the KG equation. We can recover an expression for the DE
density parameter dividing ρσ for the quantity 3H2F, which
represents the critical density.
Alternatively, it is also convenient to define new density

parameters in a framework which mimics Einstein gravity
at present and to satisfy the conservation law _ρDE þ
3HðρDE þ pDEÞ ¼ 0 [31,32]:

ρDE ¼ F0

F
ρσ þ ðρm þ ρrÞ

�
F0

F
− 1

�
; ð13Þ

pDE ¼ F0

F
pσ þ pr

�
F0

F
− 1

�
: ð14Þ

The effective parameter of state for DE can be defined
as wDE ≡ pDE=ρDE.

FIG. 1. Top panel: Relative evolution of σ for different values
of ξ. Bottom panel: Evolution of σ for different values of Npl for
the CC case, i.e., ξ ¼ −1=6.

1Although our work is based in the original Jordan frame, it is
also useful to think about this class of theories in the dual Einstein
frame where ĝμν ∝ Fgμν; V̂ ¼ V=F2.
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In Fig. 2 the evolution of this effective parameter of state
is shown for different values of the parameters Npl and ξ. In
all cases the parameter of state wDE mimics 1=3 (−1) in the
relativistic era (at late times): This behavior can be easily
understood from Eqs. (13) and (14) when ρr [VðσÞ]
dominates over the energy densities of the other compo-
nents. The behavior of wDE at the onset of the matter
dominated era is instead model dependent: For ξ ≠ −1=6,
we see that wDE > 0 from the upper two panels in Fig. 2,
whereas for ξ ¼ −1=6 we obtain wDE ∼ 1=3 when σ0 ≪ σ.
The absence of an intermediate phase of a matter domi-
nated era for ξ ¼ −1=6 is also clear in the initial conditions
for the scale factor reported in the Appendix. It can be seen
from Fig. 2 that there is no phantom behavior of the
effective DE component at small redshifts, in contrast to the
more general scalar-tensor DE models studied in [32].
Indeed, a phantom behavior with wDE < −1 [32] is barely
visible in the transient regime from the tracking value to
wDE ≈ −1 because of the small coupling ξ considered in
Fig. 2, and it cannot occur in the stable accelerating regime
for these models with VðσÞ ∝ F2ðσÞ.
In Figs. 3–5, we show the evolution of the density

parameters Ωi, corresponding to an Einstein gravity system
with a Newton’s constant given by the current value of the
scalar field today, GN ¼ 1=ð8πF0Þ [31] (also used in
[3,33]), for ξ > 0, ξ < 0, and ξ ¼ −1=6, respectively.

FIG. 2. Evolution of wDE for different values of Npl and ξ. We
plot the effective parameter of state for DE for ξ > 0 in the upper
panel, ξ < 0 in the central panel, and the CC case ξ ¼ −1=6 in the
bottom panel.

FIG. 3. Evolution of the density parameters Ωi: radiation in
yellow, matter in blue, and effective DE in red. We plot Ñpl ¼ 1

(Ñpl ¼ 0.9) for ξ ¼ 10−2; 10−3 in the top (bottom) panel.

FIG. 5. Evolution of the density parameters Ωi: radiation in
yellow, matter in blue, and effective DE in red. We plot the CC
case ξ ¼ −1=6 for ΔÑpl ¼ 10−3; 10−4; 10−5.

FIG. 4. Evolution of the density parameters Ωi: radiation in
yellow, matter in blue, and effective DE in red. We plot Ñpl ¼
1.01 (Ñpl ¼ 1.1) for ξ ¼ −10−2;−10−3 in the top (bottom) panel.
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B. Boundary conditions for the scalar field

As boundary conditions we impose that the effective
Newton constant at present is compatible with the
Cavendish-like experiments. The effective gravitational
constant for NMC scalar fields is given by [31]

Geff ¼
1

8πF

�
2F þ 4F2

;σ

2F þ 3F2
;σ

�
: ð15Þ

Figure 6 shows the evolution of the relative effective
gravitational constant (15). We can see that the effective
gravitational constant decreases in time for all the choices
of both Npl and ξ.
We can distinguish three different cases beyond GR:
(i) Ñpl → 0, which is the IG case. This leads to

σ̃20 ¼
1

ξ

1þ 8ξ

1þ 6ξ
; ð16Þ

which is the same result as obtained in [3].
(ii) ξ → −1=6, which is the CC. In this particular case

the polynomial equation (15) in σ0 is quadratic, and
we have

σ̃20 ¼
18Ñ2

plðÑ2
pl − 1Þ

1þ 3Ñ2
pl

: ð17Þ

(iii) A general NMC case for ξ ≠ −1=6:

σ̃20¼
1−2Ñ2

plþ2ξð4−3Ñ2
plÞ

2ξð1þ6ξÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4ξð5Ñ2

pl−4Þþ4ξ2ð3Ñ2
pl−4Þ2

q
2ξð1þ6ξÞ : ð18Þ

By requiring σ̃2 ≥ 0 and F ≥ 0, we obtain conditions on the
two parameters Ñpl and ξ for the physical solution:

Ñpl < 1 for ξ > 0; ð19Þ

Ñpl > 1 for ξ < 0: ð20Þ

C. Comparison with general relativity

The deviations from GR for a theory of gravitation are
described by the so-called post-Newtonian parameters.

FIG. 6. Evolution of the effective gravitational constant Geff
relative to its value today for different values of Npl and ξ. From
top to bottom, the cases with ξ > 0, ξ < 0, and ξ ¼ −1=6 are
displayed, respectively.

FIG. 7. Evolution of the post-Newtonian parameters γPN and
βPN for different values of Npl and ξ. We show the case
with ξ > 0.
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For NMC scalar fields only the parameters γPN and βPN
differ from GR predictions, for which they both equal unity.
In terms of these parameters, the line element can be
expressed as

ds2 ¼ −ð1þ 2Φ − 2βPNΦ2Þdt2 þ ð1 − 2γPNΦÞdxidxi:
ð21Þ

These parameters are given within NMC scalar fields by the
following equations [31]:

γPN ¼ 1 −
F2
;σ

F þ 2F2
;σ
; ð22Þ

βPN ¼ 1þ FF;σ

8F þ 12F2
;σ

dγPN
dσ

: ð23Þ

We have γPN ≤ 1 and βPN ≤ 1 for ξ > 0, whereas γPN ≤ 1
and βPN ≥ 1 for ξ < 0.
In Figs. 7–9, we show the evolution of these parameters

for different values of Npl and ξ. It is interesting to note
how, in the CC case, γPN and βPN approach the GR value
more rapidly than for ξ ≠ −1=6.

III. LINEAR PERTURBATIONS

We study linear fluctuations around the FRW metric in
the synchronous gauge:

ds2 ¼ aðτÞ2½−dτ2 þ ðδij þ hijÞdxidxj�; ð24Þ

where τ is the conformal time and hij include both the
scalar (hSij) and the tensor (hTij) part. We follow the
conventions of Ref. [34] for scalar metric perturbations
hij and scalar field perturbation δσ:

hSij ¼
Z

d3keik⃗·x⃗
�
k̂ik̂jhðk⃗; τÞ þ

�
k̂ik̂j −

1

3
δij

�
ηðk⃗; τÞ

�
;

ð25Þ

δσ ¼
Z

d3keik⃗·x⃗δσðk⃗; τÞ: ð26Þ

In Fig. 10, we show the evolution of the scalar field
perturbation δσ at k ¼ 0.05 Mpc−1 for different values of
Npl and ξ.
The modified Einstein equations in Eq. (3) at first order

for scalar perturbations are

FIG. 8. Evolution of the post-Newtonian parameters γPN
and βPN for different values of Npl and ξ. We show the NMC
case with ξ > 0.

FIG. 9. Evolution of the post-Newtonian parameters γPN and
βPN for different values of Npl. We show the NMC case
ξ ¼ −1=6, i.e., the CC case.
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k2

a2
η −

1

2
H _h ¼ −

1

2F

�
δρþ _σδ _σ þ V;σδσ −

F;σ

F

�
ρþ _σ2

2
þ V − 3H _F

�
δσ

�
; ð27Þ

k2

a2
_η ¼ 1

2F

�X
i

ðρi þ piÞθi þ k2ð _σδσ þ δ _F −HδFÞ
�
; ð28Þ

ḧþ 3H _h − 2
k2

a2
η ¼ −

3

F

�
pþ _σδ _σ − V;σδσ −

F;σ

F

�
pþ _σ2

2
− V þ F̈ þ 2H _F

�
δσþ 2

3

k2

a2
δF þ δF̈ þ 2Hδ _F þ 1

3
_h _F

�
; ð29Þ

ḧþ 6η̈þ 3Hð _hþ 6_ηÞ − 2
k2

a2
η ¼ −

3

F

�X
i

ðρi þ piÞσi þ
2

3

k2

a2
δF þ

_F
3
ð _hþ 6_ηÞ

�
; ð30Þ

where all perturbations are considered in the Fourier configuration. The quantities θi and σi represent the velocity potential
and the anisotropic stress, respectively. It can be seen from the last of these equations that the coupling function also acts as a
source for the anisotropic stress.
The perturbed Klein-Gordon equation is

δσ̈ ¼ −δ _σ
�
3H þ 2ð1þ 6ξÞξσ _σ

F þ 6ξ2σ2

�
− δσ

�
k2

a2
þ FV;σ;σ

F þ 6ξ2σ2
−

2ξσV;σ

F þ 6ξ2σ2

�
1þ Fð1þ 6ξÞ

F þ 6ξ2σ2

�

þ ξ

F þ 6ξ2σ2

�
1 −

2ð1þ 6ξÞξσ2
F þ 6ξ2σ2

�
½ð1þ 6ξÞ _σ2 − 4V þ ð3p − ρÞ�

�
−
ð3δp − δρÞξσ
F þ 6ξ2σ2

−
1

2
_h _σ : ð31Þ

As for the homogeneous KG Eq. (10), the choice V ∝ F2

also leads to an effectively massless scalar field fluctuation.
Both initial conditions for the background and for the linear
perturbations at the next-to-leading order in τ are shown in
the Appendix. We consider adiabatic initial conditions for
the scalar cosmological fluctuations [3,35].
Analogously, the transverse and traceless part of the

metric fluctuation hTij is expanded as

hTij ¼
Z

d3keik⃗·x⃗½hþeþij þ h×e×ij�; ð32Þ

where hþ; h− and eþ; e× are the amplitude and normalized
tensors of the two independent states in the direction of
propagation of gravitational waves in Fourier space. The
evolution equation for the amplitude is

ḧs;k þ
�
3H þ

_F
F

�
_hs;k þ

k2

a2
hs;k ¼

2

F
ρνπ

ν; ð33Þ

where s denotes the two polarization states of the two
independent modes (s ¼ þ;×) and the right-hand side
denotes the contribution of the traceless and transverse
part of the neutrino anisotropic stress. The importance of
the extra damping term in the evolution equation for
gravitational waves has previously been stressed [36,37].
The example of the impact of this term with respect

FIG. 10. Evolution of scalar field perturbations in the synchro-
nous gauge for k ¼ 0.05 Mpc−1.
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to GR is depicted in Fig. 11. Note that the parameters
chosen are compatible with the previous figures in this
paper, and we are therefore in a regime in which
_F=F ≪ 3H.

IV. CMB ANISOTROPIES AND MATTER
POWER SPECTRA

The footprints of these scalar-tensor theories into the
CMB anisotropies angular power spectra can be understood
as a generalization of the effects in eJBD or, equivalently,

FIG. 11. Evolution of tensor fluctuations hT for k ¼
0.01 Mpc−1.

FIG. 12. From top to bottom: Relative differences of the TT-
EE-TE-ϕϕ power spectra with respect to the ΛCDM model for
Ñpl ¼ 1, 0.9 and different values of ξ ¼ 10−2; 5 × 10−3.

FIG. 13. From top to bottom: Relative differences of the TT-
EE-TE-ϕϕ power spectra with respect to the ΛCDM model for
Ñpl ¼ 1.01, 1.1 and different values of ξ ¼ −10−2;−5 × 10−3.

FIG. 14. From top to bottom: Relative differences of the TT-EE-
TE-ϕϕ power spectra with respect to the ΛCDM model for the CC
case, i.e.,ξ¼−1=6,with differentvaluesofΔÑpl¼10−4;10−5;10−6.
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IG theories. The redshift of matter-radiation equality is
modified in scalar-tensor theories by the motion of the
scalar field driven by pressureless matter, and this results in
a shift of the CMB acoustic peaks for values ξ ≠ 0, as for
the IG case [7,38]. In addition, a departure from Ñpl ¼ 1

induces a further change, both in the amplitude of the peaks
and in their positions. We note that decreasing the value of
Ñpl is possible to suppress the deviations with respect to the
ΛCDM model, allowing for larger values of the coupling ξ
compared to the IG case.
We show the relative differences with respect to the

ΛCDM model for the lensed CMB angular power spectra
anisotropies in temperature and E-mode polarization, and
the CMB lensing angular power spectra for different values
of Npl for ξ > 0 in Fig. 12, ξ < 0 in Fig. 13, and the CC
case ξ ¼ −1=6 in Fig. 14. We also show the absolute
difference of the TE cross-correlation weighted by the
square root of the product of the two autocorrelators.
In Fig. 15 we show the relative differences for the matter

power spectrum at z ¼ 0 with respect to the ΛCDM model
for different values of the parameters. In all the cases, the
PðkÞ is enhanced at small scales, i.e., k≳ 0.01 hMpc−1,
compared to the ΛCDM model.
We end this section by discussing the B-mode polari-

zation power spectra resulting from the evolution of tensor

fluctuations in Eq. (33). Figure 16 shows the comparison of
the tensor and lensing contributions to B-mode polarization
in ΛCDM GR and the scalar-tensor cases of IG (Npl ¼ 0),
CC (ξ ¼ −1=6), positive and negative ξ for a value of a
tensor-to-scalar ratio r ¼ 0.05, compatible with the most
recent constraints [39,40]. It is important to note that for the
values of the couplings chosen in Fig. 16, the main
differences in the tensor contribution to B-mode polariza-
tion with respect to the ΛCDM GR case is due to the
different evolution in the Hubble parameter and in the
transfer functions in the definition of CMB anisotropies.

V. CONSTRAINTS FROM COSMOLOGICAL
OBSERVATIONS

We perform a Monte Carlo Markov chain analysis by
using the publicly available code MontePython2 [41,42]
connected to our modified version of the code CLASS3

[43], i.e., CLASSig [3].

FIG. 15. From top to bottom: Relative differences of the matter
power spectra at z ¼ 0 with respect to the ΛCDM model for
ξ > 0, ξ < 0, and ξ ¼ −1=6.

FIG. 16. From top to bottom: CMB B-mode polarization band
power, relative differences of the tensor contribution, and relative
differences of the lensing contribution with respect to the ΛCDM
model for ξ > 0, ξ < 0, ξ ¼ −1=6, and IG. Dashed lines refer to
the lensing contribution to the B-mode polarization angular
power spectrum.

2See https://github.com/brinckmann/montepython_public.
3See https://github.com/lesgourg/class_public.
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We use Planck 2015 and BAO likelihoods. We combine
the Planck high-l (l > 29) temperature data with the joint
temperature-polarization low-l (2 ≤ l ≤ 29) likelihood in
pixel space at a resolution of 3.7 deg, i.e., HEALPIX Nside ¼
16 [44]. The Planck CMB lensing likelihood in the
conservative multipoles range, i.e., 40 ≤ l ≤ 400 [45],
from the publicly available Planck 2015 release is also
combined. We use BAO data to complement CMB anisot-
ropies at low redshift: We include measurements of DV=rs
at zeff ¼ 0.106 from 6dFGRS [46], at zeff ¼ 0.15 from
SDSS-MGS [47], and from SDSS-DR11 CMASS and
LOWZ at zeff ¼ 0.57 and zeff ¼ 0.32, respectively [48].
We sample, with linear priors, the six standard cosmo-

logical parameters, i.e., ωb ≡Ωbh2, ωc ≡Ωch2, H0, τre,
ln ð1010AsÞ, and ns, plus the two extra parameters for a
nonminimally coupled scalar field, i.e., ΔÑpl and ξ. In the
analysis we assume massless neutrinos and marginalize
over Planck high-l likelihood foreground and calibration
nuisance parameters [44] which are allowed to vary.
As in [4], we take into account the change of the

cosmological abundances of the light elements during
big bang nucleosynthesis (BBN) induced by a different
gravitational constant during the radiation era with respect
to the theoretical prediction obtained from the public code
PArthENoPE [49]. We take into account the modified BBN
consistency condition due to the different value of the
effective gravitational constant during BBN, by considering
this effect as modeled by dark radiation, since the latter
effect is already tabulated as YBBN

P ðωb; NeffÞ [50] in the
public version of the CLASS code. As in [4], the posterior
probabilities for the primary cosmological parameters are
hardly affected by the modified BBN consistency con-
dition, and we report a small shift for the primordial helium
abundance to higher values.

A. Results

The results from our MCMC exploration are summa-
rized in Table I. We find for the positive branch of the
coupling at 95% CL,

Npl > 0.81½Mpl�; ð34Þ

ξ < 0.064: ð35Þ

We show in Fig. 17 a zoomof the 2Dparameter space (H0, ξ),
comparing the result of NMCscalar fields to IG, i.e.,Npl ¼ 0.
The constraint on ξ is degradated by almost 2 orders of
magnitude (ξ < 0.0075 at 95% CL for IG [4]) due to the
strong degeneracy between Npl and ξ (see Fig. 18).
The constraints for the negative branch are (see Figs. 19

and 20)

Npl < 1.39½Mpl�; ð36Þ

FIG. 17. 2D marginalized confidence levels at 68% and 95%
for (H0, ξ) for NMC ξ > 0 (red) and IG (blue) with Planck TTþ
lowPþ lensingþ BAO.

FIG. 18. 2D marginalized confidence levels at 68% and 95%
for (Npl, ξ) for NMC ξ > 0 with Planck TTþ lowPþ
lensingþ BAO.

FIG. 19. 2D marginalized confidence levels at 68% and 95%
for (H0, ξ) for NMC ξ < 0 with Planck TTþ lowPþ lensingþ
BAO.

MASSIMO ROSSI et al. PHYS. REV. D 100, 103524 (2019)

103524-10



ξ > −0.11 ð37Þ

at the 95% CL for Planck TTþ lowPþ lensingþ BAO.
We also quote the derived constraints on the change of

the effective Newton constant (15) evaluated between the
radiation era and the present time, and also its derivative at
present time at 95% CL:

δGeff

G
> −0.027; ð38Þ

_Geff

G
ðz ¼ 0Þ > −1.4½×10−13 yr−1�; ð39Þ

for ξ > 0, and

δGeff

G
> −0.027; ð40Þ

FIG. 20. 2D marginalized confidence levels at 68% and 95%
for (Npl, ξ) for NMC ξ < 0 with Planck TTþ lowPþ lensingþ
BAO.

TABLE I. Constraints on the main and derived parameters for Planck TTþ lowPþ lensingþ BAO (at 68% CL if not otherwise
stated). In the first column we report the results obtained for the branch with ξ > 0, and in the second we give the branch for ξ < 0. In the
first column we report the results obtained for the ΛCDM model with the same data set [51], and in the second column we give the IG
case, i.e., Npl ¼ 0, for comparison [4].

Planck TTþlowPþ
lensingþBAO ΛCDM

Planck TTþlowPþ
lensingþBAO IG

Planck TTþlowPþ
lensingþBAO (ξ>0Þ

Planck TTþlowPþ
lensingþBAO (ξ<0Þ

ωb 0.02225�0.00020 0.02224þ0.00020
−0.00021 0.02226�0.00019 0.02226�0.00021

ωc 0.1186�0.0012 0.1191�−0.0014 0.1190�0.0015 0.1189�0.0015
H0 [kms−1Mpc−1] 67.78�0.57 69.4þ0.7

−0.9 69.2þ0.8
−1.1 69.2þ0.7

−1.0
τre 0.066�0.012 0.063þ0.012

−0.014 0.068�0.014 0.069�0.013
lnð1010AsÞ 3.062�0.024 3.059þ0.022

−0.026 3.069þ0.023
−0.027 3.071�0.024

ns 0.9675�0.0045 0.9669þ0.0042
−0.0047 0.9674�0.0046 0.9728�0.0043

ξ … <0.00075 (95% CL) <0.064 (95% CL) >−0.011 (95% CL)
Npl [Mpl] … 0 >0.81 (95% CL) <1.39 (95% CL)
γPN 1 >0.9970 (95% CL) >0.995 (95% CL) >0.997 (95% CL)
βPN 1 1 >0.99987 (95% CL) <1.000011 (95% CL)
δGN=GN … −0.009þ0.003

−0.009 >−0.027 (95% CL) >−0.027 (95% CL)
1013 _GNðz¼0Þ=GN

[yr−1]
… −0.37þ34

−12 >−1.4 (95% CL) >−0.97 (95% CL)

TABLE II. Constraints on main and derived parameters for Planck TTþ lowPþ lensingþ BAO in the case of the
CC model (at 68% CL if not otherwise stated).

Planck TTþ lowPþ lensingþ BAO Planck TTþ lowPþ lensingþ BAO þ HST

ωb 0.02223� 0.00021 0.02228� 0.00021
ωc 0.1188þ0.0014

−0.0015 0.1187� 0.0015
H0 [km s−1 Mpc−1] 69.19þ0.77

−0.93 70.20� 0.83
τre 0.068þ0.012

−0.014 0.070þ0.013
−0.015

ln ð1010AsÞ 3.070� 0.024 3.074� 0.024
ns 0.9699� 0.0045 0.9728� 0.0043
Npl [Mpl] < 1.000038 (95% CL) 1.000028þ0.000012

−0.000014
γPN > 0.99996 (95% CL) 0.99997� 0.00001
βPN < 1.000003 (95% CL) 1.000002� 0.000001
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_Geff

G
ðz ¼ 0Þ > −0.97½×10−13 yr−1�; ð41Þ

for ξ < 0.
For the CC case, i.e., fixing ξ ¼ −1=6, results are listed

in Table II. This model is severely constrained by data,
leading to a tight upper bound on Npl at 95% CL:

1 < Npl < 1.000038½Mpl�; ð42Þ

where Ñpl can take only values larger than 1 in this case.
All these models provide a fit to Planck 2015 and BAO

data very similar to ΛCDM: We report Δχ2 ∼ −2.6 for all
the models considered in this paper. Because of the limited
improvement in Δχ2, none of these models is preferred at a
statistically significant level with respect to ΛCDM.

B. The Hubble parameter

We find constraints compatible with the ΛCDM values
for the standard cosmological parameters. However, the
shifts in H0 deserve a particular mention: As already
remarked in [3,4] for the IG case, the mean values for
H0 are larger for all the models studied here. Figure 21
shows how the 2D marginalized contours for (H0, Npl)
have a degeneracy. We find

H0 ¼ 69.19þ0.77
−0.93 ½km=s=Mpc�: ð43Þ

This value is larger but compatible at the 2σ level with the
ΛCDM value (H0 ¼ 67.78� 0.57 ½km=s=Mpc�). However,
it is still lower than the local measurement of the Hubble
constant [52] (H0 ¼ 73.52� 1.62 ½km=s=Mpc�) obtained
by including the new MW parallaxes from HST and Gaia in
the rest of the data from [53]. Therefore, the tension between

the model dependent estimate of the Hubble parameter
from Planck 2015 plus BAO data and the local measurement
from [52] decreases to 2.3σ from the 3.3σ of the ΛCDM
model. For comparison, by varying the number of degrees of
relativistic species,Neff , in Einstein gravity, a lower value for
the Hubble parameter, i.e., H0¼68.00�1.5 ½km=s=Mpc�
(with Neff¼3.08þ0.22

−0.24 ) for Planck TTþ lowPþ lensingþ
BAO at 68% CL, is obtained compared to the CC case
reported in Eq. (43). When the local measurement of the
Hubble constant [52] is included in the fit, we obtain

H0 ¼ 70.20� 0.83 ½km=s=Mpc�; ð44Þ
Npl ¼ 1.000028þ0.000012

−0.000014 ½Mpl�: ð45Þ
Since the marginalized value for H0 in either eJBD or

NMC models is larger than in common extensions of the
ΛCDM model [51], such as ΛCDMþ Neff , it is useful to
understand how the evolution of the Hubble parameter
differs at early and late times. The differences at early time
can be easily understood: Since the effective Newton
constant can only decrease, if we consider the same H0,
this will correspond to a higher HðzÞ or to a larger Neff in

FIG. 21. 2D marginalized confidence levels at 68% and 95%
for (H0, Npl) for conformal coupling with Planck
TTþ lowPþ lensingþ BAO. We include in blue the local
estimates of H0 ¼ 73.52� 1.62 [km/s/Mpc] [52].

FIG. 22. Redshift evolution for the relative difference between
the Hubble parameter HðzÞ and its ΛCDM counterpart (upper
panel) and the ratio DVðzÞ=rs (lower panel). For ΛCDM
quantities we use Planck TTþ lowPþ lensingþ BAO best fit.
The models plotted are IG, CC, ξ < 0, ξ > 0, the ΛCDM model
with Neff > 3.046, and the wCDM with w0 ¼ const ≠ 0 for
green, red, brown, black, blue, and orange lines, respectively.
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the radiation era compared to the ΛCDM. A second effect
around recombination is the motion of the scalar field
driven by pressureless matter. At lower redshifts, the
differences with respect to ΛCDM are originated by the
onset of the acceleration stage by σ. The upper panel of
Fig. 22 shows relative differences of HðzÞ with respect to
the Planck TTþ lowPþ lensingþ BAO ΛCDM best fit:
Best-fit (for IG) or NMC models within the 1σ contours are
compared with ΛCDMþ Neff or wCDM. This plot shows
how, in these scalar-tensor models, both early and late time
dynamics can contribute to a larger value for H0 than in
ΛCDMþ Neff , for example.
However, because of this contribution from late time

dynamics, the change in H0 cannot be interpreted only as a
proportional decrement in the comoving sound horizon at
the baryon drag epoch rs, which is the quantity used to
calibrate the BAO standard ruler and is 147.6 Mpc for
ΛCDM with the data considered. The bottom panel of

Fig. 22 shows DVðzÞ=rs ≡ ½czð1þzÞ2DAðzÞ2HðzÞ−1�1=3
rs

, with DA

the angular diameter distance, normalized to its ΛCDM
value, and the value of rs. It is easy to see that both
rs and H0 are lower for ΛCDMþ Neff than for the scalar-
tensor models studied here and the eJBD model. These
scalar-tensor models therefore differ from those which
aim in reducing the tension between CMB anisotropies
and the local measurements of H0 through a decrement of
rs [54–56], such as those in which ultralight axion fields
move slowly around recombination and then dilute away
[57–59]. In the scalar-tensor models considered here, the
scalar field moves naturally around recombination since it
is forced by pressureless matter and dominates at late time
acting as DE.

C. Constraints on the post-Newtonian parameters

Finally, we quote the derived constraints on the post-
Newtonian parameters. In this class of models γPN, βPN ≠ 1
according to Eqs. (22) and (23) at 95% CL:

0.995 < γPN < 1 ðξ > 0Þ; ð46Þ
0.99987 < βPN < 1; ð47Þ

0.997 < γPN < 1 ðξ < 0Þ; ð48Þ
1 < βPN < 1.000011: ð49Þ

See Fig. 23 for the 2D marginalized constraints in the
ðγPN; βPNÞ plane. See Fig. 24 for the 2D marginalized
constraints in the ðH0; γPNÞ plane for ξ > 0 compared to the
IG case studied in [4].
The tight constraint on Npl for the CC case corresponds

at 95% CL to

0 < 1 − γPN < 4 × 10−5; ð50Þ
0 < βPN − 1 < 3 × 10−6; ð51Þ

for Planck TTþ lowPþ lensingþ BAO, where the latter
is tighter than the constraint from the perihelion shift
βPN − 1 ¼ ð4.1� 7.8Þ × 10−5 [60] and the former is twice
the uncertainty of the Shapiro time delay constraint
γPN − 1 ¼ ð2.1� 2.3Þ × 10−5 [61].

FIG. 23. 2D marginalized confidence levels at 68% and 95%
for (γPN, βPN) for NMC ξ > 0 (left panel) and ξ < 0 (right panel)
with Planck TTþ lowPþ lensingþ BAO.

FIG. 24. 2D marginalized confidence levels at 68% and 95%
for (H0, γPN) for NMC ξ > 0 (red) and IG (blue) with
Planck TTþ lowPþ lensingþ BAO.
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VI. CONCLUSIONS

We have expanded on our previous study of the observa-
tional predictions within the eJBD theory or, equivalently, IG
[3,4], to the case of a scalar field nonminimally coupled to the
Einstein gravity as in Eq. (1) with G3 ¼ G5 ¼ 0 and
2G4 ¼ FðσÞ ¼ N2

pl þ ξσ2. We have studied this class of
models under the assumption that the effective gravitational
constant in these scalar-tensor theories is compatiblewith the
one measured in a Cavendish-like experiment. Whereas in
the eJBD theory only the first post-Newtonian parameter γPN
(¼ 1 − F2

;σ

Fþ2F2
;σ
) is nonvanishing, in this simple extension both

the first and second post-Newtonian parameters βPN
(¼ 1þ FF;σ

8Fþ12F2
;σ

dγPN
dσ ) are nonzero. The second post-

Newtonian parameter encodes the sign of the coupling to
gravity, i.e., βPN > 0 (< 0) for ξ > 0 (ξ < 0).
For the sake of simplicity, we have restricted ourselves to

the class of potential VðσÞ ∝ F2ðσÞ, which makes the field
effectively massless [19] and allows for a direct comparison
with the IG model for Npl ¼ 0 [3,4,28,33,62]. For this
choice of potential VðσÞ ∝ F2ðσÞ, the scalar field is
effectively massless. By assuming natural initial conditions
in which the decaying mode is negligible, the scalar field
starts at rest deep in the radiation era and is pushed by
pressureless matter to the final stage in which it drives the
Universe in a nearly de Sitter stage at late times with
σ ¼ const. In general, the effective parameter of state wDE
for σ defined in [31] tracks the one of the dominant matter
component before reaching −1 once the Universe enters the
accelerated stage as for the IG case. We find that the
conformal case ξ ¼ −1=6 is an exception to this general
trend: For such a value the effective parameter of state wDE
interpolates between 1=3 and −1 without an intermediate
pressureless stage. Irrespective of the sign of the coupling ξ,
GNðaÞ ¼ 1=ð8πFÞ decrease with time for this class of
potentials.
As in our previous works in IG, we have considered

adiabatic initial conditions for fluctuations [3,4,63] which
are derived in this work for a nonminimally coupled scalar
field. By extending the modification of CLASSig [3] to a
generic coupling FðσÞ, we have derived the CMB temper-
ature and polarization anisotropies and the matter power
spectrum. Since the effective Newton constant decreases in
time after the relativistic era, we observe a shift of the
acoustic peaks to higher multipoles and an excess in the
matter power spectrum at k≳ 0.01 Mpc−1 proportional to
the deviation from GR.
We have used Planck 2015 and BAO data to constrain

this class of models. As for IG, we obtain a marginalized
value for H0 higher than in ΛCDM for all these models,
potentially alleviating the tension with the local meas-
urement of the Hubble parameter obtained by calibrating
with the Cepheids [52]. The goodness of fit to Planck
2015 plus BAO data provided by the models studied in

this paper is quantitatively similar to ΛCDM: Since they
have one (for the conformal coupled case ξ ¼ −1=6) or
two (for ξ allowed to vary) extra parameters, these
models are not preferred with respect to ΛCDM. We
have derived 95% CL upper bounds ξ < 0.064
(jξj < 0.11) and 0.81 < Npl < 1 (1 < Npl < 1.39) for ξ >
0 (ξ < 0). It is interesting to note that the bounds on γPN
and δGeff=G have just a small degradation with respect to
eJBD with the same data set (0.997 < γPN < 1 [4]).
Overall, some cosmological constraints do not seem
strongly dependent on the assumption βPN ¼ 0, and they
have a large margin of improvement with future obser-
vations [14]. Although model dependent, cosmological
observations seem more promising than other indepen-
dent ways to test scalar-tensor theories in the strong
gravity regime as the search for the presence of scalar
polarization states of gravita- tional waves [64], which is
also strongly constrained by LIGO/Virgo [65].
The conformal value ξ ¼ −1=6 is an interesting

and particular case which stands out within the general class
of nonminimally coupled scalar fields. In addition
to what was already remarked about its effective parameter
of state, we find that Planck 2015þ BAO data quite tightly
constrain the conformal case with VðσÞ ∝ F2ðσÞ: As
95% CL intervals, we find 1 < 105ΔÑPl < 3.8, or equiv-
alently 0.99996 < γPN < 1, 1 < βPN < 1.000003, in terms
of the post-Newtonian parameters. These tight cosmological
constraints for the conformal case are comparable to those
obtained within the Solar System bounds [61].
From Figs. 12–16, we see that CMB polarization

anisotropies have a greater sensitivity to the variation of
the gravitational strength in these models. It will therefore
be interesting to see the impact of the latest and more robust
measurement of CMB polarization anisotropies from
Planck [66–68] and from the BICEP2/Keck Array [66]
as well as of the more recent BAO data on the constraints of
these models.
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APPENDIX: INITIAL CONDITIONS

Herewe report the initial conditions adopted in this paper for a nonminimally coupled scalar field, which generalize the case
of adiabatic initial conditions for IGpresented in [63]. These quantities reduce to IG andgeneral relativity cases forNpl ¼ 0 and
(Npl ¼ Mpl, ξ ¼ 0), respectively.
For the background cosmology we have as initial conditions

aðτÞ ¼
ffiffiffiffiffiffiffi
ρr0
3Fi

r
τ

�
1þ ω

4
τ −

5

16

ξ2σ2i ð1þ 6ξÞ
Fi þ 6ξ2σ2i

ω2τ2
�
; ðA1Þ

HðτÞ ¼ 1

τ

�
1þ ω

4
τ −

1

16

Fi þ 4ξ2σ2i ð4þ 15ξÞ
Fi þ 6ξ2σ2i

ω2τ2
�
;

ðA2Þ

σðτÞ¼ σi

�
1þ3

2
ξωτ−

2Fið1−3ξÞþ27ξ2σ2i ð1þ2ξÞ
8ðFiþ6ξ2σ2i Þ

ω2τ2
�
;

ðA3Þ

where ω ¼ ρm0ffiffiffiffiffiffi
3ρr0

p
ffiffiffiffi
Fi

p
Fiþ6ξ2σ2i

.

For cosmological fluctuations in the synchronous gauge, we have as adiabatic initial conditions

δγðk; τÞ ¼ δνðk; τÞ ¼
4

3
δbðk; τÞ ¼

4

3
δcðk; τÞ ¼ −

1

3
k2τ2

�
1 −

ω

5
τ

�
; ðA4Þ

θcðk; τÞ ¼ 0; ðA5Þ

θγðk; τÞ ¼ θbðk; τÞ ¼ −
k4τ3

36

�
1 −

3

20

Fið1 − Rν þ 5RbÞ þ 30ξ2σ2i
ð1 − RνÞFi

ωτ

�
; ðA6Þ

θνðk; τÞ ¼ −
k4τ3

36

�
23þ 4Rν

15þ 4Rν
−
3ð275þ 50Rν þ 8R2

νÞFi − 180ð−5þ 4RνÞξ2σ2i
20ð15þ 2RνÞð15þ 4RνÞFi

ωτ

�
; ðA7Þ

σνðk; τÞ ¼
2k2τ2

3ð15þ 4RνÞ
�
1þ ð−5þ 4RνÞðF þ 6ξ2σ2i Þ

4ð15þ 2RνÞFi
ωτ

�
; ðA8Þ

ηðk; τÞ ¼ 1 −
k2τ2

12

�
5þ 4Rν

15þ 4Rν
−
150ð−5þ 4RνÞξ2σ2i þ ð325þ 280Rν þ 16R2

νÞFi

10ð15þ 4RνÞð15þ 2RνÞFi
ωτ

�
; ðA9Þ

hðk; τÞ ¼ k2τ2

2

�
1 −

ω

5
τ

�
; ðA10Þ

δσðk; τÞ ¼ −
1

8
k2τ3ξωσi

�
1 −

2ξ2σ2i ð24þ 45ξÞ þ ð4 − 9ξÞFi

10ðFi þ 6ξ2σ2i Þ
ωτ

�
; ðA11Þ

where Rν ¼ ρν0
ρr0

and Rb ¼ ρb0
ρm0

.
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