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Abstract 

Background:  A large number of natural products have shown in vitro antiplasmodial activities. Early identification 
and prioritization of these natural products with potential for novel mechanism of action, desirable pharmacokinet-
ics and likelihood for development into drugs is advantageous. Chemo-informatic profiling of these natural products 
were conducted and compared to currently registered anti-malarial drugs (CRAD).

Methods:  Natural products with in vitro antiplasmodial activities (NAA) were compiled from various sources. These 
natural products were sub-divided into four groups based on inhibitory concentration (IC50). Key molecular descrip-
tors and physicochemical properties were computed for these compounds and analysis of variance used to assess 
statistical significance amongst the sets of compounds. Molecular similarity analysis, estimation of drug-likeness, in 
silico pharmacokinetic profiling, and exploration of structure–activity landscape were also carried out on these sets of 
compounds.

Results:  A total of 1040 natural products were selected and a total of 13 molecular descriptors were analysed. Signifi-
cant differences were observed among the sub-groups of NAA and CRAD for at least 11 of the molecular descriptors, 
including number of hydrogen bond donors and acceptors, molecular weight, polar and hydrophobic surface areas, 
chiral centres, oxygen and nitrogen atoms, and shape index. The remaining molecular descriptors, including clogP, 
number of rotatable bonds and number of aromatic rings, did not show any significant difference when comparing 
the two compound sets. Molecular similarity and chemical space analysis identified natural products that were struc-
turally diverse from CRAD. Prediction of the pharmacokinetic properties and drug-likeness of these natural products 
identified over 50 % with desirable drug-like properties. Nearly 70 % of all natural products were identified as poten-
tially promiscuous compounds. Structure–activity landscape analysis highlighted compound pairs that form ‘activity 
cliffs’. In all, prioritization strategies for the NAA were proposed.

Conclusions:  Chemo-informatic profiling of NAA and CRAD have produced a wealth of information that may guide 
decisions and facilitate anti-malarial drug development from natural products. Articulation of the information pro-
vided within an interactive data-mining environment led to a prioritized list of NAA.
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Background
Malaria is a major health burden in several developing 
countries and imposes a huge strain on health systems, 
particularly in Africa where over 50  % of the malaria 
deaths occur in children under the age of five and preg-
nant women [1, 2]. The emergence of drug-resistant Plas-
modium falciparum strains, a major causative organism 
of malaria, has led to increasing numbers of fatal cases 
[1, 2]. Consequently there is an urgent need to discover 
or design new anti-malarial drugs with mechanism of 
actions that will circumvent the current resistance pro-
file of P. falciparum. Arguably, natural products from 
plants (phytochemicals) have been the most consistent 
and successful source and template of anti-malarial drugs 
[3]. Starting with quinine (from the bark of Cinchona) [4] 
to artemisinin (from Artemisia annua) [5], natural plant 
products have provided an invaluable armament against 
malaria infection. More promising is the fact that the lit-
erature revealed an increasing number of natural prod-
ucts, from ethnomedicine in malaria-endemic regions, 
with good in vitro and/or in vivo antiplasmodial activities 
[6–9]. Yet, many of these natural products have not made 
it into or made much progress down the anti-malarial 
drug development pipeline [10, 11]. Therefore there is 
a dire need to begin the process of identifying natural 
products with potential for anti-malarial drug discovery.

Perhaps a pertinent question to ask in light of the high 
cost, long duration and high failure rate of drug discov-
ery [12–15] is: Should natural products with in  vitro 
antiplasmodial activities (NAA) that are most likely to be 
successfully developed into anti-malarial drug candidates 
be prioritized? One approach that may help prioritize 
such natural products is chemo-informatics profiling. 
Chemo-informatics integrates chemical information with 
biological information [16] and translate such informa-
tion into knowledge that could be used to assist decision 
making in the area of compound prioritization, selection, 
optimization, and ultimately clinical development [17]. 
Chemo-informatics profiling of natural products with 
antiplasmodial activities, hereafter referred to as NAA, 
may allow researchers to prioritize and select NAA for 
the next stage of anti-malarial drug development. Con-
ceivably, what may be more informative is to carry out 
such profiling with reference to currently registered anti-
malarial drugs (CRAD). Currently registered anti-malar-
ial drugs, which have successfully passed through all the 
drug development hurdles, have molecular descriptors 
and physicochemical properties to which NAA need to 
conform or, more interestingly, deviate.

Chemo-informatic profiling of NAA and CRAD was 
conducted. Specific approaches used included compari-
son of key molecular descriptors and physicochemical 
properties of NAA and CRAD, molecular similarity/

diversity analysis, exploration of structure–activity land-
scape, estimation of drug-likeness, bioavailability, and 
toxicity profile. Literature search showed no report of 
chemo-informatic profiling of NAA in comparison with 
CRAD. The results from this analysis may provide insight 
into the important molecular features that define the 
reported in  vitro antiplasmodial activities, potential for 
good bioavailability (which is essential for in vivo assay), 
toxicity liabilities and structural-activity relationships 
that may prioritize promising NAA. Such knowledge 
may expedite the progress of NAA for anti-malarial drug 
development.

Methods
Data collection and preparation of dataset
The trivial name, source, chemical class and antiplas-
modial activity (IC50) of NAA were retrieved from pub-
lished articles [6–9], MSc and PhD theses, textbook 
chapters, collaborative drug discovery (CDD) database 
[18], ChEMBL and PubChem (see Additional file  1). 
A total of 1040 NAA were selected based on availabil-
ity of chemical structure and bioactivity data (C50) (see 
Additional file  2). The selected NAA were sub-divided 
into four categories based on a normalized IC50 (pIC50): 
highly active (HA) with IC50 less than 1  µM (pIC50  >0), 
active (A) with IC50 equal or greater than 1 µM but less 
than 5  µM (pIC50 ≤  0  > −0.7), moderately active (MA) 
with IC50 equal or greater than 5 µM but less than 10 µM 
(pIC50  ≤  −0.7 but  >  −1) and low active(N) with IC50 
equal or greater than 10  µM (pIC50 ≤ −1). The chemi-
cal structures of these NAA were downloaded from 
PubChem and ChEMBL databases in two dimensional 
(2D) SDF format. The NAA that were not found in pub-
lic chemical databases were drawn with GchemPaint 
chemical structure editor for Linux and exported in mol-
file format. All chemical structures were combined and 
duplicates removed according to InChIKey generated by 
Open Babel [19]. CRAD were retrieved from ChEMBL 
(name and smiles format). Three dimensional (3D) struc-
tures were generated for all the compounds from either 
2D SDF, smiles or molfile formats (using builder module), 
corrected and minimized (using MMFF94 force field) 
with Molecular Operating Environment (MOE) 2013 
software [20].

Calculation of molecular descriptors and physicochemical 
properties
The QuSAR module of the MOE package [20] was 
employed to calculate structure-related 2D molecu-
lar descriptors. Other physicochemical properties (e.g., 
ligand efficiency (LE), number chemical functional 
groups) were computed with ICM Chemist Pro (v3.7) 
from Molsoft Inc. and DataWarrior [21] running on a 



Page 3 of 23Egieyeh et al. Malar J  (2016) 15:50 

Linux platform on a Dell Vostro 2520 computer. Boxplots 
of the molecular descriptors and physicochemical prop-
erties were plotted for NAA (HA, A, MA, N) and CRAD 
using DataWarrior. The mean of the molecular descrip-
tors and physicochemical properties for NAA (HA, A, 
MA, N) and CRAD were compared and statistical differ-
ences assessed with analysis of variance (ANOVA) with 
significance set at p < 0.05. Furthermore, the association 
between the in  vitro antiplasmodial activities (pIC50) of 
NAA and the molecular descriptors and physicochemi-
cal properties were assessed using Spearman correlation 
coefficient (r).

Molecular similarity/diversity analysis
MoSS most common substructure (MoSSMCSS)
The KNIME (Konstanz Information Miner) workflow 
[22], shown in Fig.  1, was used to compute and visual-
ize the molecular similarity, based on most common 
substructure (MoSSMCSS) [23], amongst the NAA and 

between NAA and CRAD. Molecular similarity within 
the dataset was visualized with a heat map.

Chemical space analysis (ChemGPS‑NP)
The coordinates of chemical space occupied by NAA 
relative to those occupied by CRAD were explored with 
ChemGPS-NP [24]. A text file containing the smiles and 
identifier for the compounds in the dataset was submit-
ted to the ChemGPS-NP web service. The result, with 
four principal components added for each compound, 
was downloaded as a text file. The text file was then 
opened in DataWarrior and the four principal compo-
nents plotted on a 3D scatter plot (markers were sized 
relative to one of the principal components).

Analysis of structure–activity landscape (identifying 
activity cliffs)
In recent time, structure–activity landscape analysis was 
used to visualize the relationship between molecular 

Fig. 1  KNIME workflow to assess molecular similarity amongst the compound sets. A file containing smiles of the molecules was parsed into the 
File Reader. The Molecule Type Cast node was used to convert smiles in the file into molecule. The MoSSMCSS node was used for pair-wise compari-
son of all molecules. The similarity viewer generates heat maps. The molecules comparison is converted to a distance matrix and output as an Excel 
file with the XLS Writer



Page 4 of 23Egieyeh et al. Malar J  (2016) 15:50 

structure and bio-activities, especially in large activity 
screening datasets [25]. The structure–activity landscape 
analysis was conducted on NAA using DataWarrior [21]. 
Similarity/activity cliff analysis was chosen from the 
Chemistry menu. SkelSpheres descriptors were used as 
similarity criteria for arranging molecules on a 2D self-
organizing maps (SOM). The activity column contain-
ing the numeric value of IC50 of the NAA was selected to 
calculate the structure–activity landscape index (SALI). 
For any couple of molecules, the SALI value reflects how 
much activity is gained with a small modification of the 
chemical structure. The hit status, i.e., NAA sub-group 
(A, HA, MA, N) was chosen as the Identifier column. 
Similarity limit was set at 0.8 (Tanimoto coefficient). Vis-
ualization based on similarity relationships were created 
(markers were coloured by activity).

Prediction of pharmacokinetic properties 
and drug‑likeness of NAA and CRAD
Four models were used to characterize the bio-availabil-
ity profile of NAA and CRAD namely: Lipinski’s rule of 
five [26], Egan Egg [27], golden triangle [28] and a model 
proposed by Veber et  al. [29]. For the Lipinski’s rule of 
five, a 3D plot was constructed in DataWarrior for NAA 
and CRAD using the number of hydrogen bond donors 
(HBD) and acceptors (HBA), calculated logarithm of par-
tition coefficient (clogP) and molecular weight (MW). 
Markers on the plot were sized by molecular weight. 
The filters for the descriptors (in Lipinski’s rule of five) 
were then adjusted, in the DataWarrrior software [21], 
to the cut-off proposed by the Lipinski’s model (HBD <5, 
HBA <10, clogP <5, MW <500). The proportion of NAA 
and CRAD that fell within these limits were retained.

ICM Chemist Pro (v3.7) from Molsoft Inc. was used 
to spot compounds with potential for good, border-
line and poor absorption based on the Egan Egg model 
[27]. A plot of the clogP versus polar surface area (PSA) 
was also generated, using DataWarrior, to interactively 
visualize the proportion of the compounds in each sub-
group of NAA and CRAD that fall within the Egan Egg 
(PSA <131.6 Å2, clogP < 5.88).

Johnson et  al. [28] proposed a golden triangle, with a 
base between −2 and 5 for logD (pH 7.4) and peak at 500 
Daltons, which enclose compounds with potential for 
good absorption and low clearance. This golden trian-
gle was superimposed on a plot of logD (pH 7.4) versus 
MW for the sub-groups of NAA and CRAD. Compounds 
enclosed within the golden triangles were enumerated 
and recorded for each sub-group of NAA and CRAD.

For the model proposed by Veber et al. [29], a plot of 
PSA against number of rotatable bonds (NRB) for the 
sub-groups of NAA and CRAD was plotted in DataWar-
rior. The DataWarrior filters were then set to the cut-off 

proposed by the model (PSA [140 Å2] and NRB (10)). The 
proportion of compounds, in sub-groups of NAA and 
CRAD, within the area bounded by this cut-off were then 
tallied and noted.

The toxicity risk of NAA and CRAD was assessed with 
DataWarrior (from open molecules). The toxicity assess-
ment was based on a search for reported toxic substruc-
tures or ‘toxicophores’ in the NAA. The collection of 
toxicophores in the software used for the prediction of 
toxicity (DataWarrior) were obtained by shredding com-
pounds in the Registry of Toxic Effects of Chemical Sub-
stances (RTECS®). The toxicity information appearing in 
the Registry is derived from reports of the toxic effects of 
chemical substances. Registry of Toxic Effects of Chemi-
cal Substances (RTECS®) consists of tabulations of the 
lowest dose reported to have caused the listed toxic effect 
in the designated species (including mammalian cells) by 
the designated route of administration. The result was 
presented as a Table with each compound tag with none, 
low and high risk for mutagenic, tumorigenic and irritant 
toxicity class. Nasty or reactive chemical functions iden-
tified by the DataWarrior from each compound were also 
inserted into the table of results.

Fragment-based drug-likeness and quantitative esti-
mate of drug-likeness(QED) were calculated with Data-
Warrior and ICM Chemist Pro (v3.7), respectively.

Frequent hitters (promiscuous compounds)
MedChem rules [30], a set of 275 rules, was also used to 
identify compounds that may interfere with bioassays to 
produce ostensible activity (false positives). ICM Chem-
ist Pro (v3.7) software from Molsoft Inc. was used to flag 
such compounds.

Results
In this study, the approach to prioritizing the selected 
1040 published NAA included calculation of molecu-
lar descriptors, calculation of LE metrics, assessment of 
structural similarity, overview of structural-activity land-
scape, pharmacokinetic profiling, toxicity profiling, and 
identification of frequent hitters. All these were done in 
relation to CRAD.

Description of dataset
A description of the dataset used in this study is pre-
sented here. A total of 1040 NAA and 27 CRAD were 
included in the dataset. With regards to in vitro antiplas-
modial bioactivity (IC50) described earlier in Methods, 
NAA consist of 21  % HA compounds, 28  % A com-
pounds, 20  % MA, and 31  % N compounds. Concern-
ing chemical class, a trend was observed between the 
prevalence of chemical class and bioactivity of NAA. The 
three most prevalent chemical class of compounds for 
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each bioactivity category of NAA were: alkaloids (40 %), 
diterpenes (9  %) and flavonoids (9  %) for HA; alkaloids 
(34 %), terpenes (14 %) and flavonoids (13.5 %) for A; fla-
vonoids (27 %), triterpenes (19 %) and alkaloids (15 %) for 
MA; triterpenes (30  %), alkaloids (25  %) and flavonoids 
(19  %) for N. The proportion of alkaloid compounds in 
NAA seems to decrease as the antiplasmodial potency 
decreases (i.e., most prevalent in HA bioactivity cate-
gory). In contrast, percentage of flavonoids and the ter-
penoids (terpenes, diterpenes and triterpenes) appear to 
increase as the antiplasmodial activity decreases. This 
suggests that alkaloids may be an important chemical 
class for antiplasmodial activity.

Molecular descriptors and physicochemical properties 
of NAA and CRAD
In this section, the distribution and summary statistics 
of selected molecular descriptors and physicochemi-
cal properties of NAA and CRAD were determined and 

assessed as a contribution towards the prioritization of 
NAA.

Number of hydrogen bond acceptors and donors
HBA and HBD are essential to mediate interactions 
between compounds and biochemical macromolecules. 
They are also determinants of oral absorption of com-
pounds [26]. The results (Fig. 2, panel a) showed that the 
average number of HBA was similar for the A, HA and 
MA sub-groups of NAAs (median = 6). However, HBA 
was significantly lower in CRAD (median, 4) and low 
active sub-group of NAA (N) (median =  5 p  <  0.05) in 
comparison to other sub-groups of NAA. In all cases the 
numbers of HBD (Fig.  2, panel b) were lower than the 
HBA. The HBD was significantly higher in the HA and 
MA than CRAD (p < 0.05). This observation aligned with 
other studies that report predominance of HBA and HBD 
in natural products over synthetic compounds [31–33]. 
The preponderance of strongly electronegative atoms 

Fig. 2  Boxplots showing distribution and summary statistics of key molecular descriptors for compound sets. Panel a, b, c and d represents the 
number of HBA, number of HBD, total MW and cLogP, respectively, for CRAD and sub-groups of NAA (HA, A, MA and N). The red and black lines 
represent the mean and median, respectively, for each distribution. Significant difference (p < 0.05) between CRAD and sub-groups of NAA are 
highlighted by black asterisk (*)



Page 6 of 23Egieyeh et al. Malar J  (2016) 15:50 

(especially oxygen) in NAA may be responsible for the 
higher numbers of HBD and HBA [31–34]. In addition, 
there was very small negative correlation between the 
number of HBA (r = −0.20) and HBD (r = −0.10) and 
antiplasmodial activities (IC50) of NAA. This suggests the 
need for HBD and HBA for bioactivities. In conclusion, 
the results showed that the number of HBA and HBD 
was higher in the NAA compared to CRAD and showed 
slight association with in vitro antiplasmodial activities.

Total molecular weight (TMW)
A low MW (less than 500 Daltons) is usually favoured 
because of its impact on oral absorption of compounds 
[26]. However, some natural products with MW  >500 
Daltons have been absorbed via the biological mem-
brane [35]. From the results, the average computed total 
molecular weight (TMW) was similar for HA (462.47), 
A (430.93) and MA (447.26) but significantly different 
(p value < 0.05) from N and CRAD (Fig. 2, panel c). This 
result attests to the greater structural complexity of NAA 
over CRAD. A slight negative correlation (r = −0.303) 
was observed between TMW and antiplasmodial activi-
ties of the NAA i.e., most active (HA) showed the high-
est TMW. Although it has been demonstrated that the 
median MW of oral drugs has increased substantially 
over the past years with about 2  % having MW  >500 
Daltons [36], a TMW below 500 may be desirable for 
hit compounds that are yet to be optimized into lead 
compounds.

Calculated logarithm of partition coefficient (clogP)
The clogP of a compound is a vital consideration for oral 
absorption [26] ] and it also influences binding to biologi-
cal targets [37]. From the results (Fig.  2, panel d), there 
was no significant difference in the clogP of CRAD and 
NAA (HA, A, MA, N). Given that the average clogP value 
observed for all the CRAD and up to 70 % of NAA were 
lower than five, as prescribed by Lipinski’s rule of five 
[26], it is expected that these NAA may show good oral 
absorption profile comparable to the CRAD. However 
Lipinski’s rule of five has been reported to have excep-
tions, predominantly in natural products [26, 38]. It is 
therefore expected that NAA with clogP  >  5 may also 
have suitable oral absorption.

In addition, clogP have been reported to be predictive 
of bioactivity [37]. Yet, correlation between clogP and the 
activity profiles of the NAA was negligible (r = −0.05). 
The inability of clogP to discriminate among the activ-
ity sub-groups of NAA highlights the contributions of 
other molecular properties to the observed antiplasmo-
dial activity among the NAA. In view of the prospect for 
development into drug candidates, studies have shown 
that the clogP of molecules that make it all the way to 

commercialization have remained in the same range (2.6) 
for a number of years and that optimal range for clogP 
between one and three is vital for desirable physicochem-
ical properties [41]. From the results, though the average 
clogP of the NAA was similar to CRAD, it was however 
higher than the 2.6 reported for commercialized drugs 
[39, 40]. Given that the logP of hits and leads increase 
as they move down the drug development pipeline [39] 
and that high logP [>5] comes with some liabilities, e.g., 
receptor promiscuity [42, 43], poor metabolic clearance 
[41] and toxicity [44, 45], it is desirable to select NAA 
with minimal clogP values to ensure that eventual anti-
malarial leads and drug candidates have clogP less than 
four [46] or less than five [26].

Number of rotatable bonds
A minimal NRB is desired for a NAA that may be pri-
oritized and selected for development. The results 
(see Additional file  3) showed no significant difference 
(p  >  0.05) in the average NRB between CRAD and the 
NAA. Although the NRB of HA (median, 3) was lower 
than that detected for A (median, 4) and MA (median, 
4), no significant correlation was observed between NRB 
and bioactivity of the NAA (r = 0.03). NRB and PSA have 
been reported as determinants of oral absorption in a rat 
model [29] and specifically, compounds which meet the 
criterion of ten or fewer NRB are predicted to have good 
oral bioavailability [29]. Glaxo SmithKline (GSK) has 
also devised the rule of seven rotatable bonds: “Less than 
seven rotatable bonds are essential for good bioavail-
ablity” [47]. Based on Veber et al. criteria [29], the results 
revealed that 92 % of HA had less than ten NRB, which 
is similar to 96.2  % observed in CRAD. Using the GSK 
criterion, a higher percentage of HA (81.27  %) had less 
than seven NRB in comparison to CRAD (70.3 %). This 
result attests to the potential of NAA to have good oral 
absorption.

Total polar surface area
Total polar surface area (TPSA) has also been impli-
cated as a predictor for gastro-intestinal tract (GIT) 
penetration by many investigators [47, 48], and may be 
a key factor to consider during prioritization of NAA 
for lead development. The TPSA of CRAD was signifi-
cantly lower (p < 0.05) than the TPSA of sub-groups of 
NAA (see Additional file 3). Among the latter, the highest 
TPSA was observed in MA followed by the HA, A and 
N groups. There was no significant correlation between 
TPSA and the activity of the NAA (r = 0.13). According 
to Veber et al. [29], the upper limit for TPSA for a mol-
ecule to penetrate the GIT is around 140 Å2.

All of the CRAD, up to 75 % of the HA and over 75 % 
of A compounds fell below the upper limit for the TPSA. 
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This implies that most of the active NAA are expected to 
have good oral absorption, which is particularly relevant 
during the next stage of in vivo anti-malarial assessment. 
The high number of polar groups (hydroxyl and carbonyl 
groups) may be responsible for the high TPSA observed 
in some of the NAA. In addition, TPSA may also deter-
mine the extent of plasma protein binding [49]. Albumin 
is involved in binding of mainly polar compounds [50], 
and high TPSA resulting from ionization of polar groups 
(e.g., acidic groups) may increase plasma protein binding. 
The higher a compound is bound to plasma protein the 
lower the proportion of the compound free for therapeu-
tic effect. It is likely that some NAA that have good activ-
ity in in  vitro assays may show poor activity in in  vivo 
assays due to high plasma protein binding resulting 
from high TPSA. Optimization strategies that are geared 
towards reduction of TPSA (e.g., methylation of hydroxyl 
groups)may improve the oral absorption, reduce plasma 
protein binding and consequently improve bioactivity 
in vivo.

Van der Waals hydrophobic surface areas of hydrophobic 
atoms (vsa_hyd)
The Van der Waals hydrophobic surface area of hydro-
phobic atoms (vsa_hyd) measures the level of hydro-
phobicity of compounds. The vsa_hyd of HA and MA 
of NAA were significantly higher (p  <  0.05) than that 
of CRAD (see Additional file  3). The vsa_hyd of N was 
lower than the vsa_hyd of CRAD. The vsa_hyd of the 
active NAA (A, HA, MA) were significantly (p  <  0.05) 
higher than the low active NAA (N) suggesting that 
hydrophobicity may be vital for bioactivity. This observa-
tion was corroborated by the slight negative correlation 
(r = −0.231) seen between vsa_hyd and IC50 of NAA.

Hydrophobicity determines many biological pro-
cesses, such as transport, distribution, metabolism, 
and molecular interactions of biological molecules. It is 
reported that the binding affinity and drug efficacy can 
be optimized and increased by incorporating hydro-
phobic groups [51, 52]. It is estimated that addition of a 
methyl group will lead to a 3.5-fold increase in binding 
constant [53]. Therefore, moderately active NAA (MA) 
may be optimized as described above to improve bioac-
tivity. Notably, improved hydrophobic interactions may 
also increase incidence of side effects and toxicity [54]. 
With regard to absorption of bioactive compounds via 
biological membrane, hydrophobicity is also a key fac-
tor in various absorption models, e.g., Lipinski’s rule of 
five [26]. Poor absorption or permeation is more likely 
for compounds with low hydrophobicity and the NAA 
that possess a higher vsa_hyd (hydrophobicity) than 
CRAD may be expected to show good absorption and 
permeation.

Overall, this brings to fore the pivotal role of hydropho-
bicity in achieving delicate balance of desirable activity, 
low toxicity and good absorption. Optimization of hydro-
phobicity of NAA towards a reference point, as observed 
for CRAD and as reported for marketed drugs, may be 
desirable to ensure successful development of these 
compounds.

Number of chiral centres
Chiral centres (asymmetric) are tetrahedral atoms (usu-
ally carbons) that have four different substituents [55]. 
Compounds that have chiral centres are optically active 
and rotate the plane of polarized light to the left (levo-
rotatory) or to the right (dextrorotatory) [55]. Such opti-
cally active pairs are referred to as enantiomers [55].

The average number of chiral centres for HA and MA 
were significantly higher (p  <  0.05) than CRAD (see 
Additional file  3). Among the NAA, the average num-
ber of chiral centres showed slight negative correla-
tion (r = −0.2) with antiplasmodial activity (IC50); HA 
had the highest average number of chiral centres and N 
had the least. This result suggests that a high number of 
chiral centres may be essential for antiplasmodial activ-
ity. This may be because a high number of chiral centres 
increase flexibility of compounds and their tendency for 
more interaction with binding site of macromolecules. 
Moreover, the higher number of chiral centres observed 
in the NAA compared to CRAD, which have been pre-
viously observed between natural products and synthetic 
compounds [11], suggests that more compounds in HA, 
A and MA may have enantiomers. Given that enantio-
meric molecules may interact in a different mode with 
biological receptors, binding affinities can differ between 
enantiomers [56]. In clinical settings, enantiomers of chi-
ral drugs can have decreased, had no, or even adverse 
effects [57–59]. Therefore, it is imperative to elucidate 
which of the enantiomers may be responsible for the 
observed antiplasmodial activities of the NAA and sepa-
rate such enantiomers. Although the technology for the 
separation and analysis of chiral compounds has greatly 
advanced [59, 60], this may not yet be available in many 
laboratories in least developed countries where malaria is 
endemic and where these NAA may be sourced. In light 
of this limitation it may be necessary to prioritize NAAs 
without chiral centres (15 % of HA have no chiral centre) 
for preclinical development. Another option is to create 
racemic mixture (containing two enantiomers) provided 
the safety and efficacy can be justified as required by the 
Food Drug Administration of the United States of Amer-
ica [61]. In conclusion, most of the compounds in NAA 
had higher number of chiral centres than those in CRAD 
and the number of chiral centres seems to correlate with 
antiplasmodial activities of NAA.
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Number of oxygen atoms
The NAA had significantly (p value < 0.05) greater num-
ber of oxygen atoms than the CRAD (see Additional 
file  3). This may be because the NAA (consisting of 
alkaloids, terpenoids and flavonoids) are rich in oxygen 
atom as earlier reported for natural products [31–33, 
62]. There was no significant difference (p > 0.05) in the 
number of oxygen (nO) among the sub-groups of NAA 
and little correlation of nO with bioactivity (r = −0.09). 
Although oxygen atoms, particularly sp2 -oxygen atom 
is important for ligands to form hydrogen bonds with 
receptors/enzymes [63], the low correlation with bio-
activity [IC50] observed in the results suggests that the 
number of oxygen atoms may not be the sole contrib-
uting factor to the reported antiplasmodial activities of 
the NAA.

Number of nitrogen atoms and amine functional groups
The average number of nitrogen atoms was significantly 
higher (p value  <  0.05) in CRAD than NAA (see Addi-
tional file  3), in accord with previous observation for 
natural products [31–33], although the most prevalent 
chemical class in the NAA was alkaloids (which usually 
contain nitrogen atoms). However, the other prevalent 
chemical classes, terpenoids and flavonoids, have no or 
low number of nitrogen atoms, which may explain the 
lower average number of nitrogen atoms observed in 
NAA compared to CRAD. Among the NAA, a slight neg-
ative correlation (r = −0.17) was observed between the 
number of nitrogen atoms and bioactivity. This suggests 
that the nitrogen atom may be relevant for anti-malarial 
activities [64].

Most of the nitrogen atoms were present as amine 
functional groups. The amine groups were predominant 
in CRAD and some of the compounds in HA sub-group 
of NAA. The presence of amine groups (or basic nitro-
gen) in nearly all CRAD highlights its importance for 
anti-malarial activity [64, 65]. However, the absence of 
the amine group in some of the HA and A compounds 
suggest that other functional groups, present within 
NAA compounds, are also vital for good antiplasmodial 
activities. These non-amine functional groups may have 
the potential to be the basis of a new series of anti-malar-
ial compounds. A typical example is artemisinin-based 
drugs, which are endoperoxides.

Number of aromatic rings
Limited numbers of aromatic rings have been shown to 
improve developability of hits to drug candidates [66]. 
The median number of aromatic rings for CRAD and all 
the sub-groups of NAA were between one and two. The 
average number of aromatic rings for CRAD was similar 
to the majority of the NAA (see Additional file 3). There 

was no correlation between the number of aromatic rings 
and bioactivity of NAA (r = −0.03).

Increase in aromatic ring count correlates with 
decreased aqueous solubility (with attendant poor 
absorption) [41, 62, 66, 67], increased plasma protein 
binding (leading to low clearance and therapeutic effi-
cacy) [66], increased potential for inhibition of enzyme 
[with attendant toxicity and drug interactions] [68], 
increased mean observed hERG activity [hERG tox-
icity] [66] and decreased chance of developability of 
compounds into marketed drugs [66, 69, 70]. On these 
premise, NAA with minimal aromatic rings are expected 
to possess good aqueous solubility that is essential for 
oral absorption and exhibit reduced plasma protein 
binding that may lead to a greater free fraction of such 
compounds in systemic circulation, particularly dur-
ing in  vivo assay. In addition, low potential for enzyme 
inhibition and minimal toxicity [including hERG toxic-
ity] as well as potential to be developed into successful 
anti-malarial drug candidates may also be expected from 
these NAA. It is however worth noting that a high num-
ber of aromatic rings may be desirable. This is because 
increasing number of aromatic rings decreases entropy 
[random movement] of molecules and favours binding of 
compounds to biological targets [66, 71, 72]. Increasing 
the number of aromatic rings during lead optimization 
may be favoured as a means to increase potency. Another 
reason why aromatic rings are favoured in drug design 
programmes is because of the well-established synthetic 
methods to make aryl–aryl links [66], which has made 
it attractive to design and synthesize compounds with 
increased number of aromatic rings in most combinato-
rial libraries [73].

Overall, limiting the number of aromatic rings during 
optimization of these NAA will make them broadly more 
developable and more ‘drug-like’ despite the likelihood of 
aromatic rings to increase potency and be readily amena-
ble to synthesis and transformation [66].

Shape index
Shape index, computed with Datawarrior, is a parameter 
that estimates the 3D shapes of compounds. Shape index 
less than 0.5 suggests presence of 3D (non-flat or spheri-
cal) scaffolds while shape index greater than 0.5 is for flat 
scaffolds. The average shape index of CRAD (0.53) was 
significantly (p < 0.05) higher than that of HA (0.43), A 
(0.45) and MA (0.46) but not significantly (p = 0.34) dif-
ferent from N (0.52) (see Additional file  3). This result 
suggests that CRAD and N contain compounds with flat 
scaffolds while HA, A and MA contain compounds with 
spherical or non-flat scaffolds. Other authors [74, 75] 
have reported the predominance of non-flat compounds 
in natural products as observed for NAA. Among the 
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sub-groups of NAA, only the low active (N) NAA showed 
mean shape index  >0.5, indicating the prevalence of 
compounds with flat scaffolds. There was some positive 
correlation between the shape index and in  vitro anti-
plasmodial activity (r =  0.319). This suggests that non-
flat scaffolds may be essential for antiplasmodial activity.

Generally, the results showed significant difference 
(p < 0.05) between the shape indices of NAA and CRAD. 
The presence of non-flat scaffolds seems to be essential 
for antiplasmodial activity amongst the NAA.

Synthetic feasibility [rsynth]
This parameter estimates how feasible it is to synthesize 
the compounds, with 1 being the most synthetically fea-
sible and 0 the least synthetically feasible. The results (see 
Additional file 3) showed that all the sub-groups of NAA 
showed mean synthetic feasibility (rsynth) values that were 
significantly lower (p  <  0.05) than that of CRAD (0.659). 
Among the NAA, there was very little positive correlation 
(r  =  0.12) between rsynth and bioactivity (IC50). These 
results suggest that the CRAD and NAA N may be rela-
tively easier to synthesize. The prevalence of flat and low 
MW (low complexity) compounds in N may be respon-
sible for this observation. Synthetic feasibility and cost of 
synthesis may have significant impact on the development 
and eventual cost of drugs. This is particular relevant for 
neglected diseases in low-to-middle income countries 
where low-cost drugs are desired. Natural products have a 
high number of chiral centres that require advanced chem-
ical synthetic techniques and chiral separation technol-
ogy. This is evident in artemisinin, a recent drug of choice 
for malaria, which is still being sourced from the plant, A. 
annua, because its chemical synthesis, although achieved 
in 1983, is too expensive for commercialization [76].

Ligand efficiency metrics
The calculation of the binding efficiency metrics for HA, 
A, MA, and N sub-groups of NAA are described as well 
as the contribution to, and impact of these metrics, on 
prioritization and selection of NAA to take forward into 
anti-malarial drug development.

Ligand efficiency
Ligand efficiency assesses the contribution of heavy 
atoms in or MW of a compound to potency or binding 
affinity of such a compound i.e., potency or binding affin-
ity per heavy atom/molecular weight, given by Eq.  (1) 
[77].

where ΔG  =  −RT ln (IC50/2), R  =  gas constant and 
T =  absolute temperature. The unit of LE is kcal/mol/
non hydrogen atom or heavy atom.

(1)LE = ∆G/HA

Figure  3, panel a showed that the mean LE for HA 
(0.48) was significantly higher than that of A (0.44) and 
MA (0.42) but not N (0.45). The exemplar values for LE 
should be greater than 0.3 kcal per mole per heavy atom 
[78] and the results (Fig.  3, panel a) showed that the 
mean LE values for most of the NAA (A, HA, MA, N) 
were within these exemplar values. This indicates that a 
good proportion of NAA (up to 80  %) have desired LE 
(potency at the right weight). It is particularly important 
to identify compounds with low weight and low potency 
(may be present within the MA sub-group of NAA) 
because it has been reported that such compounds have 
‘room’ for optimization to increase potency and pharma-
cokinetic properties without the risk of losing LE [77, 79, 
80]. A downside of LE is that it does not take lipophilic-
ity, which is an important determinant of binding and/
or potency, into account in its estimation of efficiency of 
binding or potency [77]. Ligand lipophilicity efficiency 
(LLE) however provides a link between potency/binding 
affinity and lipophilicity.

Ligand lipophilicity efficiency
LLE measures how efficiently a ligand/compound 
exploits its lipophilicity to bind to target protein or cre-
ate its potency [Eq. (2)]. In other words, it evaluates how 
well compounds improve potency while maintaining low 
lipophilicity [81].

The results (Fig. 3, panel b) showed that HA displayed 
a significantly higher average LLE value (HA, 6.05) than 
A (4.63), MA (4.14), and N (4.12). The ideal value for 
LLE has been reported to be greater than five [81] and 
only HA had a mean LLE value above five in spite of the 
similar clogP value with A and MA sub-groups of NAA. 
This suggests that the hydrophobic region of compounds 
in HA may be in such orientation that ensures optimal 
interaction with biological targets that brought about the 
observed bioactivity. Since the ultimate goal is to have 
compounds with good potency at the minimal lipophi-
licity, the results therefore suggests that HA consists of 
compounds that may be good starting points for anti-
malarial drug development. Other studies have used 
LLE as criteria to find compounds suitable as starting 
points for optimization and drug development [82]. On 
the other hand, compounds with low potency and low 
lipophilicity (that may be found in the MA sub-group of 
NAA) have also been reported as good starting points 
for drug development [83, 84]. This is because such com-
pounds have big ‘lipophilicity room’ that are generally 
‘filled’ during optimization towards improved potency. 
Monitoring the LLE of a compound collection during 
optimization will also allow medicinal chemists to track 

(2)LLE = pIC50−−clogP [or logD if the compound is ionizable]
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the efficiency of each lipophilic addition made towards 
improved potency.

One limitation of LLE is that it does not account for 
molecular size [heavy atom or MW]. A binding efficiency 
metric that combine lipophilicity, molecular size and 
potency is the ligand efficiency dependent lipophilicity 
index [LELP] [85].

Ligand efficiency dependent lipophilicity index
LELP is calculated using Eq. (3). LELP has been shown to 
reliably identify fragments, lead-like and drug-like com-
pounds [77, 85]. Moreover, LELP was a better predictor 
of pharmacokinetic liabilities than LLE [77]. The ideal 
LELP values have been stated to be between -10 and 10 
for acceptable leads [77].

Looking at the results (Fig.  3 panel c), average LELP 
obtained for HA (8.93) was significantly lower than 
that of A (11.46) and MA (11.81) but somewhat similar 
to that of N (9.09). In addition, only HA and N showed 
mean LELP value within the ideal range. In so much as 
it has been reported that compounds with LELP values 
outside the exemplar range may not proceed far in the 
drug development pipeline [86], it is anticipated that 

(3)LELP = logP/LE

NAA that fall outside the ideal LELP range may have 
lower chance of success in the anti-malarial drug devel-
opment process. Moreover, lead optimization strategies 
should aim to increase LE or reduce logP in order to 
bring elevated LELP values within the desired range. In 
addition, monitoring LELP will help to control essential 
physicochemical properties that will maintain desirable 
potency and pharmacokinetic profile during optimiza-
tion [80, 84].

In conclusion, ranking and selection of NAA from the 
initial list of potential antiplasmodial hits is a critical step 
in successful anti-malarial drug discovery [87, 88]. Given 
the influence of logP and molecular size [heavy atoms 
or MW] on potency and pharmacokinetic properties, 
the use of binding efficiency indices [LE, LLE, LELP] as 
a guiding criteria is important not only for hit selection, 
but also for lead generation and optimization [80, 84]. A 
plot of LELP against LLE (Fig. 4), previously described by 
Tarcsay et al. [85], may give medicinal chemists an idea of 
where the NAA compounds are in terms of these param-
eters and guide the optimization process to get the com-
pounds to the desired region (as shown in Fig. 4). A key 
consideration is to be aware of the optimizing strategies 
that can increase potency and keep LE more or less con-
stant or within exemplar limits.

Fig. 3  Boxplots of ligand efficiency metrics for sub-groups of natural products with in vitro antiplasmodial activity. Panel a, b and c represents the 
LE, LLE and LELP, respectively. The mean (red line) and median (black line) are indicated. CRAD were excluded from this analysis. The horizontal black 
line indicates the exemplar value cut off for each metric (LE, >0.3; LLE, >5; LELP, between 10 and 10)
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Molecular similarity between CRAD and NAA
Molecular similarity analysis was conducted on NAA 
and CRAD. The objectives of this analysis were: firstly, 
to examine the extent of molecular diversity within the 
NAA and secondly to identify NAA that are structurally 
similar to and diverse from CRAD. Highly active NAA 
that are structurally diverse from CRAD may be poten-
tially new anti-malarial agents with novel mechanism of 
actions.

The result of the molecular similarity assessment based 
on most common substructure, using the MoSSMCSS 
algorithm [23] is presented as a heat map (Fig.  5). The 
heat map showed a larger area of low similarity (lower 
values of Tanimoto coefficient) amongst the compounds. 
This is indicative of the substructural diversity amongst 
the NAA. A closer look at the heat map, using similar-
ity viewer in KNIME, revealed Tanimoto coefficient in 
the range 0.1–0.7 between NAA and CRAD. This sug-
gests that most of the NAA are structurally diverse from 
CRAD.

A similar observation was made when ChemGPS-NP 
[24] was used to compare the spatial coordinates and 
volume of chemical space occupied by NAA relative to 

CRAD. The result (Fig. 6) shows a plot of the first four 
dimensions: aromaticity, lipophilicity and flexibility, rep-
resenting PC2, PC3 and PC4, respectively, plotted on the 
x, y and z axes. PC1, which represented size, was indi-
cated by the size of the markers on the plot. The com-
pounds in CRAD were identified by coloured markers. 
A cursory look at Fig.  6 shows that the CRAD did not 
form a tight cluster but were dispersed within the chem-
ical space. A wider dispersion was however observed for 
NAA particularly in the positive direction of PC1 (size) 
A closer look revealed that NAA were bigger in size 
(PC1) and more aromatic (PC2) than the CRAD. Addi-
tionally, the dispersal of NAA and CRAD appears to 
be similar along the PC4 (flexibility) but slightly differ-
ent along the PC3 (lipophilicity) with the NAA tending 
towards less lipophilicity. The proximity of some of the 
NAA to some of the CRAD may be a sign of their desir-
able drug-like properties and their amenability as a start-
ing point in anti-malarial drug development. Although 
other studies have revealed that natural products 
occupy, in comparison to drug-like compounds, unique 
regions of property space [32, 89, 90], this result showed 
that some of the NAA occupy similar chemical spaces as 

Fig. 4  A scatter plot of LLE versus LELP index. The markers represent sub-groups of NAA (A, HA, MA, N). The exemplar values for LELP and LLE was 
used to divided the plot area into four quadrants: Q1 (likely position for hits from bioassays and leads compounds), Q2 (no description), Q3 (likely 
position for successful leads) and Q4 (likely position for compounds in phase 2 clinical trials and approved drugs)
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CRAD, which also consist of natural product based anti-
malarial drugs.

Based on the ‘similarity property principle’ [91], NAA 
that are diverse from CRAD may have different bioac-
tive profiles or mechanism of action. Structurally diverse 
NAA may have different spatial orientation within bio-
logical targets in Plasmodium with resultant unique 
molecular interactions [92]. This is particularly relevant 
in light of recent resistance of Plasmodium to CRAD. 
Compounds that may have different interactions pat-
tern with targets implicated in Plasmodium resistance to 
CRAD or that interact with new targets are highly desir-
able for anti-malarial drug development. Moreover, such 
structurally diverse active antiplasmodial compounds 
provide insight into new chemical groups required for 
anti-malarial activities.

Conversely, NAA that are structurally similar to CRAD 
may have similar pharmacokinetic properties and may be 
drug-like. Since pharmacokinetic properties have been 
implicated as a major determinant of compound suc-
cess or attrition during drug development [93, 94], NAA 
that are structurally similar to CRAD may suffer less 

attrition going through anti-malarial drug development. 
In addition, the chemical space analysis (Fig. 6), using the 
CRAD as reference or signpost, allows the visualization 
of relative position of NAA in chemical space compared 
to CRAD. Such view may enable the medicinal chemist 
to identify NAA that are within or outside the desired 
region (i.e., space occupied by CRAD). It may also assist 
the medicinal chemist to recognize the necessary proper-
ties to optimize and the extent of optimization required 
to move the NAA towards the desirable drug-like region 
or ‘sweet spot’ [83].

Overall, molecular diversity from CRAD may be indic-
ative of new mechanism of action and potential for cir-
cumvention of current drug resistance while molecular 
similarity to CRAD may be indicative of favourable drug-
like profile.

Structure–activity landscape: identifying activity cliffs
Exploration of structure–activity landscape represents a 
core aspect of medicinal chemistry [95]. Activity cliff has 
been defined as pair of structurally similar compounds 
with large difference in bioactivity/potency [96] and 

Fig. 5  Molecular similarity among the compound sets. The heat map was generated based on most common substructure (MoSSMCS) in KNIME. It 
provided a visualization of the molecular similarity amongst the NAA and CRAD. Predominate yellow colour (high distance) on the heat map signifies 
that most of the compounds are structurally far apart or highly diverse. The distance between two of the compounds at a data point on the heat 
map is highlighted
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has been of interest to the medicinal and computational 
chemist for a long time [97, 98]. To identify a pair of 
NAA that display activity cliffs, structure–activity simi-
larity analysis was conducted with DataWarrior [21].

The result is presented as a SOM (Fig.  7) that display 
the relative position, in a 2D space, of all the NAA. Simi-
lar compounds are connected with a line and the markers 
are coloured by antiplasmodial activity (IC50) of the com-
pounds from green (active NAA (≤5  uM)) to dark blue 
(inactive NAA (≥45 uM)). Clusters of green markers con-
nected with lines (one of the cluster is marked ‘A’) repre-
senting similar NAA with similar antiplasmodial activity 
were observed within the landscape. This group of NAA 
form the ‘smooth region’ of the structure–activity land-
scape where minor changes in molecular structure usu-
ally lead to small change in bioactivity. This collection of 
NAA may be particularly appealing because it will allow 
the medicinal chemist to rationalize chemical substi-
tutions that will improve pharmacokinetic parameters 
without sacrificing potency or bioactivity. This group of 
compounds are also amenable to quantitative structural 

activity relationship (QSAR) modelling because their 
structure–activity property aligns with the assumption of 
statistical modelling [95].

A closer look at Fig. 7 also reveals few clusters, one is 
marked ‘B’, which contains green markers (active NAA) 
connected to red and blue markers (inactive NAA). These 
clusters of NAA are structurally similar but have diverse 
bioactivity representing typical activity cliffs (see Addi-
tional file  4). Two examples of pairs of NAA that dis-
played activity cliff are shown in Fig. 8.

A plot of molecular similarity against activity similarity 
between pairs of compounds with markers coloured by 
fold change in normalized activity value [Δp(IC50)], pro-
vides another visualization for identification of the pairs 
of NAA that exhibit activity cliff (see Additional file  5). 
Markers that fall within activity similarity <0.8 (low activ-
ity similarity) and molecular similarity >0.8 (high molec-
ular similarity) as well as high Δp(IC50) value signify pairs 
of NAA that show an activity cliff. Conversely, markers 
with activity similarity >0.8 (high activity similarity) and 
molecular similarity  >0.8 (high molecular similarity) as 

Fig. 6  Chemical space coordinates of compound sets. Coordinates were generated for NAA and CRAD from ChemGPS-NP. Dimensions: PS1-size 
(represented by size of the markers), PS2-aromaticity, PS3-lipophilicity and PS4-flexibility. Most NAA (dark blue markers) occupy distinct positions in 
the chemical space in comparison to CRAD
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well as low Δp(IC50) value signify pairs of NAA that are 
in the smooth region of the structure–activity landscape. 
The smooth region consists of compounds that adhere to 
the similarity principle and are pliable and desirable for 
QSAR models, as mentioned earlier.

Although Maggiora [98] proposed that activity cliffs 
may be responsible for the inefficient performance of 
many quantitative QSAR models [95], activity cliffs help 
pinpoint regions of the activity landscape that contain 
maximum information for structure activity relationship 
[SAR] studies. This is because this allows the medici-
nal chemist to identify the subtle molecular difference 
between a pair of compounds responsible for a dramatic 
shift in bioactivity. The rich SAR information from activ-
ity cliffs have been used in many drug discovery studies 
[99–101].

Pharmacokinetic profiling and drug‑likeness of NAA
The pharmacokinetic profile and drug-likeness of NAA 
were assessed in silico using the models discussed 
below:

Absorption models
Lipinski’s rule of five
Lipinski’s rule of five got its name from the cut-off values 
for each of the four parameters that define the potential 
of a drug candidate for good absorption: the molecule 
has less than five HBD and less than ten HBA, its MW is 
below 500, and its LogP is less than five [26].

These four parameters were calculated for NAA as well 
as CRAD and plotted on a 3D graph with markers sized 
by MW (see Additional file 6). It was observed that most 
of the CRAD occupied space that was within the Lipins-
ki’s rule of five, while most of the NAA (HA, A, MA) were 
dispersed away from Lipinski’s rule of five space. This 
suggests that the NAA (HA (47 %), A (52 %), MA (48 %), 
and N (71  %)) within Lipinski’s rule of five space may 
likely have good passive absorption. It was noted that a 
greater proportion of the N NAA showed propensity for 
good absorption. This suggests that though violation of 
Lipinski’s rule of five confers absorption liabilities it may 
be associated with good bioactivity among the NAA. 
Although limitations of Lipinski’s rule of five to predict 

Fig. 7  Self-organizing map depicting structural-activity landscape of the natural products with in vitro antiplasmodial activities. The SOM was gen-
erated based on a measure of structural and activity similarities among the NAA. Markers connected by lines represent similar compounds. Markers 
are coloured by activities (IC50). Connected markers that have different colours (e.g., cluster marked B) represent structurally similar compounds with 
different in vitro antiplasmodial activities (activity cliff ). The cluster marked A, which consists of structurally similar compounds with similar in vitro 
antiplasmodial activities represent smooth region
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the absorption of natural products and molecules that are 
actively transported have been reported [102–105], it is 
desirable that NAA that fall within Lipinski’s rule of five 
space be prioritized to lower attrition rates during anti-
malarial drug development and increase the chance of 
new anti-malarial drugs reaching the market [26, 81].

Although formulation and drug delivery strategies have 
been developed to improve the absorption of compounds 
that violate Lipinski’s rule of five (i.e., poorly absorbed 
drugs) [106–110], it is important to be aware of the cost 
of such technology and its impact on the eventual market 
price of an anti-malarial drug. This is in view of the eco-
nomically disadvantaged population in malaria-endemic 
regions of the world that require these anti-malarial 
drugs.

Veber et al. model
Veber et al. [29] suggested NRB and PSA of a compound 
as determinants of oral absorption. A plot of NRB and 

PSA was generated for NAA and CRAD (see Additional 
file  7, panel A). Veber et  al. found that the majority of 
compounds with good oral bioavailability in rats had 
fewer than 10 rotatable bonds and PSA less than 140 Å2.

All the CRAD, except one with 11 NRB (halofantrine), 
were within the desirable area (red rectangle). A large 
number of the NAA [A (81 %), HA (76 %)and MA (80 %)] 
were also present within this region suggesting that these 
compounds may be well absorbed orally. The NAA that 
were dispersed outside the desired area and along the 
NRB axis have long aliphatic chains in their structure, 
while those dispersed along the PSA axis contain high 
number of hydroxyl and carbonyl groups. Lead optimi-
zation strategies may change single aliphatic bonds to 
double bonds to reduce rotation and polar groups may 
be methylated to reduce PSA to improve oral absorption 
of such compounds. However, the effect of such modifi-
cation on the bioactivity of the compounds needs to be 
monitored.

Fig. 8  Pairs of natural products with in vitro antiplasmodial activities that represent activity cliffs. Panels a and b show the structures, the value of 
structural similarity (similarity), activity (IC50) of each compound (Activity 1 and Activity 2), difference in activity (Delta activity) and structure–activity 
landscape index (SALI). The major structural differences between the compounds are highlighted with red circles. On Panel a, the hydroxyl group 
and methoxy group highlighted on Structure 1 and Structure 2 seem to make the difference between the antiplasmodial activities. This structural-
activity landscape analysis provides valuable information about structural features in NAA required for antiplasmodial activity
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Egan Egg plot [passive gut absorption]
Similar to Lipinski’s rule of five, Egan et  al. [27] used 
statistical analysis to correlate passive intestinal absorp-
tion with PSA and clogP. A plot of PSA against clogP for 
NAA and CRAD is shown in Additional file  7, panel B. 
The ellipsoidal area of the plot (aka Egan Egg) enclose 
compounds that are expected to have  good  passive gut 
absorption. Compounds that fall outside the outer Egan 
Egg are predicted to have  poor  passive gut absorption, 
but may be absorbed by active transport processes. The 
results showed that most of the NAA, like the CRAD, 
fall within and at the border of the Egan Egg, suggesting 
that they may be well passively absorbed. A closer look 
revealed that 50 % of compounds in HA may have good 
oral absorption, 15  % may have borderline oral absorp-
tion while 45 % may show poor oral absorption. Slightly 
similar distribution in proportion was observed for com-
pounds in A and MA. This model not only identifies 
NAA, especially HA and A, that may have poor absorp-
tion but the implicated physicochemical properties 
(PSA or clogP) may be identified and noted as one of the 
parameters to be addressed during lead optimization.

Golden triangle model
An analysis of Caco-2 permeability data for more than 
16,000 compounds and human liver microsome clearance 
data for about 47,000 on a plot of distribution constant 
(logD) versus MW showed that compounds with good 
permeability and low clearance are concentrated within 
a triangular-shaped area (golden triangle) [28]. A similar 
plot, logD (at pH 7.4) versus MW, was generated for the 
compounds in the dataset (see Additional file  7, panel 
C). The results showed a small proportion of the NAA 
(as well as CRAD) within the golden triangle (defined 
by: base of triangle is logD between −2 and 5 and apex 
is at MW 500). Using DataWarrior to select compounds 
within the triangle, it was observed that the following 
proportions of NAA were predicted to have tendency 
for good permeability and low clearance: A (35  %), HA 
(25 %) and MA (33 %). Approximately 33 % of the com-
pounds in CRAD were predicted by this model to pos-
sess propensity for good permeability and low clearance. 
The bioavailability and clearance [half-life] data provided 
in the drug bank [111] for the CRAD predicted to pos-
sess good permeability and low clearance were explored 
to ascertain the consistency of the prediction. The data 
provided by drug bank for the identified compounds in 
CRAD align with some of the predictions by this model.

Fragment‑based drug‑likeness
Fragment-based drug-likeness of NAA and CRAD, cal-
culated with DataWarrior [21], is presented as boxplots 
(Fig. 9, panel a). A higher proportion of the compounds 

in CRAD and HA, and a lower proportion of A, MA and 
N were in the positive region of the drug-likeness score 
(drug-likeness score >0). Comparison of the mean drug-
likeness score of NAA to CRAD showed that the HA 
(mean =  1.389) was slightly lower while A, MA and N 
were significantly lower than CRAD.

This approach to assessment of drug-likeness is based 
on presence of substructure fragments which are fre-
quently present in commercial drugs. A positive value 
shows that the query molecule contains predominantly 
fragments that are frequently present in commercial 
drugs. HA, among the NAA, contains a higher propor-
tion of compounds that may be drug-like and may have 
greater chance of success during anti-malarial drug 
development.

Quantitative estimate of drug‑likeness
Bickerton et  al. [112] recommended a new metric, the 
QED, to estimate drug-likeness of hits, leads or drug 
candidates. The QED value (‘desirability functions’) is 
mapped onto a scale between 0 and 1, where a desirabil-
ity of 1 signifies an ideal value of the drug-like property 
and a desirability of 0 relates to a completely intolerable 
outcome.

The QED calculated for CRAD and NAA (sub-groups), 
using ICM Chemist Pro (Molsoft), is summarized as a 
boxplot (Fig.  9, panel b). As expected, CRAD showed a 
distribution that tends towards 1 (ideal value of the drug-
like property) with an average QED value of 0.602. The 
average QED value for HA, A and MA were significantly 
lower than that of CRAD. On the other hand, N showed 
a similar drug-like score to CRAD. This is a contrast to 
what was observed using the fragment-based drug-like-
ness score which shows that HA had similar drug-like-
ness score to CRAD.

This observation may be due to the different approach 
used to estimate the QED value. While the fragment-
based drug-likeness is based on presence of substructure 
fragments in commercial drugs, QED is generated from 
eight properties commonly used to define drug-likeness: 
MW, logP, HBA, HBD, PSA, number of aromatic groups 
[AROM], NRB and ALERTS [the number of matches to 
undesirable functionalities] [112]. The distributions of 
these eight properties for a set of oral drugs were con-
ducted and a desirability of 1 was assigned to the prop-
erty values of oral drugs that occur most commonly, and 
0 to property values that are not observed.

The low QED value estimated for HA and A thus sig-
nify that these compounds have low similarity to bulk of 
oral drugs and may have reduced chance of success dur-
ing drug development. On the other hand, the low simi-
larity of HA and A to CRAD and bulk of oral drugs may 
also be an indication of their structural peculiarity or 
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novelty (as observed during molecular similarity analy-
sis). These compounds may be the starting point of new 
anti-malarial drugs with unique mechanism of action.

Toxicity potential assessment
The potential for toxicity from the NAA was assessed by 
checking for the presence of reactive chemical groups 
and potential to cause tumour, irritation and mutagen-
esis. Assessment of tumourigenic, irritant and mutagenic 
risk seeks to identify compounds with possibility to cause 
tumour, irritation and mutation in vivo. Figure 10, a visu-
alization of the results of the toxicity assessment, showed 
that a greater proportion of NAA (>80 %) showed no risk 
for tumourigenic, irritant and mutagenic potential in com-
parison to CRAD (<60 %). This may attest to the low toxic-
ity of these NAA, as previously observed for other natural 
products [113], and their potential as a source of new and 
safe anti-malarial drug candidates. However, it is worth 
noting that drug approvals are based on rigorous benefit-
risk assessment [114, 115] and NAA, with high risk of the 
assessed toxicity parameters, may be considered for anti-
malarial drug development provided the benefits from 
such compounds outweigh the potential risk.

In the context of drug development, reactive groups are 
usually electrophiles or free radicals that may react read-
ily [via covalent binding] with nucleophilic components, 
such as DNA and proteins within the biological system 
[116, 117]. Reactive groups were observed in 33.3  % of 
CRAD and that was significantly lower than observed for 
the NAA (47.49 % in HA, 47.37 % in A, 55.4 % in MA, 
and 44.58  % in N). Reactive groups identified include 
peroxo, oxiran/aziridine, allyl/benzyl chloride, 2-halo-
enone, 3-halo-enone, and quaternary ammonium. Reac-
tive groups present within some drugs or formed after 
metabolism of such drugs within the biological system, 
have been implicated for unexpected toxicities of drugs 
that become apparent only after the launch of such drug 
entities [117–119].

Overall, these results showed that NAA have lower 
potential for toxicity in comparison to CRAD. Although 
the presence of reactive groups, tumourigenic, irritant 
and mutagenic risk is indicative of toxicity risk, these 
toxicity risk alerts are by no means to be taken as fully 
reliable predictors of toxicity. Nor should the absence 
of these toxicity risk alerts be a confirmatory indica-
tion that a compound will be completely free of toxicity. 

Fig. 9  Boxplots showing the distribution and summary statistics of drug-likeness. Panel a is the fragment-based drug-likeness index from Datawar-
rior and panel b is the QED for sub-groups of NAA (A, HA, MA, N) and CRAD. The red and black lines represent the mean and median, respectively, for 
each distribution. No significant difference in fragment-based drug-likeness index was observed between CRAD and sub-groups of NAA in panel a. 
The sub-groups of NAA: HA, A and MA showed mean QED values that were significantly lower than that of CRAD (see p values inserted in graph)
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Nonetheless, in silico toxicity assessment of NAA early 
during hit profiling allows the de-prioritization of com-
pounds that may have unexpected toxicity issues. In 
addition, implicated chemical groups may be replaced 
with other groups while retaining the biological activ-
ity of the compound through scaffold hopping. This may 
help to design and bring safer anti-malarial drugs to the 
market.

Assessing promiscuity of NAA: Eli Lilly MedChem rules
Promiscuous compounds or frequent hitters in NAA may 
be false positives from antiplasmodial assays [120]. Iden-
tifying and flagging such compounds will guide selection 
of NAA hits, preferably excluding such frequent hitters, 
for the next stage of anti-malarial drug development.

Applying the Eli Lilly MedChem rules on the NAA and 
CRAD identified promiscuous or reactive compounds in 
both datasets. Approximately 63 % of the compounds in 
CRAD failed the rules with the predominate reasons for 
failure being the presence of ‘peroxide’ and ‘para quinone’ 
groups [30]. The former captures direct oxidants, which 

may be the artemisinin derivatives present in the CRAD, 
while the latter identify para-positioned quinones that 
have high redox potential. Although these compounds in 
CRAD are registered drugs, they represent chemotypes 
that would have been triaged out of screening sets due to 
their high reactivity.

Promiscuity indicates a compound with non-spe-
cific mode of action and may lead to increased inci-
dence of toxicity [121]. In the case of NAA, 82 % of the 
compounds in HA failed the rules, 79  % compounds 
failed in A, 78  % in MA, while 64  % failed in N. The 
predominant reason for failure in all the sub-groups 
of the NAA was ‘presence of catechol’ group which 
implies the presence of dihydroxybenzene groups [30]. 
Such groups, which have high redox capacity and are 
highly promiscuous, are predominant in natural prod-
ucts from plants, e.g., flavonoids, anthraquinones, 
terpenoids compounds, etc. However, there was no 
significant (p  >  0.05) difference in the proportion of 
compounds with reactive groups between CRAD and 
sub-groups of NAA (except MA) (see Additional file 3). 

Fig. 10  Toxicity profile of currently registered anti-malarial drugs and natural products with in vitro antiplasmodial activities. The upper panel a is 
for the CRAD while the lower panel b is for NAA. Three indicators were used to assess the toxicity: tumourigenic, irritant and mutagenic. A greater 
proportion of NAA were predicted to have low risk of the toxicity indicators assessed
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No correlation (r  =  −0.031) was observed between 
the number of reactive compounds and the bioactivity 
(IC50) of the compounds (see Additional file  3). These 
observations either underscore the aggressiveness of 
the Eli Lilly MedChem rules or attest to the presence 
of natural products and natural product-derived com-
pounds in CRAD. One may argue that the rule should 
be used with caution but it is worthwhile as it will 
flag compounds with bioactivity to be looked at more 
closely. This will guard against the use of false positives 
or non-specific NAA as potential starting points for 
anti-malarial drug development.

Prioritization of NAA: integration of chemo‑informatic 
profiling data
Using the information provided in this study, especially 
within an interactive data-mining environment such as 
DataWarrior software [21], it is possible to provide an 

answer to the key question posed: Should NAA that are 
most likely to be successfully developed into anti-malar-
ial drug candidates be prioritized? One way to provide 
an affirmative response to this question was to adjust 
the filters of the molecular descriptors or/and physico-
chemical properties within DataWarrior to the reported 
exemplar values for all the calculated molecular descrip-
tors and physicochemical properties. The result of this 
operation will be a prioritized list of NAA that pos-
sess the desired molecular descriptors or/and physico-
chemical properties. About 28 % of the NAA fell within 
these exemplar values or limits. However, the propor-
tion of NAA prioritized may vary based on the selected 
molecular descriptors and physicochemical properties 
and the choice of exemplar values. In addition, the use 
of filters will permanently remove seemingly interesting 
compounds that do not fall within the range set on the 
filters.

Fig. 11  Parallel coordinate graph showing the chemo-informatic profiles of selected compounds. The graph was created with KNIME. On the y-axis 
are the compounds and on the x-axis selected molecular descriptors. N197 and N217 are representatives of NAA. Lumefantrine and artemisinin 
represent CRAD. The graph allows visualization of the profile of NAA in comparison to CRAD based on selected molecular descriptors
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Another approach used to get a prioritized list of 
NAA was to generate a consensus scoring function 
for each compound in NAA. The cut-off or exemplar 
values for each calculated molecular descriptor and 
physicochemical property were used as the bench-
mark to score each compound (molecular descriptor 
and physicochemical property that were not signifi-
cantly different between the two datasets, i.e., CRAD 
and NAA, were excluded). Compounds with the val-
ues of molecular descriptors and physicochemical 
properties outside the desirable range were penalized 
with a score of −1 while compounds within the desir-
able range were rewarded with a score of 1. The aver-
age of these scores for all the molecular descriptors 
and physicochemical properties discussed in this study 
were taken as the consensus score. A consensus score 
of 1 suggests that such compounds have all molecular 
descriptors and physicochemical properties within the 
acceptable range and may be prioritized for the next 
stage of pre-clinical anti-malarial drug development. 
The prioritized list of the NAA with their consensus 
score [list was sorted by the consensus score, highest 
to lowest] is shown in Additional file  8. As expected, 
the consensus scoring showed high values (0.5–1.0) for 
over 90 % of the CRAD, which have successfully passed 
through- anti-malarial drug development. Prospec-
tive NAA that showed high score (e.g., above 0.5) share 
similar drug-like properties with CRAD and may stand 
a greater chance of successfully passing to development 
to become anti-malarial drugs.

Overall, compounds within NAA with consensus 
score close to 1 (i.e., those that fall on the positive side 
of the cut-off values of the various chemo-informatic 
properties assessed) may have greater chance of suc-
cess during anti-malarial pre-clinical drug development. 
Alternatively, visualization of all metrics in the context 
of CRAD can aid prioritization and selection of NAA for 
downstream anti-malarial drug discovery (Fig.  11). The 
graph allows visualization of the profile of NAA in com-
parison to CRAD based on selected molecular descrip-
tors. It is expected that NAA that have similar profile 
to CRAD (i.e., have similar values of selected molecu-
lar descriptors) should be more drug-like and therefore 
be prioritized for the next stage of anti-malarial drug 
development.

Conclusions
Chemo-informatic profiling of NAA and CRAD has led 
to development of prioritization strategies and prior-
itized lists of at least 1000 compounds that may guide 
decisions and facilitate anti-malarial drug development 
from natural products with antiplasmodial activities. This 
prioritized list includes structurally diverse NAA that 

may encompass new biologically relevant chemical space 
and could be developed into anti-malarial drug candi-
dates with possible different mechanism of action. Struc-
ture–activity landscape analysis revealed NAA pairs that 
form activity cliffs, which are particular relevant for SAR 
studies. Finally, this study was able to identify NAA with 
desired drug-like properties and toxicity liabilities as well 
as promiscuous compounds or ‘frequent hitters’ among 
the NAA.
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