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Abstract

Background: In the post-genomic era, a central and overarching question in the analysis of protein-protein
interaction networks continues to be whether biological characteristics and functions of proteins such as lethality,
physiological malfunctions and malignancy are intimately linked to the topological role proteins play in the network
as a mathematical structure. One of the key features that have implicitly been presumed is the existence of hubs,
highly connected proteins considered to play a crucial role in biological networks. We explore the structure of protein
interaction networks of a number of organisms as metric spaces and show that hubs are non randomly positioned
and, from a distance point of view, centrally located.

Results: By analysing how the human functional protein interaction network, the human signalling network,
Saccharomyces cerevisiae, Arabidopsis thaliana and Escherichia coli protein-protein interaction networks from various
databases are distributed as metric spaces, we found that proteins interact radially through a central node, high degree
proteins coagulate in the centre of the network, and those far away from the centre have low degree. We further found
that the distribution of proteins from the centre is in some hierarchy of importance and has biological significance.

Conclusions: We conclude that structurally, protein interaction networks are mathematical entities that share
properties between organisms but not necessarily with other networks that follow power-law. We therefore conclude
that (i) if there are hubs defined by degree, they are not distributed randomly; (ii) zones closest to the centre of the
network are enriched for critically important proteins and are also functionally very specialised for specific ‘house
keeping’ functions; (iii) proteins closest to the network centre are functionally less dispensable and may present good
targets for therapy development; and (iv) network biology requires its own network theory modelled on actual
biological evidence and that simply adopting theories from the social sciences may be misleading.

Keywords: Protein interaction networks, Metric spaces, Core-periphery structure, Topological centrality, Hubs,
Essential proteins, Power-law graphs

Background
In the post-genomic era, an overarching question in the
analysis of protein-protein interaction (PPI) networks
continues to be whether biological characteristics and
functions of proteins such as lethality, physiological mal-
functions and malignancy are intimately linked to the
topological role proteins play in the network [1,2]. It has
been established that protein interaction networks (PINs)
have small-world and scale-free properties [3]. Much
of the recent efforts in the analysis of protein-protein
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interaction networks has focused on finding functional
dependencies between the so-called hubs and their topo-
logical roles in the network [4,5].What hasmade the effort
the more difficult is that various researchers have defined
hubs from various points of view [6]. However, almost uni-
versally, it has been assumed that these hubs are proteins
having a high degree (number of interactions) and that are
randomly placed in the network and have important func-
tional roles [4,7-10]. In a sense, it has been assumed that
each hub or a specialised set of hubs somehow controls
a sub-network that may constitute a pathway, functional
module or a process [11-13]. Because of this, in defin-
ing many of the proposed metrics in PINs, the degree of
nodes has prominently featured. It is appealing to give
substantial import to these metrics because some of them
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show levels of statistical significance that may not easily
be dismissed.
In that respect, for instance, it has been shown that in

PINs, proteins of high degree are three times more likely
to be lethal than the other proteins [5]. Due to this obser-
vation, network theory metrics such as degree centrality,
closeness centrality [14], betweenness centrality [15], and
cluster coefficients [16], to name a few, have been pro-
posed as ways to identify functionally important proteins
in PINs. Whilst these metrics have their relevance, they
do not enable the evaluation and analysis of networks as
topological entities. Many previous studies on the anal-
ysis of complex network used closeness centrality as a
way to find the core central proteins and applied it in
several areas such as to extract the metabolic core of a
network [17], to visualise large scale complex networks
in two dimensions [18], to identify drug targets [19,20],
to identify essential genes in Escherichia coli [21] and to
determination of dynamics of the cell-cycle networks [22].
Moreover, they used centrality measures which ultimately
give weighting to nodes and do not attempt to identify
the exact positions of nodes within the network [23].
Previously considered metrics have, however, implicitly
assumed randomness of the distribution of hubs [3,24,25].
Because of the commonality in distribution of networks
that follow power-law, some have gone as far as consid-
ering PINs in the same manner as social networks [26].
In point of fact, networks of protein interactions have
been shown in separate organisms to form, in varying
degree of statistical significance, scale-free networks in
which the distribution of degrees of nodes is power-law
[27,28]. It has thus been assumed that this property cap-
tures the essence of the pertinent features of the networks.
In this article, it will become evident that paralleling the
systems theory that has been developed in social net-
works to biological networks may not reveal a clearer
picture.
The point of departure from these previous studies is

that wemodel PPI graphs asmetric spaces, which are well-
defined topological spaces with a long history and deep
theory [29,30]. This precise strategy provides a powerful
way to view PINs in their entirety from a spatial point of
view, using distance as the key modeling measure. While
we do not attempt to weight proteins, it enables us to
pinpoint exactly where nodes are located in respect to
each other, even in very large PINs with several hundred
thousands of proteins and many interactions. By identi-
fying the network centre(s) using a formal method that
identifies the protein(s) that have the smallest maximal
distance to other proteins in the network, and then cat-
egorizing all proteins into zones based on distance from
the centre, we are able to find exactly where any protein is
located relative to the centre and its corresponding neigh-
bours in the network at large.We show here that modeling

and analysing PINs from several sources and organisms
in this much more precise manner than can be achieved
with centralitymetrics reveals deep shared core-periphery
topological pattern, and we also present strong evidence
of its functional significance.

Results and discussion
Multiple protein interaction networks from different
organisms all have single topological centres
While the Human Functional Protein Interaction Network
(HPFIN), the Human Signalling Network (HSN) and
multiple sources of Saccharomyces cerevisiae, Arabidop-
sis thaliana and Escherichia coli PINs all appear to be
power-law distributed as expected (see Additional file 1:
Figures S1a, S1b, S1c, S1d and S1e), we modelled each
one of the PINs as metric spaces in order to identify each
network’s topological centre(s) and to classify remaining
proteins into ‘zones’ based on graph theoretic distance
from the central protein. Zone 1, for example, refers to
proteins which are 1 step from the topological centre,
zone 2 is 2 steps away, etc. By modelling the giant com-
ponent of each PIN in this manner, we found that despite
our method’s inevitable ability to identify multiple topo-
logical centres if they exist, all PINs analysed had only a
single central protein that have key biological functions.
The centres of the HFPIN and the HSN, MAPK14 and
MAPK1 respectively, belong to the same protein family
and play similar key roles in signal transduction [31] and
the centre of the Arabidopsis thaliana PIN is AT1G78300,
which plays a key role in brassinosteroid mediated sig-
naling [http://www.ncbi.nlm.nih.gov/pubmed/17681130].
Saccharomyces cerevisiae has SSC1, involved in stress
response [http://www.molbiolcell.org/content/22/5/541.
full] at the centre of its PIN and Escherichia coli has rpsB,
a ribosomal protein S2 that is an essential component of
the organisms translation machinery [http://www.ncbi.
nlm.nih.gov/pubmed/23104805].

PINs analysed as metric spaces form a dense core/sparse
periphery structure
The majority of proteins in PINs are located in zones
1–3. For the HFPIN and the HSN respectively, 92% and
95% proteins are in these zones. The same phenomenon
is observed in Saccharomyces cerevisiae, Arabidopsis
thaliana and Escherichia coli, albeit with varying pro-
portionality (Table 1). When analysing zones as induced
sub-networks, we found in all cases that zone 1 is the most
highly connected with few quills, if any. Zone connectivity
decreases with increasing distance from the centre, with
zone 2 having some quills (nodes with degree 1) and zone
3 having many more quills (see the numbers of quills in
Table 1). Beyond zone 3, due to very low connectivity, the
induced subgraphs disintegrate into many components
and in the zones on the fringes there are only quills.

http://www.ncbi.nlm.nih.gov/pubmed/17681130
http://www.molbiolcell.org/content/22/5/541.full
http://www.molbiolcell.org/content/22/5/541.full
http://www.ncbi.nlm.nih.gov/pubmed/23104805
http://www.ncbi.nlm.nih.gov/pubmed/23104805
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Table 1 Degree distribution of PINs with respect to the centre

Organism Nodes Edges Diameter Centre Zones around centre

1 2 3 4 5 6 7 8 9

Homo sapiens 9448 181706 13 MAPK14

374 4610 3464 578 104 14 2 1 1 Nodes

86 32 52 2 2 1 1 2 1 Average degree

3 1 1 1 1 1 1 2 1 Lowest degree

531 430 393 14 6 2 2 2 1 Highest degree

0 173 653 307 56 12 1 0 1 No of quills

HSN 6291 62737 11 MAPK1

431 3527 1929 206 38 4 Nodes

67 24 7 2 2 3 Average degree

1 1 1 1 1 1 Lowest degree

451 362 89 11 9 5 Highest degree

4 404 757 133 20 2 No of quills

Saccharomyces cerevisiae 5033 22417 10 SSC1

175 1639 2517 565 69 9 Nodes

34 14 4 1 1 1 Average degree

1 1 1 1 1 1 Lowest degree

209 282 109 11 4 1 Highest degree

1 92 609 327 57 9 No of quills

Arabidopsis thaliana 2953 6783 16 AT1G78300

134 216 799 825 443 130 20 5 4 Nodes

3 11 6 3 2 1 1 3 2 Average degree

1 1 1 1 1 1 1 1 1 Lowest degree

62 117 79 43 26 12 4 6 3 Highest degree

81 60 180 355 234 80 10 1 1 No of quills

Escherichia coli 2949 12689 12 rpsB

151 1089 976 260 38 6 Nodes

37 12 3 1 1 1 Average degree

1 1 1 1 1 1 Lowest degree

178 127 56 6 3 2 Highest degree

1 213 349 166 30 5 No of quills
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An interesting pattern emerged when we assessed the
distribution of the top 5% most highly connected pro-
teins of each network across its zones. Overall, we see that
these proteins coagulate in zones closer to the centre of
the networks (Tables 2, 3, 4, 5, 6 and 7). When removing
a potentially erroneous dense complete subgraph in zone
3 of the HFPIN consisting of 330 zinc finger proteins, the
majority of themost highly connected proteins are located
in zones 1 and 2. The same is observed for both the HSN
and E. coli. While Saccharomyces and Arabidopsis PINs
have a similar general pattern, they also have some of these
proteins in zone 3, with the latter having an additional 9%
in its zones 4 and 5.
It is therefore clear that across the phyla and regardless

of network size, PINs form a structure that has a densely
connected kernel and a less dense periphery, which termi-
nates in ‘quills’ or ‘spikes’ (Figure 1). Furthermore, topo-
logically central zones are highly connected and have only
few proteins of low degree, which suggests a non-random
distribution of hub proteins. It has previously been shown
that evolutionarily older proteins have higher degree [32]
and that loss and gain of protein-protein interaction sites
are driven by evolutionary mechanisms [33] and there-
fore constrained by positive (Darwinian) and negative
(purifying) selection. We therefore deem it reasonable to
conclude that the core-periphery topologies uncovered by
our method are themselves evolved and have functional
significance and importance.
There is no phenomenal change (see Additional file 1:

Figures S2, S3a, S3b, S3c and S3d) when the analysis is
done on different PINs from different database sources.
All the results from the analysis of PINs when treated as
metric spaces confirm that PINs have a densely connected
kernel and becomes less dense towards the periphery,
terminating in several ‘spikes’ or ‘quills’.

Protein network topologies are not consistent with
random graphs
The striking similarity across the kingdoms suggests that
these network topologies have functional significance and
are evolved rather than random, especially since the num-
ber of proteins and interactions differ widely. In order to
test this hypothesis, we performed a comparison of the

Table 2 Distribution of top 5% highest degree in human
signalling network

Zone Number of nodes has degree≥ 95 (5%) Percentage

Zone 1 106 34.6%

Zone 2 197 64.4%

Zone 3 0 0%

Total 306 100%

Table 3 Distribution of top 5% highest degree in HFPIN
without complete graph

Zone Number of nodes has degree ≥ 200 (5%) Percentage

Zone 1 39 54.9%

Zone 2 32 45.1%

Zone 3 0 0%

Total 71 100%

biological networks to a large number of computationally-
generated uniform random power law graphs [34] with
similar properties in terms of numbers of nodes and edges
(interactions). In general, while all PINs have a single
centre and large diameter, their random power-law equiv-
alents often havemultiple centres and significantly smaller
diameters. PPI datasets also represented many compo-
nents with a single giant component, while the random
graphs consistently had at most 2 components. The num-
ber and distribution of quills, nodes of degree 1, is also
remarkably different, with PINs having a high number of
nodes with low degree in comparison to uniform random
power-law graphs (Table 8). This distorts archetypical
power-law distribution of nodes. Furthermore, each PIN
has a small number of nodes that have remarkably higher
degrees than the highest degree nodes of the uniform ran-
dom power-law graphs (Figures 2 and 3). The significant
incongruence of topological patterns between PINs and
random graphs add further plausibility to our hypoth-
esis that the biological networks arose through positive
selection.

Central zones of human PINs are functionally specialised
In order to assess whether the observed topological pat-
terns have potential functional significance, we performed
pathway enrichment analysis and observed strong zone-
specific functional enrichment in the first four zones of
the HFPIN and the HSN . Moreover, those zones also
appear to be functionally specialised with most proteins
in a zone belonging to the top four enriched pathways,
while the outer zones are much more functionally diver-
sified (Table 9, Additional file 1: Table S1). Zone 1 is
highly enriched for proteins involved in signal transduc-

Table 4 Distribution of top 5% highest degree in HFPIN
with complete graph

Zone Number of nodes has degree ≥ 200 (5%) Percentage

Zone 1 39 8.5%

Zone 2 32 7.6%

Zone 3 380 83.9%

Total 458 100%
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Table 5 Distribution of top 5% highest degree in
Saccharomyces cerevisiae

Zone Number of nodes has degree≥ 35 (5%) Percentage

Zone 1 65 26.5%

Zone 2 152 62%

Zone 3 28 11.4%

Total 245 100%

tion, immune system, hemostasis and disease pathways
and appears to constitute a core of highly important
interactions required for organismal and cellular sens-
ing and response to adverse environmental, biological
and mechanical stresses. Zone 2 is also enriched for pro-
teins involved in signal transduction and immune system
pathways and is moderately enriched for gene expression
and metabolic pathways, which are the main functional
themes in zone 3. Zone 4 has significantly less enrich-
ment than zones closer to the centre, withmetabolism and
membrane trafficking being the main functional themes
for HFPIN and HSN, respectively. Based on pathway
enrichment observed in each zone and the high degree of
functional specialisation observed in zones closest to the
network topological centre, it is likely that the structure
of the HFPIN and the HSN ( and possibly those of other
organisms) may have strong biological significance. We
propose that proteins closest to the network centre play
critical roles in organismal survival (Figure 4, Additional
file 1: Figure S4).

Topologically central proteins may play critical roles in
adaptation and survival
In addition to the evidence presented for the human PINs,
GO enrichment analysis of central zones of the Saccha-
romyces cerevisiae PIN appears to support our hypothe-
sis that centrally located proteins may be important for
organismal fitness, since zone 1 is enriched for functions
related to cell cycle, response to stress, reproduction and
response to DNA damage and zone 2 for functions related
to RNA processing, chromosome organization, ribosome
biogenesis and the mitotic cell cycle (Additional file 1:
Figure S5). This is further reinforced by our findings that

Table 6 Distribution of top 5% highest degree in
Escherichia coli

Zone Number of nodes has degree≥ 44 (5%) Percentage

Zone 1 46 37%

Zone 2 77 62%

Zone 3 1 0.8%

Total 124 100%

Table 7 Distribution of top 5% highest degree in
Arabidopsis thaliana

Zone Number of nodes has degree≥ 16 (5%) Percentage

Zone 1 2 1.5%

Zone 2 46 33.3%

Zone 3 64 44.1%

Zone 4 12 8.5%

Zone 5 5 3.8%

Total 129 100%

topologically central positions of PINs are highly con-
nected and that hub proteins are located in central zones.
Topologically, this is in line with the core and periphery
structures described for PPI networks [35]. However, we
further propose that the ‘switching’ of specialised func-
tions between zones and the high degree of enrichment
for signal transduction proteins in zones 1 and 2 suggests
that the human PIN has evolved to optimise the sensing of
stimuli at its central zones and to initiate a signal outward
to peripheral zones, where transcriptional and subsequent
metabolic responses are effected.

Conclusion
When PINs are formally modelled as metric spaces, it
becomes clear that hub proteins are not distributed ran-
domly and that the prevailing view that proteins interact
randomly with hubs marshalling low degree proteins in
processes and pathways needs a serious reconsideration.
We show clearly that PIN structures across the phyla have
densely connected kernels and become less dense towards
the periphery, terminating in several ‘spikes’ or ‘quills’. We
argue that structurally PINs, and possibly other biological
networks, are mathematical entities that share properties
between organisms but not necessarily with other net-
works that follow power-law, such as social networks. As
such, while applying systems theory developed in social
networks to biological networks may have been conve-
nient in and may have shed some light on interactomes,
it is not sufficient to identify functional patterns in pro-
tein interaction networks, which we have shown to have a
much deeper topology when considered as metric spaces.
As our over-representation analysis has shown that zones
of the human and Saccharomyces cerevisiae PINs have
functional significance, we argue that interactomics needs
its own network theorymodelled on actual PPI data rather
simply adopting theories from the social sciences.
We thus conclude that our strategy of formally and pre-

cisely evaluating PINs as metric spaces, with a focus on
zones relative to the centre, may shed light on the key
differences between expressed PPI networks in normal
and diseased tissues. We propose that centrally located
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Figure 1Model representation of a PINs with respect to distance from the centre. A graph layout representation of the PINs, which
demonstrates a densely connected centre and ‘quills’ at the periphery.

proteins, particularly those involved in sensing functions,
may present good therapeutic targets and should be
formally evaluated in future studies based on our met-
ric space approach. Our ongoing investigations into the
potential applications of the approach detailed in this
paper indicates that central zones of several human PPI
networks are very strongly enriched for essential proteins
and known drug targets, with central zones again display-
ing high enrichment (data not shown), reinforcing our
hypothesis of utility in drug target discovery.

Methods
Notation and definitions in graph theory
The PPI networks we consider are modelled by graphs. A
graph G = (V ,E) is a set V together with an adjacency
relation E that is not reflexive and at the same time sym-
metric. The elements of V are called nodes (one is a node)
and those of E are called edges. Thus, in PPI networks, pro-
teins are represented by nodes and a pair of proteins forms
an edge if they interact; we therefore interchangeably use
proteins and nodes in this discussion. In the organisms we

consider, to avoid reflexivity, we ignore considerations of
proteins interacting with themselves. In any case, in mat-
ters of distances, reflexivity plays no role. The order of a
graph is the number of its nodes and the size is the num-
ber of interactions. A graph is complete if every node is
related to the other. If a node x is related to a node y, we
say that y is adjacent to x and write xy. The set of nodes
that are adjacent to a node x is the neighbourhood of x. The
degree of x is the number of nodes in its neighbourhood.
In the context of PPI networks, the degree of a protein is
the number of proteins that interact with it. A subgraph of
a graphG is a graph whose node set is a subset of that ofG,
and whose adjacency relation is also a subset of that of G.
A subgraph H of a graph G is said to be induced if, for any
pair of nodes x and y of H, xy is an edge of H if and only
if xy is an edge of G; that is, H inherits all the edges that
are in G. If a subgraph H has only a subset of edges were
defined in G, then H is not induced. Of particular impor-
tance in PINs are induced subgraphs that define a process
or pathway. A path in a graph is a sequence v0v1 · · · vk
of distinct nodes such that every two consecutive nodes
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Table 8 Human signalling network vs equivalent random human signalling network

Network Nodes Edges Giant Diameter Zones around centre

1 2 3 4 5 6

HSN 6291 62737 67 11

431 3527 1929 206 38 4 Nodes

67 24 7 2 2 3 Average degree

1 1 1 1 1 1 Lowest degree

451 362 89 11 9 5 Highest degree

4 404 757 133 20 2 No of quills

Random equiv. HSN 1 6477 64319 2 8

155 3031 3149 134 5 Nodes

54 27 11 3 1 Average degree

7 1 1 1 1 Lowest degree

150 141 61 10 1 Highest degree

0 3 32 36 5 No of quills

Random equiv. HSN 2 6270 62360 1 8

151 3037 2973 107 1 Nodes

56 27 11 2 1 Average degree

5 1 1 1 1 Lowest degree

159 136 50 6 1 Highest degree

0 1 42 32 1 No of quills

Random equiv. HSN 3 6267 62412 1 7

171 3187 2812 96 Nodes

52 27 11 2 Average degree

6 1 1 1 Lowest degree

171 153 58 7 Highest degree

0 1 39 33 No of quills

Random equiv. HSN 4 6277 62378 2 7

158 3127 2883 106 Nodes

56 27 11 2 Average degree

5 1 1 1 1 Lowest degree

153 143 54 7 Highest degree

0 2 29 36 No of quills

Random equiv. HSN 5 6282 62378 1 8

154 3093 2914 119 1 Nodes

55 27 11 3 1 Average degree

4 2 1 1 1 Lowest degree

153 158 53 8 1 Highest degree

0 0 25 34 1 No of quills
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Figure 2 Degree distribution of HFPIN vs equivalent uniform random power-law graph.

constitute an edge in the graph; its length is k. If for every
pair of nodes in a graph there is a path joining them, we say
that the graph is connected; otherwise it is disconnected.
A component is a maximally connected subgraph of the
graph and it is giant if contains a majority of the entire
graph’s nodes. The distance between a pair of nodes is the
length of a shortest path joining them. A graph together
with this distance defines ametric space. For a fixed node
v, the eccentricity of v is the length of the longest path join-
ing itself to all the other nodes. The longest eccentricity
of all nodes is the diameter of the graph and nodes with
the shortest eccentricity are said to be at the centre of the
graph. In our context, a quill is a subgraph which is on the
fringes of the centre and eventually becomes a path, that
is, a connected subgraph in which one of the nodes has
degree 1.

PPI data sources
The human PIN we considered is the Human Functional
Protein Interaction Network (HFPIN) [36], which has
9448 nodes and 181706 interactions. The human signal-
ling network which has 6291 nodes and 62737 inter-
actions was downloaded from www.bri.nrc.ca/wang/.
PINs for other organisms were downloaded from various
databases: the Database of Interacting Proteins (http://

bioinfo.esalq.usp.br) Version 02/28/2012 [37], bioGRID
database (http://thebiogrid.org/download.php), CCSB
interactome database (http://interactome.dfci.harvard.
edu/), antAnc database (ftp://ftp.ebi.ac.uk/pub/databases/
intact/current) Version 2.0, and MINT database (http://
mint.bio.uniroma2.it/mint/download.do). The Saccha-
romyces cerevisiae network consisted of 5033 nodes and
22417 interactions, the Arabidopsis thaliana network,
2953 nodes and 6783 interactions and the Escherichia coli
PPI network consisted of 2949 nodes and 12689 inter-
actions. In order to compare the biological graphs with
random graphs, we generated uniform random power-
law graphs that are similar in terms of number of nodes
and interactions using the Python Webgraph Generator
(http://pywebgraph.sourceforge.net/), which implements
the RMAT algorithm [38].

Evaluation of PPI networks as metric spaces
We considered the Human Functional Protein Interac-
tion Network, the human signalling network, the Sac-
charomyces cerevisiae, Arabidopsis thaliana, Escherichia
coli, Caenorhabditis elegans and Helicobacter pylori PPI
networks as metric spaces by defining the usual graph the-
oretic distance between nodes of a graph. Using a python
wrapper around the C++ BOOST graph library (http://

Figure 3 Degree distribution of human signalling network vs equivalent uniform random power-law graph.

www.bri.nrc.ca/wang/
http://bioinfo.esalq.usp.br
http://bioinfo.esalq.usp.br
http://thebiogrid.org/download.php
http://interactome.dfci.harvard.edu/
http://interactome.dfci.harvard.edu/
ftp://ftp.ebi.ac.uk/pub/databases/intact/current
ftp://ftp.ebi.ac.uk/pub/databases/intact/current
http://mint.bio.uniroma2.it/mint/download.do
http://mint.bio.uniroma2.it/mint/download.do
http://pywebgraph.sourceforge.net/
http://www.boost.org/
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Table 9 Summary of functional specialization in the central zones of HFPIN

Percentage of proteins

Enriched pathway Zone 1 Zone 2 Zone 3 Zone 4

Signal transduction 38% 24.8% - -

Immune system 29.8% 10.6% 4.5% -

Hemostasis 17% 5.7% 2.7% -

Disease 16.8% 8% 4.1% -

Gene expression 8.2% 8.8% 9.8% -

Metabolism 5.1% 8.4% 7.6% 10.4%

Membrane trafficking - - 1.2% 2.8%

Neuronal system 4.8% 2.5% 2.3% 3.3%

Transmembrane transport of small molecules - 1.9% 2.4% 3.6%

www.boost.org/), we used the Dijkstra algorithm to com-
pute the shortest distances between all pairs of nodes and
then identify the node or all nodes whose greatest dis-
tance to other nodes is/are smallest. This is the network
center(s).
From here, nodes were classified according to their dis-

tances from the centre and divided into zones based on
distance from the topological centre(s). From each dis-
tance class, we calculated their degree distributions and
also considered their connectivity of the graphs induced
for each zone.

Pathway and function enrichment analysis
In order to determine whether zones of the HFPIN,
human signalling network and Saccharomyces cerevisiae

PIN we considered have biological significance, we
divided proteins into subsets based on their distance
from the true topological centre. Protein sets represent-
ing each zone were then subjected to a pathway over-
representation analysis in order to determine whether the
zones were specialised for specific functions. The Com-
parative Toxigenomics Database’s Gene Set Enricher web
service (http://ctdbase.org/tools/enricher.go) and Gene
Ontology enrichment (http://www.geneontology.org/GO.
tools) was used to perform the enrichment analysis and a
corrected P-value of 0.01 was chosen as a statistical signif-
icance cutoff. Lastly, when such enrichment was observed,
we calculated the proportion of proteins involved in each
enriched pathway as a way to assess whether any zones
display functional specialization.

Figure 4 Summary of functional specialization in the central zones of HFPIN.

http://www.boost.org/
http://ctdbase.org/tools/enricher.go
http://www.geneontology.org/GO.tools
http://www.geneontology.org/GO.tools
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Additional file

Additional file 1: Degree distributions of PINs. In all the PINs, the
standard deviation of degree distribution has a remarkably significant
variation. However, the HFPIN has a spike as a result of a zinc finger (ZNF)
protein family of 330 proteins which constitutes an induced complete
graph, where each protein has a degree of 386. Our main strategy was to
calculate a number of metrics of networks from their topological centre
moving outwards. The correlation coefficient calculated for mean degree
and the distance from the centre of the networks is -0.789, -0.814, -0.840,
-0.804, -0.865, and -0.876 respectively for HFPIN, human signalling network,
Saccharomyces cerevisiae, Escherichia coli, Caenorhabditis elegans and
Helicobacter pylori. The correlation is therefore strongly negative. In other
words, there is a relationship between mean degree and zones. As we
move into the centre the values for the mean degree increase. On the
other hand, the average degree of nodes in zones in the periphery
decrease as one moves away from the centre. Figure S1a Degree
distribution of the HFPIN. Figure S1b Degree distribution of Saccharomyces
cerevisiae. Figure S1c Degree distribution of Arabidopsis thaliana. Figure S1d
Degree distribution of Escherichia coli. Figure S1e Degree distribution of the
HSN. Figure S2 Summary of degree distribution of PINs with respect to the
centre from different sources. Figure S3a Degree distribution of HFPIN and
human signalling network follows power-law distribution. Figure S3b
Degree distribution of Saccharomyces cerevisiae from different source.
Figure S3c Degree distribution of Arabidopsis thaliana from different
source. Figure S3d Degree distribution of Escherichia coli from different
source. Figure S4 Summary of functional specialization in the central zones
of human signlling network. Figure S5 Summary of functional specialization
in the central zones of Saccharomyces cerevisiae. Table S1 Summary of
functional specialization in the central zones of human signalling network.
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