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ABSTRACT
The theory of low-order linear stochastic differential equations is reviewed. Solutions to these
equations give the continuous time analogues of discrete time autoregressive time-series. Ex-
plicit forms for the power spectra and covariance functions of first- and second-order forms are
given. A conceptually simple method is described for fitting continuous time autoregressive
models to data. Formulae giving the standard errors of the parameter estimates are derived.
Simulated data are used to verify the performance of the methods. Irregularly spaced obser-
vations of the two hydrogen-deficient stars FQ Aqr and NO Ser are analysed. In the case of
FQ Aqr the best-fitting model is of second order, and describes a quasi-periodicity of about
20 d with an e-folding time of 3.7 d. The NO Ser data are best fitted by a first-order model
with an e-folding time of 7.2 d.

Key words: methods: data analysis – methods: statistical.

1 I N T RO D U C T I O N

Time-series data such as those in Figs 1–2 (below) challenge the
traditional methods of analysis used by astronomers. Typically, a
frequency domain analysis of some sort would be attempted. Promi-
nent peaks in a power spectrum would be selected, and the data
‘explained’ as being due to cyclical variations with superimposed
noise. If there are no sufficiently dominant peaks in the spectrum,
the conclusion may be that there is nothing much to be learned from
the data.

Yet it is clear that there is information in the data: observations
which are close together in time are generally more similar than
those which are widely separated. Put differently, the data are not
pure noise, but show correlation. Of course, the information is of
a statistical, rather than a deterministic, nature: only probabilistic,
rather than definite, predictions about future observations can be
made.

In the case of observations which are regularly spaced in time, it is
possible to progress beyond the mere investigation of the correlation
structure of stochastic time-series. The reason is that any stationary
stochastic time-series xt(t = 1, 2, · · · , N ) with mean µ can be
written as

xt = µ +
p∑

j=1

α j [xt− j − µ] +
q∑

i=1

βiεt−i + εt , (1)

where the α j and β i are constants, and ε k is white noise (e.g. Box
& Jenkins 1976; Brockwell & Davis 1991). Equation (1) defines an
‘autoregressive moving average’ time-series of orders p and q, con-

veniently abbreviated ARMA(p,q). In practice quite modest values
of p and q – typically 0 �p, q � 2 – are usually enough to achieve
adequate descriptions of stochastic time-series.

Series with p = 0, pure moving average or ARMA(0,q)≡MA(q)
processes, are characterized by short coherence time-scales q. Long
‘memory’ processes, on the other hand, can often be described by
pure autoregressive models of low order, i.e. ARMA(p,0)≡AR(p)
forms with small p (typically p � 2). The subject of this paper is
the modelling of time-series such as those in Figs 1 and 2 (below),
i.e. observations with long coherence times. This means that our
interest is in the AR(p) form

xt = µ +
p∑

j=1

α j [xt− j − µ] + εt . (2)

There is an enormous literature on the modelling of stochastic
time-series observed at regularly spaced time points, and all major
statistical software packages contain facilities for fitting standard
models to such data. By contrast, work on the modelling of stochastic
time-series observed at irregularly spaced time points is much less
well known. Nonetheless, there is an extensive theoretical literature
on the topic – see for example the papers in Parzen (1983). Although
there are different approaches to dealing with data such as those in
Fig. 1 (below), we will concentrate on the analogues of AR models
mentioned above. In the economics literature these are often referred
to as ‘continuous time autoregressive’ or ‘CAR’ models.

Whereas the AR(p) model (2) is a difference equation, CAR(p)
models are defined by stochastic differential equations (SDEs),
as is to be expected when generalizing to continuous time. The
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relevant statistical theory of CAR(p) time-series is reviewed in the
next section of this paper.

The next challenge is the fitting of CAR(p) models to observed
time-series. A method suitable for small (say N < 200) data sets is
described in Section 3. Evaluation of how well the model fits is also
considered. Inference issues are dealt with in Section 4. The results
of a few example analyses are presented in Section 5, and the paper
is concluded in Section 6.

2 A N I N T RO D U C T I O N TO C A R ( P )
T I M E S E R I E S

Much of the required theory is given by Jones (1981), and we adhere
largely to his notation; see also Jones (1993) and Harvey (1989). A
general form of the SDE satisfied by a CAR(p) process x(t) is

p∑
j=0

α j x
( j)(t) = ε(t) . (3)

In this equation, the α j are constants (α p = 1); ε(t) is a continuous-
time white noise process with variance σ 2

ε ; and x ( j) is the jth deriva-
tive of x(t) [with x (0)(t) ≡ x(t)]. As in the case of discrete-time
processes, most CAR processes are of low order, typically
p � 2.

The interpretation of (3) is not entirely straightforward, as the
derivatives of an irregularly varying processes such as Brownian
motion do not strictly speaking exist. The simplest form of the equa-
tion is

d

dt
x(t) + α0x(t) = ε(t) (4)

which can be written in differential form as

dx(t) = −α0x(t) dt + dw(t) . (5)

In (5), dw is to be interpreted as the infinitesimal increment in a
continuous time random walk (or Brownian motion) over the time
increment dt . Formally

dw(t) = ε(t) dt ,

i.e. ε(t) is the derivative of a random walk process. Readers inter-
ested in details of this, and other, formal theoretical aspects of SDEs
are referred to Bergstrom (1984).

The second-order form of (3) can be written as

dx (1)(t) = −[
α0x(t) + α1x (1)

]
dt + dw(t)

dx(t) = x (1)(t) dt . (6)

A little reflection shows that solutions of (6) may, in general, be
more smoothly varying (relatively more power at low frequencies)
than those of (5): solutions of (5) are essentially integrations over
dw(t), i.e. they will have roughly the character of random walks.
Similarly, solutions for x (1) in (6) will be have the appearance of
random walks, so that x(t) will behave like an integrated random
walk – i.e. be smoother than a random walk. We conclude that the
higher the order p of the CAR(p) equation, the greater the degree of
smoothness of the solutions it may have.

Some key results on the covariance functions and spectra of x(t)
satisfying (3) follow. The interested reader is referred to Doob (1953)
for background material. The roots rj( j = 1, 2, . . . , p) of the char-
acteristic equation

A(z) =
p∑

j=0

α j z
j = 0 (7)

are of some importance. As an example, the covariance function of
x(t) is given by

C(τ ) = cov[x(t), x(t + τ )]

= −σ 2
ε

p∑
j=1

er j τ

2Re(r j )�k �= j (rk − r j )
(
r∗

k + r j

) (8)

where Re(rj) is the real part of rj, and r∗
k is the complex conjugate

of rk.
The frequency spectrum of x(t) is given by

S(ω) = α2
0C(0)∣∣∑p

j=0 α j (iω) j
∣∣2 ≡ α2

0σ
2
x

|A(iω)|2 . (9)

Since (7) can be written in terms of its roots as

A(z) = �
p
j=1(z − r j ) = 0, (10)

an equivalent form of (9) is

S(ω) = α2
0σ

2
x

�
p
j=1|r j − iω|2 . (11)

In terms of the real and imaginary parts of the roots rj = aj + ibj,

S(ω) = α2
0σ

2
x

�
p
j=1

[
a2

j + (ω − b j )2
] . (12)

For purely real roots rj the spectrum S(ω) decreases monotonically
with increasing frequency from a maximum at ω = 0. However, for
complex roots, local maxima occur at ω = bj: these correspond to
quasi-periodicities in the data.

It is of interest to examine the explicit forms of (8) and (12) for
the two lowest-order CAR(p) processes.

(i) If p = 1, then (7) reduces to

A(z) = α0 + z = 0 ⇒ r1 = −α0

and (8) to

C(τ ) = σ 2
ε

2α0
e−α0τ . (13)

It follows that the variance and the autocorrelation function of x(t)
are

σ 2
x = C(0) = σ 2

ε

2α0
ρ(τ ) = C(τ )/C(0) = e−α0τ . (14)

Clearly α−1
0 is a measure of the correlation memory of the process,

and should be positive for physically realistic time-series. Note that
for a given σ ε , the variance of x(t) increases with decreasing α0, i.e.
as the correlation memory increases.

An extreme case is the SDE

dx

dt
= ε(t) ,

i.e. α0 → 0; this is a random walk which has infinite correlation
memory and infinite variance.

For general α0 the frequency spectrum is

S(ω) = α2
0σ

2
x

α2
0 + ω2

. (15)

As α0 → ∞, so S(ω) → σ 2
x , i.e. continuous time processes re-

sembling discrete time white noise can be modelled as CAR(1)
time-series with large α0.
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(ii) In the case p = 2 the roots of (7) are

r1, r2 = −α1 ±
√

α2
1 − 4α0

2
.

(a) If α2
1 > 4α0 both roots are real and

C(τ ) = − σ 2
ε

2
(
r 2

2 − r 2
1

) [
er1τ

r1
− er2τ

r2

]
(16)

and hence

σ 2
x = −σ 2

ε

2r1r2(r1 + r2)
= σ 2

ε

2α0α1
(17)

ρ(τ ) = 1

r2 − r1

[
r2er1τ − r1er2τ

]
. (18)

Equation (18) generalizes (14) to the case where there are two
different time-scales in the time-series. The requirement that r 1, r 2 <

0 [deduced from (18)] translates into α0, α1 > 0.
By (12)

S(ω) = α2
0σ

2
x(

r 2
1 + ω2

)(
r 2

2 + ω2
) , (19)

which is again a monotonically decreasing function of frequency.
(b) If α2

1 < 4α0, r 1 and r2 must be complex conjugates:

r1 = a + ib r2 = a − ib

with

a = −1

2
α1 b = 1

2

√
4α0 − α2

1 .

The covariance function reduces to

C(τ ) = −σ 2
ε eaτ

4ab(a2 + b2)1/2
cos(bτ + φ)

φ = tan−1 a

b
= sin−1

( −α1

2α
1/2
0

)
σ 2

x = −σ 2
ε cos φ

4ab(a2 + b2)1/2
= −σ 2

ε

4a(a2 + b2)
= σ 2

ε

2α0α1

ρ(τ ) = eaτ

b

√
a2 + b2 cos(bτ + φ) . (20)

The quantity b is positive by its definition; a < 0 for (e.g.) a phys-
ically meaningful variance. It is not difficult to see that α0, α1 > 0
should hold.

The spectrum is

S(ω) = α0σ
2
x

[a2 + (ω − b)2][a2 + (ω + b)2]
(21)

i.e. x(t) is quasi-periodic with angular frequency b.

3 F I T T I N G M O D E L S TO S M A L L DATA S E T S

The key ingredient of the maximum likelihood model fitting tech-
nique discussed in this section is expression (8) for the covari-
ance of x(t). Let the observed values of the time-series be {X (t 1),
X (t 2), · · · , X (tN)}, then

X (t j ) = µ + x(t j ) + e(t j ) (22)

where µ is the mean and e(tj) is a measurement error, with mean
zero and variance σ 2

e . The covariances of the X (tj) are given by

CX (i, j) = cov[X (ti ), X (t j )]

= Cx (i, j) + σ 2
e I =

{
C(0) + σ 2

e i = j

C(|ti − t j |) i �= j
(23)

The Gaussian log likelihood L of the vector

X =

 X (t1)
X (t2)
· · ·

X (tN )

 (24)

is easily written down using the information above. The elements
of the covariance matrix

Σ = cov(X, X′)

follow immediately from (23) and (8), and

L = −1

2

[
N log 2π + log |Σ| + (X − µ1)′Σ−1(X − µ1)

]
(25)

is the corresponding Gaussian log likelihood. [In (25), 1 is a column
vector of N elements equal to unity].

Estimation of the unknown parameters α0, α1, · · · , α p−1, σ 2
e , σ 2

ε ,
µ has thus been reduced to the numerical problem of maximization
of the likelihood function with respect to these unknowns. The com-
putational burden can be reduced by obtaining explicit expressions
for two of the unknowns. Set

Σ∗ = Σ/σ 2
ε (26)

and use

∂L
∂σ 2

ε

= 0

to deduce

σ̂ 2
ε = 1

N
(X − µ1)′Σ−1

∗ (X − µ1) (27)

Note that Σ∗ now contains the unknowns α0, α1, · · · , α p−1 and the
ratio

R = σ 2
e /σ 2

ε . (28)

An explicit estimator for µ can also be derived:

∂L
∂µ

= 0

and it follows that

µ̂ = 1′Σ−1
∗ X/1′Σ−1

∗ 1 . (29)

In practice, the solution then proceeds as follows.

(i) Guess values for α0, α1, · · · , α p−1, R.
(ii) Calculate the corresponding value for Σ∗ .
(iii) An estimator for µ follows from (29).
(iv) Using µ̂ from (iii), an estimator for σ 2

ε follows from (27).
(v) Substitution of (27) into the expression (25) for L gives

L = −1

2

[
N (1 + log 2πσ 2

ε ) + log |Σ∗|
]

. (30)

(vi) Iteration over (i)–(v) continues until L reaches a maximum.
(vii) By (28),

σ̂ 2
e = R̂σ̂ 2

ε .

Despite the manoeuvering in the preceding paragraphs, model
fitting remains computationally expensive for quite modest sample
sizes, due to the repeated inversion of the N × N matrixΣ∗. A much
faster algorithm which avoids the inversion (in fact even calculation
of Σ∗) will be described in the next paper of this series. The method
of this paper is valuable, as it is very forgiving of poor starting
guesses for the unknown parameter values. It is therefore very useful
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for application to small subsets of data to find approximate solutions.
It also has the virtue of conceptual simplicity.

The model fit is evaluated by studying the residuals. The latter
are estimated by

z = L−1(X − µ̂1) (31)

where L is a lower triangular matrix obtained from the Cholesky
decomposition of Σ:

Σ = LL′

(see e.g. Koen 2000).
For time-series measured at regular intervals, fundamental tests

for randomness of the residuals are based on their autocorrelation
and partial autocorrelation functions. Finding a suitable form for
these functions, and their statistical properties, are suitable topics for
research. The spectrum as estimated from the periodogram can still
be used to investigate whether there are excesses of power in some
frequency intervals. There are some outstanding questions though:
the choice of frequencies in which to evaluate the periodogram,
and appropriate smoothing formulae, being two. Of course, simply
plotting the residuals may also be instructive.

Further discussion of residual evaluation is postponed to a later
paper. For present purposes the autocorrelations defined by

rk = ck/c0 ck = 1

N

N−k∑
j=1

[z(t j ) − z][z(t j+k) − z] k = 1, 2, ... (32)

are plotted. This means that the correlations of successive values,
values two observations apart, three observations apart, etc., are
studied. Put another way, rk is the correlation between observations
for which the time indices differ by k, without any regard to the
time intervals between the observations. If the residuals are indeed
white noise, then they will be entirely free of correlation. This is
true regardless of the time order, or even the time spacing, of the
residuals. A test based on (32) can therefore be seen as a partial test
for zero correlation – a ‘minimum requirement’ to be fulfilled by the
residuals. Of course, tests based on equation (32) are particularly
stringent, as at least some residuals with closely similar indices will
be closely spaced in time, and hence more likely to be correlated if
the residuals are not white noise. The usual approximation

S.E.(rk) ≈ 1√
N

(33)

(e.g. Koen & Lombard 1993 and references therein) is used to gauge
the significance of the autocorrelations.

Finally, the choice between different models that all fit satisfac-
torily but which may differ in complexity (e.g. number of fitted
parameters n) can be based on a comparison between their informa-
tion criteria,

AIC = −2L + 2n BIC = −2L + n log N . (34)

AIC and BIC are, respectively, the Akaike and Bayes information
criteria. In the case of the null model of (Gaussian) white noise n =
2 since the data can then be fully described by its mean and variance.

In keeping with results often quoted in the literature, it was found
that the AIC consistently selects models with too many parameters.
Therefore, only the BIC is used below.

It is a well-known statistical result that the maximum likelihood
estimates of parameters ψ j approach the true values as the sample
size increases (e.g. Cox & Hinkley 1974). Furthermore, the covari-
ance matrix of the large sample estimates of the ψ j is given by

C = I−1 (35)

where I is the Fisher information matrix defined by

Ii j ≡ −E

[
∂2L

∂ψi∂ψ j

]
.

The components of I are derived in Appendix A.

4 E X A M P L E S

4.1 Simulated data

The simulated data in Figs 1 and 2 were calculated at 100 time
points, spaced at exponentially distributed intervals. The values
µ = 0, σ ε = 1 were used throughout; σ e = 0.5 in Fig. 1, and
σ e = 2 in Fig. 2. Table 1 contains the results of fitting both CAR(1)

Figure 1. Simulated CAR(1) processes: from top to bottom, α0 is 0.1, 0.2
and 0.5. In all three cases σ ε = 1, σ e = 0.5.

Figure 2. Simulated CAR(2) processes. In the top panel, α0 = 0.01, α1 =
0.25; in the bottom panel α0 = 0.1, α1 = 0.1. In both cases σ ε = 1, σ e = 2.
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Table 1. Estimation results for the simulated data of Figs 1 and 2. The first line of each block gives the true
parameter values; the second the first-order solution, and the third the second-order solution. The asymptotic
standard errors of estimates are given in brackets.

µ σ ε σ e α0 α1 BIC

0.00 1.00 0.50 0.10 0.00
−0.95 (0.9) 1.19 (0.2) 0.46 (0.09) 0.12 (0.06) 322.30
−1.02 (0.8) 2.77 (2.0) 0.46 (0.08) 0.34 (0.2) 2.05 (1.6) 324.65

0.00 1.00 0.50 0.20 0.00
0.90 (0.4) 1.17 (0.2) 0.35 (0.08) 0.34 (0.1) 284.43
0.90 (0.3) 5.72 (5.4) 0.40 (0.07) 1.83 (1.7) 4.46 (4.5) 287.10

0.00 1.00 0.50 0.50 0.00
0.11 (0.3) 1.08 (0.2) 0.52 (0.09) 0.45 (0.2) 292.71
0.11 (0.3) 6.18 (12) 0.56 (0.09) 2.66 (5.0) 5.67 (11) 296.86

0.00 1.00 2.00 0.01 0.25
−5.48 (6.1) 2.40 (0.4) 2.01 (0.3) 0.031 (0.02) 545.09
−3.77 (4.0) 0.93 (0.3) 2.29 (0.2) 0.022 (0.01) 0.22 (0.1) 540.87

0.00 1.00 2.00 0.10 0.10
2.60 (3.7) 3.64 (0.5) 1.49 (0.3) 0.089 (0.05) 560.99
0.58 (1.2) 1.21 (0.3) 2.00 (0.2) 0.10 (0.02) 0.10 (0.06) 296.86

Figure 3. Residuals of the optimal models fitted to the three simulated data
sets plotted in Fig. 1.

and CAR(2) models to each of the five data sets. The residuals cal-
culated from (31) are plotted in Figs 3 and 4: clearly most, if not
all, of the systematic parts of the variability have been removed.
The autocorrelation functions defined in (32) are shown in Figs 5
and 6, for the ‘best’ (according to the BIC) models. Aside from a
slight excess at lag k = 1 for the first data set, the correlation in the
residuals appears negligible.

Inspection of Table 1 leads to the following conclusions.

(1) Provided the correct model is fitted, the parameter estimates
are reasonably accurate. On the other hand, if the wrong model is
fitted, the parameter estimates are very wide of the mark.

(2) The BIC indicates the correct model in all five cases.

Figure 4. Residuals of the optimal models fitted to the two simulated data
sets plotted in Fig. 2.

(3) The values of the asymptotic standard errors appear to be
quite reasonable.

4.2 Observations of FQ Aqr and NO Ser

Kilkenny et al. (1999) presented observations of the two hydrogen-
deficient variable stars FQ Aqr (BD+1 4381) and NO Ser (BD−
1 3438). For the former star N = 177 measurements spread over
five observing seasons were obtained; for NO Ser, N = 120 over
four seasons. The V-band data are plotted in Figs 7 and 8; clearly the
time spacing is rather irregular, with large gaps between observing
seasons.

Kilkenny et al. (1999) investigated previous claims in the lit-
erature, based on very little data, that the two stars show periodic
variations. Based on their more extensive data Kilkenny et al. (1999)
conclude, from the results of a Fourier analysis, that there are no
coherent periodicities in the data.

The question addressed here is whether there is any evidence in the
two data sets for stochastic cycles with characteristic frequencies,

C© 2005 RAS, MNRAS 361, 887–896
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Figure 5. The autocorrelation functions of the residuals in Fig. 3.

Figure 6. The autocorrelation functions of the residuals in Fig. 4.

i.e. periodicities which are not necessarily coherent. The results of
fitting CAR(1) and CAR(2) models to the data are given in Table 2.

Interestingly, for both stars the estimated values of σ e are zero in
the CAR(1) case. The implication of this result is that the measure-
ment error is negligibly small, and that sampling error is responsible
for the zero result. Those models were therefore re-estimated assum-
ing zero measurement error. The procedures given in Section 3, and
in the Appendix, are affected very little by this assumption, as the
reader will be able to verify readily. A complication arose in the
CAR(2) model fit to the NO Ser data: the asymptotic covariance
matrix C was ill-conditioned, and standard errors for the parameter
estimated could therefore not be calculated. Fortunately, the diffi-
culty is primarily an academic one, as the model is sub-optimal for
the particular data set.

Inspection of Table 2 shows that the second-order model is se-
lected for FQ Aqr. Referring to the discussion of CAR(2) models

(  )

Figure 7. V-band observations over five seasons of the hydrogen-deficient
variable FQ Aqr.

(d)

Figure 8. V-band observations over four seasons of the hydrogen-deficient
variable NO Ser.
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Table 2. Estimation results for the observations of FQ Aqr (first set of solutions) and NO Ser (second set of solutions).
In both cases the CAR(1) estimates of the measurement error are effectively zero, so that second sets of solutions with
the constraint σ e = 0 were also calculated. Standard errors for the CAR(2) parameter estimates for NO Ser could not be
calculated as the asymptotic covariance matrix C was ill-conditioned.

µ σ ε σ e α0 α1 BIC

9.536 (3.5E-3) 0.012 (1.6E-3) 0 0.148 (4.0E-2) −963.98
9.536 (3.5E-3) 0.012 (9.0E-4) 0 0.148 (3.7E-3) −969.15
9.537 (2.7E-3) 0.010 (2.4E-3) 0.0039 (7.7E-4) 0.178 (3.9E-2) 0.54 (0.17) −984.00

10.330 (4.8E-3) 0.014 (2.1E-3) 1.6E-5 (0.87) 0.14 (4.5E-2) −612.57
10.330 (4.8E-3) 0.014 (1.2E-3) 0 0.139 (3.9E-3) −617.36
10.330 (4.8E-3) 0.3864 0.0011 3.8484 27.3343 −608.18

Figure 9. The autocorrelation functions of the residuals of the NO Ser data
(top panel) and the FQ Aqr data (bottom panel).

in Section 2, it can be seen that coefficients α0 = 0.178, α1 = 0.54
imply a quasi-periodicity with b = 0.323 (P = 19.5 d) and coher-
ence time 1/a = 1/0.272 = 3.68 d. Kilkenny et al. (1999) remarked
‘Whether it is possible to infer a “characteristic” or “quasi”-period
near 18 d, or whether the star exhibits essentially random varia-
tions, is difficult to say’. The present results endorse the former
of the two conclusions, particularly as the BIC =−823.75 for the
latter.

In the case of NO Ser, the CAR(1) model is preferred on the
basis of its smaller BIC. Furthermore, the coefficients of the CAR(2)
model have very large values – something which was seen in Table 1
when CAR(2) models were incorrectly fitted to CAR(1) data. The
estimated coherence time-scale is 1/α0 = 7.2 d.

The correlation in the residuals of the optimal models is negli-
gible, at least as far as the test given in Section 4 is concerned –
see Fig. 9. Figs 10 and 11 show a few simulated data sets based on
the two optimal models in Table 2. It is interesting that periodic be-
haviour is sometimes very obvious in Fig. 10 (e.g. the second panel),
but almost invisible at others (e.g. the last panel). Fig. 11 demon-
strates instances in which ‘periodicities’ appear in data governed by
a CAR(1) equation – see the third panel in particular.

5 C O N C L U S I O N S

Astronomers are very familiar with fitting deterministic continuous
time models such as polynomials and sinusoids to discrete observa-
tions. This paper has addressed the issue of fitting stochastic contin-

(d)

Figure 10. Five simulated data sets based on the parameters derived for
FQ Aqr.

uous time models to irregularly spaced discrete observations. There
are a number of potential benefits to be reaped from fitting SDEs to
astronomical time-series.

(1) Rigorous estimates of variability time-scales, with known sta-
tistical properties such as uncertainties.

(2) Reliable estimates of the number of time-scales in the data
(i.e. the order of the SDE), by use of information criteria and ensur-
ing that model residuals are white noise.

(3) Testing for the presence of quasi-periodicities in cases where
their presence may not be clear cut. [It is noted in passing that
quasi-periodicities of various forms are seen in the light curves of a
variety of astronomical objects, at a variety of time-scales. To give

C© 2005 RAS, MNRAS 361, 887–896



894 C. Koen

(d)

Figure 11. Five simulated data sets based on the parameters derived for
NO Ser.

but two examples, quasi-periodicities in X-ray binaries may have
quasi-periods of a few milliseconds (Van der Klis 2000) while in
cataclysmic variables quasi-periods range from a few seconds to
many minutes (Warner 2004)].

(4) Associated with the fitted SDE is a spectrum of the form
seen in equation (9), i.e. the frequency spectrum of the data follow
as a by-product of model fitting. The spectrum may lend itself to
interpretation in terms of a physical model.

(5) Simulation of the variability of an object can only be per-
formed if a reliable statistical model for the time-series of observa-
tions is available.
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A P P E N D I X A : T H E A S Y M P TOT I C C OVA R I A N C E M AT R I X O F T H E PA R A M E T E R E S T I M AT E S

It is not difficult to show that the log likelihood (25) can also be written in the convenient form

L = −1

2
[N log 2π + log |Σ| + trace(Σ−1

G)] (A1)

where

G ≡ (X − µ1)(X − µ1)′ .

Using the rules of matrix differentiation (e.g. Bargmann 1984) it then follows that

∂L
∂ψ j

= trace

[
(X − µ1)′Σ−1

1
∂µ

∂ψ j

]
+ 1

2
trace

[
Σ−1(G − Σ)Σ−1 ∂Σ

∂ψ j

]
where the convenient notation

ψ =

 ψ1

ψ2

· · ·
ψp+3

 =



µ

σε

σe

α0

α1

· · ·
αp−1

 (A2)
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has been introduced. The Hessian of the log likelihood is

∂2L
∂ψi∂ψ j

= −trace

[
∂µ

∂ψi
1′Σ−1

1
∂µ

∂ψ j

]
− 1

2
trace

[
Σ−1 ∂Σ

∂ψi
Σ−1 ∂Σ

∂ψ j

]
+ trace

[
(X − µ1)′Σ−1

(
1

∂2µ

∂ψi∂ψ j
− ∂Σ

∂ψi
Σ−1 ∂µ

∂ψ j
1 − ∂Σ

∂ψ j
Σ−1 ∂µ

∂ψi
1

)]
+ 1

2
trace

[
Σ−1(G − Σ)Σ−1

(
∂2Σ

∂ψi∂ψ j
− 2

∂Σ
∂ψi

Σ−1 ∂Σ
∂ψ j

)]
Taking expectations then gives the elements

Ii j ≡ −E

[
∂2L

∂ψi∂ψ j

]
= trace

[
∂µ

∂ψi
1′Σ−1

1
∂µ

∂ψ j

]
+ 1

2
trace

[
Σ−1 ∂Σ

∂ψi
Σ−1 ∂Σ

∂ψ j

]
=

[
∂µ

∂ψi
1′Σ−1

1
∂µ

∂ψ j

]
+ 1

2
trace

[
Σ−1 ∂Σ

∂ψi
Σ−1 ∂Σ

∂ψ j

]
(A3)

of the Fisher information matrix. A similar result can be found in Harvey (1989).
It follows immediately from (A3) that

I11 = 1′Σ−1
1

I1 j = I j1 = 0 j �= 1 .

From (23) and (8),

∂Σ
∂ψ2

= 2

σε

Cx

∂Σ
∂ψ3

= 2σeI .

Also needed are terms of the form

∂Σ
∂ψ j

= ∂Cx

∂α j−4
j = 4, 5, · · · , p + 3 .

For a first order SDE,

∂C(τ )

∂α0
= − σ 2

ε

2α2
0

e−α0τ (1 + α0τ ) = −C(τ )(1 + α0τ )

from (13). For the second order, case differentiation of (16) gives

∂C(τ )

∂αk
= σ 2

ε

2(r 2
2 − r 2

1 )2

{
2

(
er2τ

r2
− er1τ

r1

)(
r2

∂r2

∂αk
− r1

∂r1

∂αk

)

−er2τ (1 − r2τ )

[
1 −

(
r1

r2

)2
]

∂r2

∂αk
− er1τ (1 − r1τ )

[
1 −

(
r2

r1

)2
]

∂r1

∂αk

}

= 2C(τ )

(
r2

∂r2

∂αk
− r1

∂r1

∂αk

)
+ σ 2

ε

2
(
r 2

2 − r 2
1

)2

[
er1τ

r 2
1

(1 − r1τ )
∂r1

∂αk
− er2τ

r 2
2

(1 − r2τ )
∂r2

∂αk

]
and it is readily shown that

∂r1

∂α0
= −1√

α2
1 − 4α0

∂r2

∂α0
= 1√

α2
1 − 4α0

∂r1

∂α1
= −r1√

α2
1 − 4α0

∂r2

∂α1
= r2√

α2
1 − 4α0

.

In general (8) can be differentiated to find

∂C

∂αi
= −σ 2

ε

2

p∑
j=1

exp(r jτ )

Re(r j )Fj

{
τ

∂r j

∂αi
− Re

(
∂r j

∂αi

)/
Re(r j ) −

p∑
�nej

[
1

r� − r j

(
∂r�

∂αi
− ∂r j

∂αi

)
+ 1

r∗
� + r j

(
∂r∗

�

∂αi
+ ∂r j

∂αi

)]}
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where

Fj ≡ �k �= j (rk − r j )(r
∗
k + r j ).

The partial derivatives of the roots rk can be found by differentiating the expression

p∑
j=0

α j r
j

k = 0

with respect to α i to find

r i
k +

p∑
j=0

jα j r
j−1

k

∂rk

∂αi
= 0.

The last equation gives

∂rk

∂αi
= −r i

k

/
p∑

j=0

jα j r
j−1

k .
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