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Background: Neuroblastoma is the most common extracranial solid tumor in childhood. Amplification
of MYCN in neuroblastoma is a predictor of poor prognosis. Materials and methods: DNA methylation
data from the TARGET data matrix were stratified into MYCN amplified and non-amplified groups.
Differential methylation analysis, clustering, recursive feature elimination (RFE), machine learning (ML),
Cox regression analysis and Kaplan–Meier estimates were performed. Results and Conclusion: 663 CpGs
were differentially methylated between the two groups. A total of 25 CpGs were selected by RFE for
clustering and ML, and a 100% clustering accuracy was obtained. ML validation on three external datasets
produced high accuracy scores of 100%, 97% and 93%. Eight survival-associated CpGs were also identified.
Therapeutic interventions may need to be targeted to patient subgroups.

Lay abstract: Neuroblastoma is the most common extracranial solid tumor in childhood. Elevated levels
of the MYCN protein in neuroblastoma is a predictor of poor prognosis. It is the most relevant prognostic
factor in neuroblastoma and predicting MYCN gene amplification (which leads to increased gene
expression and more protein) from epigenetic data rather than genetic testing might be useful in the
oncology clinic. This study was designed to identify a DNA methylation (epigenetic) signature that can be
used to diagnose MYCN amplification without actually testing for the gene. The authors also aimed to
correlate this DNA methylation signature with patient survival and poorer prognosis. Based on statistical
and computational methods applied to DNA methylation data for neuroblastoma, signatures that are
predictive of MYCN amplification and poor prognosis were found, which clinicians can use for early patient
diagnosis and selection of the best therapies for patients at high risk.
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Neuroblastoma is the most commonly occurring extracranial solid tumor in childhood and accounts for approxi-
mately 15% of pediatric cancer-related deaths [1–3]. It can develop anywhere along the sympathetic nervous system,
with 60% of tumors occurring in the abdominal region, of which approximately half are located in the medulla of
the adrenal glands [4,5]. Tumors in high-risk neuroblastoma patients are often metastatic, resulting in survival rates
of less than 50% [1]. Characteristics for high-risk neuroblastoma include age, loss of chromosome 1p or 11q and
amplification of MYCN [6,7]. Amplification of MYCN is a well studied genomic alteration found in approximately
22% of cases [8] and is a predictor of poor prognosis [9,10], although patients without MYCN amplification may
also have a poor outcome [11]. Neuroblastoma is a heterogeneous disease with outcomes ranging from spontaneous
regression, as seen in some tumors, to relentless progression despite extensive and varied therapies [11].

Some alterations identified in neuroblastoma include mutations in ALK, ATRX and TERT [12–15]. Through
genomic sequencing, it is now known that pediatric cancers, including neuroblastoma, have fewer mutations com-
pared with adult cancers [16,17], with many primary neuroblastomas not containing recognizable driver mutations.
This suggests the involvement of epigenetic alterations. It has been shown that epigenetic factors, especially alter-
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ations in DNA methylation, play a role in the pathogenesis of neuroblastoma [18,19]. For example, hypermethylation
of TERT was proposed as a biomarker for poor prognosis in neuroblastoma [20]. In addition, DNA methylation
of CASP8 and RASSF1A was linked to the development and progression of neuroblastoma [19] and was associated
with poor prognosis [21].

Another indicator of poor prognosis and survival in cancer is the CpG island methylator phenotype
(CIMP) [22], first established in colorectal cancer (CRC) and then adopted in neuroblastoma [23]. In a genome-wide
study of 140 neuroblastomas, CIMP was defined by methylation of 5 CpG islands (CGIs) in the PCDHB family
and was associated with the methylation of promoter CGIs of several tumor suppressor genes, such as RASSF1A and
BLU [24]. Most MYCN amplified cases exhibited CIMP. However, the presence of CIMP was also detected in many
cases without MYCN amplification [24], emphasizing the need for an accurate predictor of MYCN amplification.

While studies have proposed different methods of diagnosing MYCN amplification in neuroblastoma (such as
PCR-based and hybridization laboratory methods) [25–28], the authors are unaware of any study assessing the use of
CpG methylation biomarkers. Therefore, this study was designed to identify a CpG methylation signature that is
diagnostic of MYCN amplification. In addition, the authors aim to identify CpGs that are associated with survival
and poor prognosis. The use of methylation biomarkers for the diagnosis of MYCN amplification and prognosis of
survival has the potential to be clinically useful in deciding treatment strategy and could also be cost effective.

Materials & methods
Dataset
The Therapeutically Applicable Research to Generate Effective Treatments (TARGET; https://ocg.cancer.gov/pro
grams/target) initiative uses comprehensive genomic approaches for the molecular characterization of hard-to-treat
childhood cancers. Neuroblastoma methylation data is accessible via the TARGET data matrix portal and is mainly
composed of high-risk samples with available clinical information. The level 3 methylation dataset includes beta
values from 235 samples (https://target-data.nci.nih.gov/Public/NBL/methylation array/L3/). Based on the clinical
information contained in the metadata file (https://target-data.nci.nih.gov/Public/NBL/clinical/harmonized/TAR
GET NBL ClinicalData Discovery 20170525.xlsx), International Neuroblastoma Staging System (INSS) stage 4
samples with known MYCN status were considered for inclusion. A total of 126 samples (45 samples with MYCN
amplification and 81 samples without MYCN amplification) were downloaded from the TARGET data matrix
portal. Missing values were imputed using methyLImp package [29], which applies a computationally efficient
imputation method based on linear regression. The R-package ChAMP [30] was used for data normalization and
elimination of variability and batch effects between groups. A total of 396,065 CpGs were used for downstream
analysis.

Differential methylation analysis
Differential methylation analysis was done using the ChAMP package [30]. In finding biologically relevant differen-
tially methylated probes, the ChAMP package uses the limma R-package [31] to compare two groups. Differential
methylation analysis between MYCN amplified and non-amplified groups was performed as illustrated in Figure 1.
Differentially methylated CpGs with a p-value < 0.05 and an absolute value of delta-beta >0.4 were consid-
ered statistically significant. Heatmaps were plotted using the gplots R package. Gene ontology (GO) and disease
enrichment analysis was carried out to functionally annotate the differentially methylated genes (DMGs) using
Enrichr [32,33].

Machine learning
The factoextra R package [34] was used to create and visualize the clustering of samples based on all significant
CpGs into their respective groups. A dendrogram plotting function was applied to the data objects produced from
the application of an ensemble of hierarchical and k-means clustering algorithms to the significant CpGs [34]. Prior
to the classification tasks, recursive feature elimination (RFE) was done to extract the most important features and
eliminate those that create bias and negatively contribute to model performance. In the RFE, a linear support vector
machine (SVM) algorithm was used to build machine learning (ML) models that were evaluated with repeated
stratified ten-fold cross-validation (three repeats) to determine the best parameters and features to use in the ML
classification. The CpG features selected by RFE were then used to create a training set from the 126 TARGET
samples. LibSVM [35] was used to build an SVM model with the following parameters: kernel = linear, cost = 10.
The SVM model was then tested on tumor methylation samples from two independent Gene Expression Omnibus
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Figure 1. Workflow depicting the steps and tools used in this analysis. The workflow has five principal steps: data
retrieval from data matrix portal, data preprocessing using methyLImp and ChAMP R packages, differential
methylation analysis with ChAMP, machine learning training and testing using a support vector machine and survival
analysis using glmnet R package and Kaplan–Meier curves.
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Table 1. Fourteen highly methylated genes between the MYCN amplified and MYCN non-amplified groups.
Gene Gene name Chr Significant CpGs (n)

NXPH1 Neurexophilin 1 7 14

SOX2-OT SOX2 overlapping transcript 3 12

DLX5 Distal-less homeobox 5 7 10

TFAP2D Transcription factor AP-2 delta 6 10

CAVIN3 Caveolae associated protein 3 11 8

VAX2 Ventral anterior homeobox 2 2 8

TERT Telomerase reverse transcriptase 5 7

HHEX Hematopoietically expressed homeobox 10 7

KRT19 Keratin 19 17 7

RNF207 Ring finger protein 207 1 7

MIRLET7BHG MIRLET7B host gene 22 7

CHRNE Cholinergic receptor nicotinic epsilon subunit 17 6

DLX6-AS1 DLX6 antisense RNA 1 7 6

TMCO3 Transmembrane and coiled-coil domains 3 13 6

(GEO) datasets, GSE54719 [36] and GSE120650 [37], as well as on matched primary tumor and relapse samples
from another independent GEO dataset, GSE65306 [38]. These three independent datasets are composed of samples
of different INSS stages (Stages 1, 2, 3, 4 and 4s) and with known MYCN amplification statuses. The evaluation
metrics for the SVM model were precision, recall and accuracy.

Cox regression analysis & Kaplan–Meier estimates
To determine which of the most highly significant CpGs that best correlated with patient survival, a Cox regression
model based on the lasso algorithm of the glmnet R package [39–41], and which was evaluated by leave-one-out
cross-validation, was used. The model assigns each CpG a regression coefficient value. CpGs with a zero coefficient
were considered to have no effect on survival and were therefore eliminated. The method described by Ng et al. [42]

was followed, whereby a CpG score value is calculated for each patient as a linear combination of beta values of
the top significant CpGs weighted by their corresponding coefficients obtained from the Cox regression model. A
median value was inferred from the patient scores. Each score was then compared with the median and patients
were assigned a status value of 1 or 0 depending on whether the score was above or below the median. Kaplan–Meier
(K–M) estimates and hazard ratios (HRs) were then calculated for the overall survival (OS) and event-free survival
(EFS) according to patient status information. Additionally, K–M analysis was performed using the CpGs identified
by the Cox regression models on one of the independent test datasets, GSE65306, as this is the only dataset that
provides survival information. K–M curves were generated using the ggsurvplot function from the survminer R
package. A complete workflow describing the steps followed in this study is shown in (Figure 1).

Results
Differential methylation analysis
Differential methylation analysis between the MYCN amplified and MYCN non-amplified groups identified 663
differentially methylated CpGs of 369 DMGs. Of these 369 DMGs, 238 and 131 DMGs had high and low
methylation, respectively, in the MYCN amplified group compared with the non-amplified group. A total of 14
genes were highly methylated between the MYCN amplified and non-amplified groups. Table 1 shows information
about the highly methylated genes, defined as having at least six differentially methylated CpGs with NXPH1
having the highest number of differentially methylated CpGs.

Pathway enrichment analysis indicated that the DMGs were enriched in pathways of extracellular matrix (ECM)
organization, cardiac hypertrophic response and neural crest differentiation (Table 2). With regard to molecular
function and biological processes, GO analysis revealed that the DMGs were mainly enriched in the regulation of
transcription and cell differentiation. In addition, for the disease enrichment analysis, the DMGs were associated
with different cancers (kidney, liver and nasopharynx) as well as heart conduction disease (Table 2).
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Table 2. Enrichment analysis of the 369 differentially methylated genes.
Pathways, disease, ontology adj. p-value Overlapped genes (n) Genes

WikiPathways

Cardiac hypertrophic response WP2795 0.030335 6 HDAC4, PPP3CA, NPPA, GUCA1A, AKT1, PRKCA

Neovascularization processes WP4331 0.030335 4 FLT4, CXCR4, AKT1, EPHB4

Neural crest differentiation WP2064 0.030335 8 HDAC4, TFAP2B, DLX5, TLX2, MPZ, ETS1, BMP7, SOX5

Reactome

Extracellular matrix organization Homo
sapiens R-HSA-1474244

0.014525 17 PTPRS, COL22A1, COL23A1, LTBP4, PDGFA, PRKCA, PCOLCE, LTBP2,
BMP7, COL5A1, COL4A1, COL4A4, TIMP2, NCAM1, CD44, DDR2,
ITGA9

Jensen diseases

Kidney cancer 0.01632 74 SAMD9L, TRIO, PTPRS, FLT4, CHD5, KNDC1, FRY, AFF3, SIPA1L3,
CELSR3, PTPRG, DOCK10, CDH4, HEPHL1, GRM6, AKT1, RNF150,
ERC2, MCF2L2, EPHB4, SOX5, ARHGEF10, MEF2C, UNC13A, RIPK4,
TET1, EBF3, WDR72, FRMD4A, NAV1, TYK2, DNM2, ADCY9, BANK1,
COL4A1, PARD3, COL4A4, ANGPTL2, DDR2, ANKRD11, LTBP2, LRP2,
THBS2, ACACA, ARNTL, KIAA0556, GRIN2A, CUX1, PCBP1, CDH22,
G3BP1, MAN1C1, TRPM8, NCAM2, RGS22, XDH, DYNC1I1,
TMEM132D, FARP1, TFAP2B, DNAH10, TFAP2D, COL22A1, PTCH1,
DAB2IP, ATP2B4, NFATC1, TMCO3, SDK1, COL5A1, KCNS2, ZNF536,
RGS12, DZIP3

Heart conduction disease 0.02058 8 SFRP2, RNF207, CXCR4, FRMD4A, C9ORF3, PTPRG, FOXP1, ITGA9

Liver cancer 0.03701 24 RSPH6A, TMEM132D, SAMD9L, TRIO, DNAH10, PTPRS, COL22A1,
AGAP2, KNDC1, LRP2, FRY, THBS2, ACACA, SDK1, SNTG2, CUX1,
COL5A1, COL4A1, GRM6, PARD3, ZNF536, FAM65B, NCAM1, ERC2

Nasopharynx carcinoma 0.04403 3 HLA-A, HS3ST4, ITGA9

GO: biological process

Positive regulation of cell differentiation (GO:
0045597)

0.0224 14 IFITM1, MEF2C, ZBTB16, SOX11, BMP7, ARNTL, SFRP2, PDPN, MYF6,
AKT1, ASB4, CMKLR1, SOX5, DDR2

Negative regulation of cell differentiation
(GO: 0045596)

0.0224 12 TBX1, TRIO, SFRP2, COL5A1, ZBTB16, PTCH1, DAB2IP, ANP32B,
XDH, MEIS2, SMAD7, ARNTL

Positive regulation of ossification (GO:
0045778)

0.0224 7 IFITM1, MEF2C, ZBTB16, FZD9, SOX11, BMP7, DDR2

Regulation of transcription from RNA
polymerase II promoter (GO: 0006357)

0.0224 49 ZCCHC12, CD40, CHD5, ENO1, ETS1, PPP3CA, HHEX, CHP2, TEAD4,
MEF2C, SMARCC1, ZHX2, TET1, EBF3, SOX11, FOXP1, SFRP2, GAL,
ETV3L, EZR, SKAP1, HDAC4, DLX5, DOT1L, GATA4, ARNTL, RXRA,
CUX1, DEAF1, HSF5, TBX1, WWOX, TFAP2B, TFAP2D, BCL11B,
PTCH1, ZBTB16, DAB2IP, ATP2B4, NFATC1, BMP7, MEIS2, FLI1,
SMAD7, NFIB, TLX2, NFIC, MYF6, ZNF536

Cellular response to growth factor stimulus
(GO: 0071363)

0.0224 11 TBX1, WWOX, MEF2C, DLX5, FLT4, DAB2IP, AKT1, BMP7, CD44,
SOX5, SMAD7

Positive regulation of transcription
DNA-templated (GO: 0045893)

0.02774 39 HDAC4, CD40, DLX5, DOT1L, GATA4, ETS1, ARNTL, PPP3CA, HHEX,
RXRA, DEAF1, ATOH8, CHP2, AKT1, TEAD4, TBX1, WWOX, TFAP2B,
MEF2C, SMARCC1, BCL11B, ZBTB16, DAB2IP, TET1, EBF3, SOX11,
NFATC1, BMP7, MEIS2, FLI1, SMAD7, DNM2, SFRP2, GAL, NFIB,
TLX2, NFIC, MYF6, SKAP1

Positive regulation of transcription from RNA
polymerase II promoter (GO: 0045944)

0.02774 32 HDAC4, CD40, DLX5, DOT1L, GATA4, ETS1, ARNTL, PPP3CA, HHEX,
RXRA, TERT, CHP2, TEAD4, TBX1, WWOX, TFAP2B, MEF2C, BCL11B,
DAB2IP, TET1, EBF3, SOX11, NFATC1, MEIS2, SMAD7, SFRP2, GAL,
NFIB, TLX2, NFIC, MYF6, SKAP1

Regulation of transmembrane receptor
protein seine/threonine kinase signaling
pathway (GO: 0090092)

0.03248 5 TFAP2B, LTBP4, SOX11, BMP7, SMAD7

GO: molecular function

RNA polymerase II regulatory region
sequence-specific DNA binding (GO: 0000977)

0.01956 22 TFAP2B, MEF2C, SMARCC1, TFAP2D, DLX5, ZBTB16, SOX11, GATA4,
NFATC1, ENO1, ETS1, MEIS2, HHEX, RXRA, CUX1, NFIB, DEAF1,
NFIC, ZFP42, MYF6, ZNF536, HSF5

Transcription factor activity RNA polymerase II
core promoter proximal region
sequence-specific binding (GO: 0000982)

0.04652 15 MEF2C, BCL11B, DLX5, EBF3, SOX11, ENO1, ETS1, MEIS2, ARNTL,
HHEX, NFIB, NFIC, ZFP42, ZNF536, ZNF467

GO: Gene ontology.
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Table 3. Twenty-five differentially methylated CpGs between the MYCN amplified and MYCN non-amplified groups
selected by recursive feature elimination.
CpG adj. p-value

cg00540828 4.276078e-29

cg01710189 2.392558e-24

cg13558971 5.777789e-23

cg23930334 2.474014e-22

cg03364683 7.279483e-22

cg19944656 6.866947e-20

cg23186333 1.801227e-19

cg25310824 1.964955e-19

cg20818806 3.380732e-19

cg09973986 1.051204e-18

cg06484432 4.085595e-18

cg07476617 2.075058e-17

cg22865905 2.403524e-17

cg09175843 4.275436e-17

cg22886575 1.358736e-16

cg25841625 1.564289e-16

cg26487157 4.648216e-16

cg22871253 1.528965e-15

cg12595667 5.146262e-15

cg17939889 9.408868e-15

cg14020052 1.592441e-14

cg02658690 1.720897e-14

cg15455864 4.358962e-14

cg16047279 1.709752e-13

cg22076311 9.729690e-12

Table 4. Machine learning prediction of MYCN amplification of samples from GSE54719, GSE120650 and GSE65306 test
sets.
MYCN amplification GSE54719 GSE120650 GSE65306

Precision Recall Precision Recall Precision Recall

Yes 1.0 1.0 1.0 0.87 0.83 1.0

No 1.0 1.0 0.96 1.0 1.0 0.89

Accuracy 100% (35/35) 97% (56/58) 93% (26/28)

Machine learning
RFE was performed and selected 25 CpGs as the most important features for classifying samples by their ampli-
fication groups (Table 3). These 25 CpGs accurately clustered (100% precision) the 126 TARGET samples by
their MYCN amplification group, with no sample misclassified (Figure 2). The dendrogram plot of hierarchical
and k-means applied to the 663 significant CpGs resulted in the correct clustering of 122 (96%) of the 126
TARGET samples (Figure 3). The 25 CpGs selected by RFE from the 663 CpGs, as the most informative features
in the data, were then used in ML training and test set construction (Table 3). The training set was built on the
126 TARGET data matrix samples, while the test sets comprised 35, 58 and 28 samples from the GSE54719,
GSE120650 and GSE65306 datasets, respectively. Repeated stratified ten-fold cross-validation yielded an accuracy
of 96%. Evaluation of the SVM model using the GSE54719, GSE120650 and GSE65306 test sets resulted in high
accuracies of 100%, 97% and 93%, respectively, for correctly predicted samples (Table 4).

Cox regression analysis & Kaplan–Meier estimates
A minimal subset of eight CpGs with a nonzero coefficient was selected by the Cox regression model (Table 5).
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Figure 2. Heatmap of the methylation level of the 25 most significant CpG sites (selected by recursive feature
elimination) in the MYCN amplification groups. A total of 126 samples were classified including 45 MYCN amplified
samples and 81 MYCN non-amplified samples. Two main clusters were identified with the MYCN amplified samples
principally clustered in the left cluster while the MYCN non-amplified samples were principally clustered in the right
cluster. MYCN amplified samples are coded black while MYCN non-amplified samples are coded pink. No sample was
misclassified. The heatmap colors represent intensity ranging from a lower intensity of red to a higher intensity of
yellow.

Table 5. CpGs selected by the Cox regression model and their respective regression coefficients for overall survival and
event-free survival.
CpG† Coefficient OS DMG CpG Coefficient EFS DMG

cg00540828 -0.01461534 CUX1 cg01710189 -1.25426856 PDLIM2

cg01710189 -1.86558620 PDLIM2 cg13558971 0.56167125 ATP2B4

cg13558971 0.36211640 ATP2B4 cg25310824 0.46332724 SEPP1

cg25310824 0.53756846 SEPP1 cg07476617 0.44985062 CFLAR

cg07476617 0.51575895 CFLAR cg12595667 -0.06647858 CXCR4

cg22886575 0.18633969 HMX2

cg12595667 -0.21609796 CXCR4

cg15455864 0.13284453 SYMPK

†Eight CpGs and 5 CpGs were found to be significantly associated with overall survival and event-free survival respectively.
DMG: Differentially methylated genes; EFS: Event-free survival; OS: Overall survival.

These CpGs are believed to have a role in patient survival. All eight CpGs were associated with OS, while only five
were associated with EFS. The positive coefficient CpGs were methylated in the MYCN amplified group, while the
negative coefficient CpGs were methylated in the MYCN non-amplified group. The CpGs and their coefficients
were used to calculate a CpG score and assign a status value of 1 or 0 for each patient. K–M estimates for overall
survival (OS) and EFS based on patient statuses are shown in Figure 4. MYCN status correlated with CpG score
and survival (OS: HR = 5.11; p < 0.0001; EFS: HR = 4.845; p < 0.0001). Patients with a CpG score above the
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Figure 3. Clustering of MYCN amplification samples using all 663 significant CpGs. The samples are on the x-axis,
with MYCN amplified samples labeled A and MYCN non-amplified samples labeled NA. Two main clusters were
identified with the MYCN amplified samples principally clustered in the left cluster (black box) while the MYCN
non-amplified samples were principally clustered in the right cluster (red box). A total of 126 samples were clustered
including 45 MYCN amplified samples and 81 MYCN non-amplified samples. Four (2 MYCN amplified and 2 MYCN
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Figure 5. Kaplan–Meier estimates for the test dataset GSE65306 of (A) overall survival and (B) event-free survival according to MYCN
amplification and patient status values. 1 or 0 depending on whether CpG scores were above or below the median. Estimates for MYCN
amplified patients are in yellow and non-amplified are in blue.

median were predominantly MYCN amplified and those below were mostly non-amplified. Similarly, significant
results were also observed when applying the previous CpGs and their corresponding coefficients identified by the
Cox regression models to the methylation data and survival information from the GSE65306 test dataset (OS:
HR = 35.87; p < 0.0001; EFS: HR = 7.99; p < 0.00041). The K–M curves for the GSE65306 test dataset are
shown in Figure 5.

Discussion
The authors aimed to identify predictive methylation biomarkers of the amplification of MYCN in neuroblastoma.
The differential methylation analysis identified genes that have also been associated with neuroblastoma [20,22,43]

and other cancers [44,45]. The differential methylation analysis and clustering results (Figures 2 & 3) also demonstrate
that MYCN amplification alters the methylation landscape in neuroblastoma and that this methylation landscape
differs from that in MYCN non-amplified neuroblastoma. The accuracy of the clustering, based on all significant
CpGs (Figure 3), validated the differential methylation results and demonstrated their possible utility as features
for ML prediction.

Transcriptional regulation, which was enriched by both molecular function and biological process ontologies, is
an activity that promotes tumor cell proliferation. Therefore, an increase in global transcription activity suggests
the rapid proliferation of tumor cells. We have also suggested that cardiac disorders may be a cause of mortality in
neuroblastoma patients [46] and that this may be a treatment-related late effect [47]. In addition, ECM organization
was also enriched in the GO analysis, and this correlates with the fact that the ECM is a major structural component
of the tumor microenvironment, and also plays an important role in tumor progression and cell signaling [48–51].

Machine learning & sample classification outcomes
Regardless of the stage of neuroblastoma cancer (i.e., INSS stages 1, 2, 3, 4 and 4s), the high accuracies obtained by
the SVM model (Table 4), constructed on the basis of the 25 significant CpGs selected by RFE, demonstrate the
validity of these CpGs for the diagnostic identification of MYCN amplification in neuroblastoma. The accuracy
obtained from the prediction of MYCN amplification in both tumor and relapse samples of the GSE65306 dataset
indicates the specificity and accuracy of the CpGs in identifying MYCN amplification in patients with neuroblas-
toma. The two misclassified samples were from the paired primary tumor and relapse sample of the same patient.
The CpG sites found here can serve as methylation biomarkers of MYCN amplification and assist our understand-
ing of tumorigenesis in MYCN amplified and MYCN non-amplified neuroblastoma. This knowledge may allow
for the development of reliable and rapid diagnostic assessment of MYCN amplification with potential cost- and
time-saving advantages. In addition, the methylated genes may serve as therapeutic targets, as the amplification of
MYCN is a known indicator of poor prognosis in neuroblastoma.
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CIMP has also been used to assess the prognosis of patients with neuroblastoma. However, as noted in the
introduction, the CIMP phenotype can be observed in patients without MYCN amplification, which may limit
its utility as a biomarker for MYCN amplification. In addition, conflicting findings have been reported for the
prognostic role of CIMP in CRC due to differences in CIMP definitions [52]. This difficulty in defining CIMP can
also occur in neuroblastoma.

Loss of CASP8 expression by methylation was believed to be a predictor of MYCN amplification [53]. However,
in a large-scale study, no correlation was observed between the expression of CASP8 and the amplification of
MYCN [54]. This may explain why CASP8 was not among the identified DMGs in this study, although we found
that its paralog, CFLAR, was differentially methylated and associated with both OS and EFS. Being a biomarker
for poor outcome (for example methylation of RASSF1A and CASP8) does not necessarily mean being a biomarker
for MYCN amplification, as poor outcomes can also be observed in non-amplified cases [11]. The current method
established a CpG methylation signature specific for predicting MYCN amplification phenotype and poor prognosis
in neuroblastoma.

Cox regression analysis & Kaplan–Meier estimates
Reducing the list of CpGs obtained from the ML analysis, the Cox regression model selected eight CpGs related
to patient OS (Table 5). The K–M curves (Figures 4 & 5) show the ability of these eight CpGs to distinguish
between shorter and longer OS (i.e., MYCN amplified and non-amplified groups respectively, with a significant
p-value < 0.0001 and HR >1). Additionally, the results of the survival analysis (Figures 4 & 5) validated the poor
prognosis in patients with MYCN amplified [9,10], and suggested eight CpGs for the prognostic diagnosis of MYCN
amplification.

Since a CpG score above the median is associated with shorter survival, higher methylation of the three CpGs with
positive coefficients, cg13558971, cg25310824, cg07476617 from ATP2B4, SEPP1 and CFLAR genes, respectively
(Table 5), predicts MYCN amplification and indicates poor prognostic outcome. The CASP8 paralog, CFLAR, is an
apoptosis regulator, with significantly higher expression in lung cancer tissues [55]. Apoptosis resistance is one of the
hallmarks of cancer initiation and progression [56] and the role of apoptosis in cancer and its potential as a cancer
therapy target has been reviewed [57,58]. SEPP1 is involved in selenium transport and has been associated with
neuroblastoma [59] and some other cancers, including prostate cancer [60], gastric adenocarcinoma [61] and renal cell
cancer [62]. Similar to the current results, Wang et al. also found SEPP1 and 13 other genes to be prognostic for OS in
neuroblastoma [59]. ATP2B4 belongs to a family of plasma membrane pumps (Ca2+-ATPases) involved in calcium
homeostasis. Cellular processes important for tumorigenesis, such as proliferation, apoptosis and angiogenesis are
influenced by calcium ions [63]. The association of cg13558971 (ATP2B4) methylation with survival is suggestive of
the importance of calcium transport in neuroblastoma. Satheesh and Busselberg [64] reviewed the role of intracellular
calcium in the development and treatment of neuroblastoma and Florea et al. confirmed the importance of calcium
signaling in neuroblastoma cells in response to chemotherapy [65]. The specific roles and mechanisms of these genes
in neuroblastoma still need to be fully clarified; however, this study shows that their methylation is associated with
amplification of MYCN and poor outcomes. This knowledge may be used to develop a predictive biomarker panel
to assess patient survival in MYCN amplified groups.

Highly methylated genes between the MYCN amplified & MYCN non-amplified groups
Among the 14 highly methylated genes (Table 1) were genes related to neuroblastoma as well as other cancers.
NXPH1 is a neuronal glycoprotein involved in neuronal differentiation that forms a complex with alpha neurexin
proteins that promote adhesion between dendrites and axons. Decock et al. proposed NXPH1 as a prognostic
methylation biomarker for EFS in neuroblastoma [22]. NXPH1 may promote the growth of tumors by stimulating
the proliferation of neuroblastoma stem cells. SOX2-OT is a long noncoding RNA with restricted expression toward
the brain. It regulates SOX2, a key regulator of pluripotency. It has been associated with several cancers, including
gastric [66,67], pancreatic [68], cholangiocarcinoma [69] and hepatocellular carcinoma [70]. DLX5 is a homeobox-
containing transcription factor that promotes neuronal differentiation, neural crest development and is essential for
osteogenesis [71,72]. In acute myeloid leukemia, promoter hypermethylation of DLX5 led to reduced expression and
correlated with shorter OS [44]. Higher methylation of DLX5 has also been reported in colorectal cancer tissue [73]

and breast cancer [74]. DLX6-AS1 is a long noncoding RNA that partially enhances the proliferation, migration
and invasive abilities of neuroblastoma cells [75]. Olsson et al. [20] reported similar results with hypermethylation
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of DLX5 and DLX6-AS1 in aggressive International Neuroblastoma Risk Group (INRG) stage M neuroblastoma
tumors.

TFAP2D belongs to the activator protein-2 transcription factor family that is essential in cellular processes such
as apoptosis, migration and differentiation, and have been implicated in cancer [76,77]. Hypermethylation of a
member of its protein family, TFAP2E, is associated with clinical nonresponsiveness to chemotherapy in colorectal
cancer [78] and acts as a tumor suppressor in neuroblastoma [79]. TFAP2D may also be acting the same role and
further studies are required to substantiate this claim. TERT rearrangements were reported to be the most frequent
genetic alterations after MYCN amplification in high-risk neuroblastoma [14,15]. Consistent with the current results,
Olsson et al. also reported hypermethylation of TERT in aggressive tumors of INRG stage M neuroblastoma [20].
Cancer cells activate TERT to maintain their telomeres [14]. TMCO3 belongs to a family of transporter proteins
involved in the coupling of export of monovalent cations such as potassium or sodium to import protons across
the cellular membrane. Mutations in TMCO3 alongside other genes have been suggested as markers for evaluating
the effects of chemotherapy in patients with neuroblastoma [43]. Methylation of TMCO3 may likely be associated
with a more favorable prognosis.

CAVIN3 plays an important role in the protein kinase c-delta tumor suppression pathway [80]. The loss of
CAVIN3 has been observed in different cancers, such as breast [81], cervix [82], bladder [83], lung [84] and stomach [85]

cancers. It is commonly altered in colorectal cancer by promoter hypermethylation [86]. It is also downregulated in
breast cancer, possibly due to methylation [87]. KRT19 is highly expressed in multiple cancers, serving as a diagnostic
marker [88]. High KRT19 expression is associated with clinical progression in lung cancer [89] and correlates with
poor prognosis in breast cancer [90,91]. Further studies are necessary to uncover the precise roles of these genes in
neuroblastoma.

In this study, we aimed to propose a CpG signature that accurately predicts MYCN amplification and is associated
with patient survival. This method, summarized in (Figure 1), generated a CpG signature capable of predicting
MYCN amplification with high precision. We used the ChAMP R package [30] to discover DMGs between
MYCN amplified and non-amplified neuroblastoma tumors and the ChAMP.DMP() function was designed to
compare methylation between two phenotypes. The high prediction accuracy scores obtained from the SVM
model demonstrate the correctness of the obtained CpG signature, with the number of the significant CpGs
used in the prediction selected by RFE. DNA methylation-based diagnostic methods are increasingly used in
clinical practice [92–95]. Aberrant DNA methylation patterns have been observed and reported to play a role in
neuroblastoma pathogenesis [24]. It is expected that epigenetic prognostics and therapeutics will be commonplace
in the clinic in the near future.

It should be noted that this was a purely computational-based study. Although some of the DMGs identified
here have already been associated with neuroblastoma, functional studies are needed to discover the role of certain
DMGs in the pathogenesis of neuroblastoma.

Conclusion
In this study, the authors demonstrated the utility of CpG methylation profiling for subgrouping neuroblastoma
tumors and for predicting clinical events. Twenty-five CpGs capable of stratifying neuroblastoma samples were
identified on the basis of MYCN amplification status, thereby demonstrating their utility as diagnostic indicators
of MYCN amplification in neuroblastoma. The impact of the 25 CpGs methylation on the survival of patients
with neuroblastoma was also evaluated using Cox regression analysis and eight CpGs associated with survival
in neuroblastoma were identified. The DMGs reported in this study include some known genes associated with
neuroblastoma as well as novel ones. This study furthers our understanding of the mechanisms of tumor progression
in neuroblastoma. Therapeutic interventions may need to be targeted to patient subgroups to optimize treatment
outcomes and improve survival.
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Summary points

• Amplification of MYCN in neuroblastoma is a predictor of poor prognosis.
• A total of 663 CpGs were differentially methylated between MYCN amplified and non-amplified groups.
• Fourteen highly methylated genes were identified.
• High clustering accuracy based on the 25 CpGs selected by recursive feature elimination was observed.
• High accuracy scores for MYCN amplification or non-amplification prediction were also found.
• Eight CpGs were associated with overall survival.
• Five CpGs were associated with event-free survival.
• Therapeutic interventions may need to be targeted to patient subgroups.
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