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Abstract

Radio interferometers designed to probe the 21 cm signal from Cosmic Dawn and the Epoch of Reionization must
contend with systematic effects that make it difficult to achieve sufficient dynamic range to separate the 21 cm
signal from foreground emission and other effects. For instance, the instrument’s chromatic response modulates the
otherwise spectrally smooth foregrounds, making them difficult to model, while a significant fraction of the data
must be excised due to the presence of radio-frequency interference, leaving gaps in the data. Errors in modeling
the (modulated and gappy) foregrounds can easily generate spurious contamination of what should otherwise be
21 cm signal-dominated modes. Various approaches have been developed to mitigate these issues by, for example,
using nonparametric reconstruction of the foregrounds, in-painting the gaps, and weighting the data to reduce the
level of contamination. We present a Bayesian statistical method that combines these approaches, using the
coupled techniques of Gaussian-constrained realizations and Gibbs sampling. This provides a way of drawing
samples from the joint posterior distribution of the 21 cm signal modes and their power spectrum in the presence of
gappy data and an uncertain foreground model in a computationally scalable manner. The data are weighted by an
inverse covariance matrix that is estimated as part of the inference, along with a foreground model that can then be
marginalized over. We demonstrate the application of this technique on a simulated Hydrogen Epoch of
Reionization Array–like delay spectrum analysis, comparing three different approaches for accounting for the
foreground components.

Unified Astronomy Thesaurus concepts: Bayesian statistics (1900); Reionization (1383); Interferometry (808)

1. Introduction

The redshifted 21 cm emission line from neutral hydrogen is
much anticipated as a sensitive probe of the thermal history of
the first billion years or so of cosmic time, particularly the
periods when the first stars and galaxies formed (Cosmic
Dawn) and then reionized the intergalactic medium (the Epoch
of Reionization, or EoR; Madau et al. 1997; Furlanetto et al.
2006; Morales & Wyithe 2010; Pritchard & Loeb 2012). A
number of radio interferometers have been designed specifi-
cally to measure the statistical fluctuations in this signal, which
arises in the approximate redshift range 6 z 27, corresp-
onding to frequencies of ∼50–200MHz. Examples of those
searching for the signal from the EoR include the Giant
Meterwave Radio Telescope (Swarup et al. 1991; Paciga et al.
2013), the Murchison Wide-field Array (Tingay et al. 2013;
Wayth et al. 2018; Trott et al. 2020), the Low Frequency Array
(van Haarlem et al. 2013; Patil et al. 2017; Mertens et al. 2020),
the Long Wavelength Array (Hallinan 2014; Garsden et al.
2021), the Precision Array to Probe the Epoch of Reionization
(Parsons et al. 2010; Kolopanis et al. 2019), and the Hydrogen
Epoch of Reionization Array (HERA; DeBoer et al. 2017;
HERA Collaboration et al. 2022). The usual goal of these
experiments is to build up the large sensitivity required to make
a statistical detection of the power spectrum of the brightness-
temperature fluctuations of the 21 cm line as a function of

redshift, by observing for long periods of time with large
numbers of receiving elements and baselines. The presence of
bright foreground emission places extremely stringent require-
ments on the fidelity of the instrumental calibration required to
detect the 21 cm signal, however (Barry et al. 2016; Patil et al.
2016; Ewall-Wice et al. 2017; Gehlot et al. 2018; Joseph et al.
2018; Byrne et al. 2019; de Gasperin et al. 2019; Mouri
Sardarabadi & Koopmans 2019), with other systematic effects
such as mode mixing (e.g., Morales et al. 2012), nonredun-
dancy (e.g., Orosz et al. 2019; Joseph et al. 2020; Choudhuri
et al. 2021), in-painting artifacts (e.g., Chakraborty et al. 2022;
Pagano et al. 2023), reflection and coupling artifacts (e.g.,
Ewall-Wice et al. 2016; Kern et al. 2019), as well as
polarization leakage and the ionosphere (Gehlot et al. 2018;
Kariuki Chege et al. 2022) needing to be handled carefully.
The foreground emission is particularly challenging because

of the high dynamic range between it and the target 21 cm
signal, which is expected to be somewhere in the region of
104–105 times fainter (in temperature). This in itself is not too
problematic if the foreground signal is well segregated from the
21 cm signal when projected onto a suitable basis, such that the
foreground emission can be localized to a handful of modes
that can then be modeled or filtered out. Since the dominant
source of foreground emission is synchrotron radiation, which
has a smooth (power-law) frequency spectrum, an effective
localization of the foregrounds into only the smoothest
components of a harmonic/Fourier basis could reasonably be
achieved (Di Matteo et al. 2002; Santos et al. 2005; Ali et al.
2008). This is unfortunately disrupted by the complicated
spectral response of the instruments themselves, which
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modulate the sky signal, introducing additional spectral
features that are generally difficult to model with sufficiently
high precision. As a result, the instrumental response (and
errors in its calibration) “scatters” foreground emission outside
of its intrinsic localization region, with even a small amount of
scattering (say, at the 10−4 level) able to swamp the 21 cm
emission. Even with precise instrumental calibration, a large
wedge-shaped region of foreground contamination is intro-
duced into the 2D Fourier space of the interferometric
visibilities by instrumental effects (Datta et al. 2010; Morales
et al. 2012; Pober et al. 2013; Thyagarajan et al. 2015), and
must either be filtered out (“foreground avoidance”; e.g., Liu
et al. 2014a, 2014b; Thyagarajan et al. 2015) or modeled and
subtracted (“foreground mitigation”; e.g., Di Matteo et al.
2002; Santos et al. 2005; Morales et al. 2006; Bowman et al.
2009; Chapman et al. 2016).

The difficulty of handling the foreground contamination
makes it especially important to avoid analysis steps that could
introduce further scattering of the foregrounds, for example
through coupling of Fourier modes inside and outside the
wedge. Unfortunately, a number of other systematic effects can
naturally cause scattering of this kind. Spurious artificial radio
emission (radio-frequency interference, or RFI) poses a
particular challenge to low-frequency experiments, because
many transmitters operate inside the experimental band,
leaving extremely bright signals in (typically narrow) regions
in frequency that effectively render that part of the data
unrecoverable during the transmitter’s time of operation. These
regions must be aggressively identified and masked to prevent
substantial contamination of the data (see, e.g., Barry et al.
2019; Li et al. 2019; Mertens et al. 2020; Wilensky et al. 2020).
The mask itself then becomes the issue: masking introduces
discontinuous jumps in the data, which are problematic for
steps of the analysis that rely on harmonic transforms, such as
the Fourier transforms that are used during power spectrum
estimation (Offringa et al. 2019; Wilensky et al. 2022). When a
Fourier transform is applied to a step or spike, ringing artifacts
are generated that strongly couple modes inside the foreground
wedge to those outside, causing widespread leakage of the
foreground emission across the rest of the Fourier space.

Methods must therefore be found that can prevent or
suppress the ringing in order to successfully measure the
power spectrum. These typically fall into two camps: in-
painting, which replaces the missing/masked data with a
plausible model (e.g., CLEAN, DAYENU, and Gaussian
process regression; Parsons & Backer 2009; Offringa et al.
2019; Mertens et al. 2020; Ewall-Wice et al. 2021; Kern &
Liu 2021; Chakraborty et al. 2022), and harmonic analysis
methods (e.g., least-squares spectral analysis; Trott et al. 2016;
Patil et al. 2017; Chakraborty et al. 2022) that account for
nonuniformly sampled data. The general goal of these methods
is to allow the 21 cm power spectrum to be recovered in an
unbiased manner, without ringing artifacts. Beyond this, other
desirable features may be sought, such as minimizing the
variance of the power spectrum estimates, avoiding strong
model dependence, enhancing the interpretability of the power
spectrum estimate, computational efficiency, or correct propa-
gation of uncertainty.

As a final complication, we would also like to apply an
inverse covariance weighting to the data in order to recover an
optimal power spectrum estimate while also accounting for
correlations and mode mixing. This requires a high-fidelity

estimate of the true covariance matrix of the data, which is
generally not available. Due to the inherently high dynamic
range, the signal eigenmodes in the data covariance matrix
have small eigenvalues and are easily misestimated. Using the
empirical covariance matrix measured from the data as an
estimate leads to signal loss in the quadratic estimator
formalism, since the estimated signal becomes a quartic (rather
than quadratic) function of the data (Kolopanis et al. 2019).
Simulations rely on empirical sky models that are incomplete.
Solving these problems requires a method that is able to

account properly for missing frequency-space data, model the
foregrounds (as corrupted by the instrument), and weight the
data in an optimal way. In this paper, we present a Bayesian
signal recovery method that aims to capture the statistical
interactions between the components of the data in order to
achieve these aims. Our goal is to estimate the joint posterior
distribution of a model that is sufficiently flexible to recover the
21 cm signal and foregrounds without requiring strong model
assumptions. From the joint posterior, we can then derive best-
fit models of the components, their uncertainties, and any
correlations between them.
Flexible models typically require large numbers of para-

meters. Our method is based on Gibbs sampling (Geman &
Geman 1984), which provides a way of sampling from the joint
posterior distribution of a model with many parameters by
iteratively sampling from a set of more tractable conditional
distributions instead. This has been used to good effect in
cosmic microwave background (CMB) inference problems
such as foreground separation (Wandelt et al. 2004; Eriksen
et al. 2008), and has also recently been applied to 21 cm data at
lower redshift to estimate power spectra in the presence of
masked data (The CHIME Collaboration et al. 2023). We
follow the structure of the method in Eriksen et al. (2008),
which used a Gibbs sampling scheme to recover the joint
posterior distribution of the CMB signal field and covariance,
as well as various foreground parameters. In our case, we aim
to recover the joint posterior distribution of the (baseline-
dependent) EoR 21 cm signal visibilities, their power spectra,
and a foreground model in the presence of missing frequency
channels in the data. We compare three Gibbs sampling
implementations designed to achieve that goal:

1. A “total signal” sampler, which does not differentiate
between the EoR signal and the foregrounds, aiming to
produce an estimate of the total EoR plus foreground
delay spectrum.

2. A sampler which models foregrounds using the eigen-
modes of simulated foreground covariance matrices.

3. A sampler which jointly samples the foregrounds along
with the signal, conditional on the foreground covariance
matrix being known.

We apply these methods to simulations of visibility data with
realistic point-source foregrounds, a simple Gaussian EoR
signal model, and various patterns of gaps to mimic the effect
of RFI flagging. We test these models under different noise
conditions, and also examine their robustness to incomplete sky
models used to generate the priors/models for the foreground
component.
The structure of the paper is as follows. In Section 2, we

provide some grounding in Bayesian methods relevant to Gibbs
sampling, namely Wiener filtering and the Gaussian-con-
strained realization (GCR) equation, and detail three examples
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of Gibbs sampling implementations that can be used to recover
the EoR signal. In Section 3, we describe the visibility
simulations we use in the rest of our study. In Section 4, we
present the performance of each of the Gibbs sampling
implementations on our simulated data under different flagging
and noise conditions, and compare the achieved recovery in
each case. We conclude in Section 5.

2. Bayesian Recovery of the 21 cm Signal and its Power
Spectrum

In this section we construct Gibbs sampling implementations
capable of sampling from the full joint posterior distribution of
the signal model, its power spectrum, and a set of foreground
parameters. We begin by describing our model for visibility
data and writing down the posterior distribution for the signal,
and then demonstrate some of the key components of the Gibbs
sampler using a hierarchy of Bayesian methods of increasing
complexity, running from a simple maximum a posteriori
(MAP) solution, to sampling from the signal distribution
conditional on the signal covariance, to sampling from the full
joint posterior distribution with a Gibbs sampler. We then
detail three implementations that differ in their handling of the
foreground component. Our implementation structures and
notation follow those in Eriksen et al. (2008).

2.1. Data Model and Posterior

We model visibility data V, which are complex valued, as

n n n n= +V t w t s t n t, , , , , 1mn mn mn( ) ( )[ ( ) ( )] ( )

where the indices m, n label the antennas used to form each
visibility; ν, τ, and t label frequency, delay (the Fourier
conjugate to frequency), and observation time, respectively; w
is a mask vector with values of 1 (unflagged) or 0 (flagged); n
is a Gaussian noise component with covariance N≡ 〈nn†〉; and
s is the total (signal+foreground) component in the data space.
It is also useful to express the signal component in a discrete
Fourier transform (DFT) basis as =s Ts̃, where T is a DFT
matrix operator5 and s̃ are coefficients of the total signal
+foreground component in the Fourier basis. We use bold
symbols to denote vector quantities and upper-case letters to
denote matrices. In general, the total signal will be comprised
of multiple components such as foregrounds, which we label f,
the 21 cm signal, labeled e, and instrumental systematics
(which we neglect here). We assume that these components
carry independent information, so that the total signal s and the
total signal covariance S can be written

= +s e f , 2( )

º á ñ = á ñ + á ñ = +S ss ee ff E F. 3( )† † †

We would now like to find a way to estimate the joint posterior
distribution of the model, p(s, S, θ|d), conditioned on the
measured data d, across all components of the signal and their
covariance, and any other parameters θ that may be considered
in the analysis. The joint posterior contains not just estimates
for s and S but also complete information about statistical
uncertainties and correlations between parameters. In our case

it is a function of a large number of parameters, however,
including the values of the signal/foreground visibilities at
each frequency channel, time, and baselines, and the elements
of each covariance matrix. It would therefore be prohibitively
expensive to explore the posterior directly due to the large
number of dimensions. In the next sections, we outline three
approaches of increasing complexity to handle the Bayesian
estimation of the parameters in our model.

2.2. Maximum A Posteriori Solution (Wiener Filter)

As a first step, consider the posterior distribution conditional
on known covariance information. We consider the case of a
single baseline and drop the antenna labeling indices m, n.
Using Bayes’ theorem, the signal’s posterior distribution
conditional on known covariances S, N and measured data d is

µs S N d d s S N s Sp p p, , , , . 4( ∣ ) ( ∣ ) ( ∣ ) ( )

The second right-hand side distribution is a prior term for the
signal s given the data-space signal covariance, S, which will
generally be independent of the data and the noise covariance.
We assume our noise to be Gaussian distributed, which leads to
the following conditional distribution:6

µ - - - -- -
s S N dp e e, , . 5d s N d s s S s1 1( ∣ ) ( )( ) ( )† †

Under the assumption of Gaussianity, the maxima of the
posterior and log-posterior occur at the same location. To
obtain the MAP estimate of the signal ŝ, the first derivative of
the logarithm of s S N dp , ,( ∣ ) can be set to zero,

¶
¶

- - + =
=

- -

s
d s N d s s S s 0, 6

s s

1 1(( ) ( ) ) ( )
ˆ

† †

to obtain

= +- - -d N s N s S . 71 1 1ˆ ˆ ( )† † †

Using the fact that covariance matrices are Hermitian to remove
complex conjugation, this equation can be rearranged to the
“generalized Wiener filter” for the signal component s:

= +- - - -s S N N d. 8wf
1 1 1 1[ ] ( )

In essence, the Wiener filter answers the question: “Given an
assumption about the signal and noise covariance information,
what is the most likely form of the realized signal in this data?”
Despite being the MAP solution for the signal component of a
data vector, the expectation of the solution 〈swf〉≠ s in general
(e.g., Rybicki & Press 1992), though this bias can be partially
ameliorated. The covariance of the Wiener filter estimate is also
strictly smaller than the covariance of the parent conditional
distribution. These biases are discussed in Appendix A.
Defining the Wiener filter operation from Equation (8) as

º +- - - -G S N N , 91 1 1 1[ ] ( )

and returning to the conditional Equation (5), the prior and
likelihood terms can be combined by completing the square to

5 = p-T emn
N2 imn freq. We use a Fourier convention such that T†T = I, where

the † symbol denotes the Hermitian (conjugate) transpose.

6 Note that these are complex Gaussian distributions, which do not have a
factor of 1/2 in the exponent (or a square root of the determinant in the
normalization factor) when written in complex vector form (Gallager 2013).
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form a single Gaussian:

µ - - + -- -s S N d s Gd S N s Gdp , , exp ,
10

1 1( ∣ ) ( ( ) ( )( ))
( )

†

where the matrix identity + = +- -A B A A B B1 1[ ] has been
used, and data-only terms that are constant in the posterior have
been absorbed as constants of proportionality. Here we see how
the Wiener-filtered data swf=Gd represents the mean of the
distribution, and therefore that the Wiener filter minimizes the
expected residual 〈|s−Gd|〉 between the true signal and the
signal estimate.7 We also see that the conditional distribution
has covariance +- - -S N1 1 1[ ] .

The data contain flagged regions which have been set to zero
due to the presence of RFI. Since we do not have access to the
information underneath the RFI mask, we set the noise variance
in those regions to infinity. In implementation terms, this can
be handled by using an amended form of the inverse noise
covariance

~-
N

1
:

=- -N ww N , 111 T 1˜ ◦ ( )

where w is the mask vector and ◦ denotes element-wise
multiplication. Substituting -N 1˜ for N−1 in Equation (8)
amounts to zeroing the contribution from the data inside the
mask (N−1d term). The inverse signal covariance term does not
typically go to zero in these regions; the prior “takes over”
signal estimation in lieu of information from the likelihood
function. We should clarify that this is not simply a matter of
filling in the masked regions with draws from the prior: the
Wiener filter inside the masked regions is constrained to match
up with the solution in the unmasked regions, and close to the
mask boundary both the prior and the data contribute to the
solution.

2.3. Gaussian-constrained Realizations from the Conditional
Distribution of the Epoch of Reionization Signal

Having the MAP solution for the signal component in hand,
the next step in the Bayesian hierarchy is accessing the full
conditional distribution p(s|S, N, d) and generating samples
from it. To generate samples from the conditional, we make use
of the GCR equation, which we now describe. Since
Equation (10) defines a multivariate Gaussian distribution,
realizations drawn from the distribution (denoted scr) may be
generated by adding random normal (Gaussian) realizations of
the signal and noise fluctuation terms to the Wiener filter
equation that are scaled correctly by their respective covar-
iances (Eriksen et al. 2008), i.e.,

w w= + + +- - - - - -s S N N d S N . 12cr
1 1 1 1 1 2

0
1 2

1[ ] [ ] ( )

The new terms in the right bracket as compared with
Equation (8) are independent realizations of zero mean, unit
variance Gaussian random vectors, ω, scaled by the noise and
signal covariances.8 With this form, it is straightforward to

check that the covariance of a GCR solution is equal to the
covariance of the Gaussian distribution in Equation (10). Many
realizations of the signal consistent with the given data vector d
and covariances S, N can be generated by solving
Equation (12) repeatedly with different random realizations
of the vectors ω, and these realizations trace the full conditional
distribution.
Depending on the size of the data and the particular forms of

the covariance matrices, solving Equations (8) and (12) may
become computationally demanding. A useful technique is to
“precondition” the linear system by multiplying through by an
easily computable factor that makes the linear operator closer to
the identity matrix (which would give a trivial solution to the
linear system). In other words, for a linear system Ax= b,
preconditioned as PAx= Pb, the best preconditioning matrix P
is one that gives PA≈ I, and where computing PA is quite fast.
As pointed out by Eriksen et al. (2008), an effective
preconditioner for the Wiener filter and GCR equations can
be obtained by multiplying through by S1/2, enabling much
faster convergence in practice. With this preconditioning
scheme, Equation (12) becomes

w w+ = + +- - -I S N S y S N d S N .

13

1 2 1 1 2
cr

1 2 1
0

1 2 1 2
1[ ˜ ] ˜ ˜

( )

The ycr solution vector can be obtained using a conjugate
gradient solver, from which the solution for the signal
component can then be found as s= S1/2ycr.
Illustrative results from the GCR solver are shown in

Figure 1, with a comparatively large flagged region close to the
middle of the band, plus some randomly flagged channels, for a
total flag fraction of 15%. This example has been run as part of
a full Gibbs scheme (Scheme 2; see Section 2.6 below), which
runs for 800 iterations and includes sampling of the EoR and
foreground covariance matrices/model parameters. The upper-
right panel of Figure 1 shows an essentially seamless in-
painting, with no visible discontinuity between the unflagged
and in-painted regions. This continuity is due to the solution
inside the flagged region being conditioned on the data outside,
as well as the frequency structure of the EoR/foreground
models and their covariances.
The lower-left panel of Figure 1 shows the difference

between the absolute value of the mean (over 800 samples) of
the GCR-sampled EoR plus foreground model with the true
(input) EoR plus foreground model used in the simulation. The
difference is small outside the flagged regions, as expected
when fitting an accurate model to data with high signal-to-noise
ratio (S/N; for reference, the mean noise rms on the real and
imaginary parts of the visibilities is 0.065, whereas the input
EoR signal has an rms of 0.52 in the units of Figure 1). It is
larger inside the flagged regions, but only shows structure that
is nonsmooth with frequency. This is also expected: the data
outside the flagged region constrain the possible behaviors of
the EoR signal plus foregrounds inside the region, but do not
fully specify them, particularly as one moves further from the
edge of the region. The EoR signal in particular is allowed to
be nonsmooth in frequency, and so the solution inside the
flagged region need not be strongly correlated with the solution
outside. In any case, there is no clear bias toward either over- or
underestimating the combined EoR plus foreground signal
inside the flagged region; as we will show later, the power

7 The Wiener filter yields equivalent estimates to Gaussian process regression
(GPR) for a given covariance matrix/kernel (Särkkä & Solin 2013), hence the
similarities between the equations here and the ones for GPR methods (e.g.,
Kern & Liu 2021).
8 Since the visibility data are complex valued, so too must be the random
vectors ω. In order to ensure that they have unit variance, we sum draws for
unit variance real and complex parts, then divide this sum by 2 .
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spectrum of the EoR component in particular is recovered in an
unbiased manner.

The lower-right panel of Figure 1 shows the variability in the
EoR plus foreground realizations, plotted as the standard
deviation of the absolute value of these quantities over 800
samples. It can be seen that the variability is lower for narrow
flagged regions, as only relatively smaller deviations are
allowed in order for the solution to remain consistent with the
surrounding data. The variability is larger inside the broad
flagged region, but shows a smooth transition from the edge to
the center, again due to the solution being constrained more
strongly by neighboring data near the edge of the region. Note
that the variability of the realizations is also nonzero outside the
flagged regions. This is driven mostly by the noise level;
neither the EoR nor foreground solutions are completely certain
in the unflagged regions, even though the S/N is reasonably
large.

2.4. Realizations from the Joint Posterior (Gibbs)

Gibbs sampling is a method for recovering the joint posterior
distribution, in our case p(s, S|d), via Markov Chain Monte
Carlo (MCMC) sampling (Geman & Geman 1984). Under the
condition that a given joint probability density is strictly
positive across the span of each variable (i.e., that no point in
the joint space has zero probability density), then that joint
density is specified uniquely by the full set of conditional
distributions for all the parameters. Gibbs sampling uses this
fact by sampling from each conditional distribution in turn, in
the process updating conditioned-on variables with the sample
obtained for them at the previous iteration. Since the joint
posterior we wish to evaluate is a function of two (vector)
quantities, the signal s and the signal covariance S, the joint

posterior can be evaluated by sampling (indicated by ←) from
each of the two conditional distributions iteratively:

¬+s s S N dp , , , 14i i i1 ( ∣ ) ( )

¬+ +S S sp . 15i i i1 1( ∣ ) ( )

In the above representation, the top line is sampled first,
followed by the second line, with the index i running over
iterations. The distribution for the signal covariance S is not
conditioned on the noise covariance N and data d since all of
the relevant information is contained in the current realization
of s. Equation (14) has the form of a multivariate Gaussian, and
so sampling is achieved by making use of the GCR equation,
Equation (12). The conditional distribution of the covariance,
Equation (15), on the other hand, has the form of a complex
inverse Wishart distribution:

= µ - -S s
s S S

s S
s S sp

p p

p

1

det
exp , 161( ∣ ) ( ∣ ) ( )

( ) ( )
( ) ( )†

where “det (...)” signifies the matrix determinant (recall that
there is no square root of the determinant when written in
complex vector notation; see footnote 6). Since we solve for
full realizations of the signal component at the GCR step (i.e.,
that have values both inside and outside regions masked due to
RFI), the need for an in-painting process that explicitly
estimates the missing data is eliminated.
In the next three subsections, we detail a series of Gibbs

sampling implementations that treat the foreground component
in different ways.

Figure 1. An example set of in-painted visibilities using Scheme 2, for a single 14.6 m E–W baseline. Fifteen percent of the band has been flagged, with a combination
of a broad region and several randomly flagged channels. The units of the visibilities are given as janskys. Upper left: amplitude (absolute value) of the “observed”
visibilities, including flagged regions. Upper right: amplitude of the mean of the EoR plus foreground realizations from the sampler (i.e., the average over all 800
samples). Lower left: difference between the mean of the EoR plus foreground realizations (upper-right panel) and the true (input) EoR plus foreground model used in
the simulation. Lower right: standard deviation of the amplitude of the EoR plus foreground realizations from the sampler (calculated over all 800 samples).
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2.5. Scheme 1 (Combined Signal+Foreground Sampler)

The first scheme is a straightforward implementation
sampling the total signal from a complex Gaussian distribution
( ) using the GCR equation (i.e., sampling s= e+ f),
followed by sampling the total covariance matrix S from the
complex inverse Wishart ( -1 ) distribution:

¬ ++
- -s Gd S N, , 17i i1

1 1( [ ]) ( )

n¬ S+
-

+S N, , , 18i i f1
1

1 freq ( ) ( )

where the sample covariance matrix is
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-

+ + +s s
N

1

1
, 19i

t

N

t i t i1
times

, 1 , 1

times

( )†

the parameter νf = Nfreq(Nfreq+ 1)/2 denotes the number of
degrees of freedom in the sample covariance, and Ntimes is the
number of local sidereal times (LSTs) in the visibility data. We
discuss obtaining samples from a complex inverse Wishart
distribution in Appendix B. In each iteration of the Gibbs
sampler the GCR equation (Equation (17) above) is solved
using visibility data across all LSTs separately, using as a prior
the covariance matrix arrived at during the last iteration. The
mean covariance used for sampling from the distribution in
Equation (18) is the sum over outer products of the obtained
GCR solutions from each LST at the previous step. This
sampling scheme will arrive at realizations of both the total
signal and total data covariance in frequency space.

2.6. Scheme 2 (Joint Sampler with Foreground Templates)

In the second implementation, we make two simplifying
assumptions: (i) the delay spectrum of the EoR signal
component is diagonal, i.e., all of the statistical information
about s is contained by its power spectrum,9 and (ii) that the
foreground covariance matrix F is known, and hence fixed (not
sampled). This implementation follows a Gibbs sampling
scheme for the CMB signal map and power spectrum (Eriksen
et al. 2008). Foreground covariance matrices can be estimated
directly from simulations based on past observations (see
Section 3), and, as such, the foreground covariance is known to
a higher degree of accuracy than the covariance of the EoR
field. Fixing this quantity to the values arrived at via
simulations significantly reduces the volume of parameter
space to be covered by the sampler. Second, the cosmological
signal e having a diagonal covariance in delay space (i.e., with
variance given by the delay spectrum in each delay bin)
reduces the complex inverse Wishart distribution of
Equation (18) to a product of inverse-Gamma distributions,
one for each delay spectrum bandpower.

As with the implementation in Eriksen et al. (2008), we
make use of a set of foreground templates gj(ν) with respective
amplitudes afg. For our templates, we use the first Npc principal
components of our simulation-derived foreground covariance
matrix on each baseline such that the (nonsquare) template
matrix has dimension Nfreq×Npc. An example set of principal-
component modes is shown in Figure 2. The data model in this

scheme is given by

= + +d e g a n, 20j fg· ( )

where e denotes the cosmological signal in frequency space.
We follow Eriksen et al. (2008) in defining a vector x where the
first Nfreq entries are e and the second Npc entries are afg, and a
corresponding response vector =u g1, j

T( ) , so that the signal
and foreground amplitude conditional distribution may be
written

µ
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where the form of the vector x̂ and matrix A follow from a
completed-square representation of the line above. The
symbolic linear system to be solved, Ax= b, comparable to
Equation (12), takes the explicit form
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where the foreground model can be recovered as f= gj · afg,
and E is the EoR signal covariance in frequency space. The
sampling is performed for each LST independently and in
parallel, and so we obtain a set of Nt solution vectors e and afg
at each iteration.
The bandpowers of the EoR signal delay spectrum

t t= ¼p P P, , N0
T( ( ) ( )) for delay bins τ0,K,τN are related to

the frequency-space EoR covariance by =E TET˜ †, where the
delay-space covariance Ẽ is zero everywhere except on the

Figure 2. First eight foreground principal components (covariance eigen-
modes) derived from the frequency–frequency covariance matrix measured
from simulations of a 14.6 m E–W baseline. The upper and lower panels show
the real and imaginary parts, respectively.

9 In making this assumption we automatically lose sensitivity to any non-
Gaussian information in the measured EoR field. In practice, that means that
such an assumption is fairly limiting since the EoR field is expected to be
significantly non-Gaussian. Testing the extent to which this assumption limits
us will require more sophisticated simulations than we employ in this work.
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diagonals, where =E pdiag( ˜ ) . Each bandpower is sampled
independently from an inverse-Gamma distribution with a scale
parameter calculated from the variance (over LST) of the
current realization of the corresponding EoR signal delay
mode, i.e., the variance for delay mode τ at iteration i+ 1 is

ås =
-t t t+ + +

N
e e

1

1
, 23i

t

N

t i t i, 1
2

times
, , 1 , , 1

times

*˜ ˜ ( )

where = = ¼t te T e e e, ,t t t t, ,
T

N0
˜ ( ˜ ˜ )† . This Gibbs scheme there-

fore has two steps:
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2
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where the joint amplitude sampling is carried out for each LST
separately, the bandpower sampling is performed separately for
each delay mode, and α=Nvisibilities− 1. In words, the above
scheme jointly samples the EoR signal vector (in frequency
space) and amplitudes of the foreground templates gj for each
LST independently by solving the linear system of
Equation (22). It then calculates the sample variance of each
EoR signal delay mode over all available LSTs, and uses this as
a scale parameter to draw a sample of each delay spectrum
bandpower from an inverse-Gamma distribution, independently
for each delay mode. It then finally performs an inverse Fourier
transform of a delay-space covariance matrix constructed by
putting the delay spectrum bandpower samples along the
diagonal (and zeros elsewhere), resulting in the i+ 1th sample
of the frequency-space signal covariance, Ei+1. Due to our
enforcement of the property that E be diagonal in delay space,
it is necessarily a circulant matrix in frequency space
(Messerschmitt 2006).

The delay spectra of the foregrounds and the EoR signal are
degenerate where they overlap at low delay. This is due to the
foreground modes corresponding to smooth functions in
frequency that are representable with only a handful of low-
wavenumber Fourier modes. We implement a symmetric prior
on a few low-delay bins of p to control the degeneracy.
Specifically, we set the result of the delay spectrum (inverse-
Gamma) sample t +P i 1( ) to be equal to the true EoR delay
spectrum Ptrue(τ) inside delays −100 ns< τ< 100 ns. This
prior prevents time-consuming exploration of the degeneracy,
which would slow convergence of the chains.

It is important to note that without this highly specific prior,
the sampler is unable to disambiguate between the smoothest
foreground modes and the EoR signal, meaning that the lowest-
delay EoR signal modes will not be recovered correctly. In the
case of real data, a different prior, for example a continuity
prior, is likely to be more suitable as the true EoR delay
spectrum is unknown. One could also use a set of physically
motivated models to constrain possible behaviors of the EoR
signal at low delay. We do not explore these possibilities
further here.

2.7. Scheme 3 (Joint Sampler with Signal and Foreground-
constrained Realizations)

This scheme jointly samples from the EoR signal and
foreground components e and f at the GCR step using the full
foreground covariance matrix F, rather than its leading
principal components as in Scheme 2. The assumption is

maintained that the foreground covariance does not vary.10 We
again define a block vector x, where now the first Nfreq entries
are e and the second Nfreq entries are f, and a corresponding
response vector u= (1, 1)T such that the data model is
d= x · u+ n. From the joint conditional distribution of the
signal and foreground vectors, we obtain

µ
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´ - - - -

-

- -

e f E F N d d e f N e E f F

d x u N d x u

e E e f f F f f

p p p p, , , , , ,

exp

exp exp , 25

1

1 1

( ∣ ) ( ∣ ) ( ∣ ) ( ∣ )
( ( · ) ( · ))
( ) ( ( ¯ ) ( ¯ )) ( )

†

† †

with f̄ being the mean vector of the foregrounds on this
baseline. Completing the square with the vector x, the
corresponding linear scheme to solve to sample from the
conditional distribution is
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This implementation samples from the foreground and signal
components jointly. Since the foreground covariance on the
baseline is taken to be known, it is not sampled from. The
(baseline-specific) foreground covariance matrix F is a dense
matrix in frequency space that needs to be inverted in order to
use this implementation. This Gibbs sampling scheme is very
similar to Scheme 2:

t s a
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e f e f E F N dp
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i i i i i

i i

1 1
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2
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with foreground vectors now being sampled jointly with the
EoR signal realizations. As with Scheme 2, the signal
realizations are used to form the basis for inverse-Gamma
samples of the delay spectrum, which again is used to define a
diagonal covariance matrix in delay space. We also implement
the same prior on the central delay bins of p as for Scheme 2.

3. Simulations

In this section we describe the steps taken to build model
covariance matrices for the foregrounds, and the covariance
used as our EoR signal model. We use the simulation
methodology described in Choudhuri et al. (2021) in what
follows. The simulations include separate sets of simulated
visibilities for point sources, diffuse emission (which we have
neglected here), and a simple model of the EoR. They cover a
bandwidth of 100–120 MHz in 120 channels, and contain 13.4
hr of LST at 40 s integration time per sample, in the LST range
9.2–22.5 hr. Only the pseudo-Stokes I polarization channel is
simulated. The hera_sim11 package is used to perform the
visibility simulations themselves, with an analytic approx-
imation to the HERA beam (Choudhuri et al. 2021; Fagnoni
et al. 2021) used as the primary beam model, which is
furthermore assumed to be identical between receivers.

10 In principle, this scheme could be extended to also sample the foreground
covariance matrix F, e.g., as another inverse Wishart Gibbs step, but we leave
this to future work.
11 https://github.com/HERA-Team/hera_sim/
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To simulate point sources we choose a sky model based on
the GaLactic and Extragalactic All-Sky Murchison Wide Field
Array (GLEAM) catalog (Hurley-Walker et al. 2017). We also
include a few bright sources and Fornax A, which are not
present in the catalog (see Table 2 of Hurley-Walker et al.
2017). There are some blank regions in the GLEAM catalog
(e.g., north of +30° decl., Galactic latitudes within 10° of the
Galactic plane, and a handful of localized areas such as the
Magellanic Clouds) with no sources. We fill those gaps with
sources taken from other parts of the sky, as described in
Choudhuri et al. (2021).

Covariance matrices for simulated point-source foregrounds
are estimated per baseline by averaging in the LST (time)
direction (ignoring any nonstationarity of the statistics of the
foregrounds). For a set of mean-subtracted visibility data V of
dimension Nfreq× Ntimes, the frequency–frequency covariance
matrix can be estimated as

=
-

F VV
N

1

1
. 29

times
( )†

In Figure 3, we show examples of point-source foreground
covariance matrices formed from different baseline lengths and
orientations in the simulated array. The real parts (upper row)
show strong correlations, and the imaginary parts (lower row)
have structures that change with baseline length and orienta-
tion. In the first three columns we show the covariance matrix
of point-source foregrounds on baseline vectors of length
14.6 m that form an equilateral triangle. Though the real part
takes on a similar structure for each baseline-type triangle,
there are notable differences. The first panel shown (14.6 m, 0°)

has the largest magnitude (denoting higher variance) and has
strong correlations over larger frequency separations than the
second panel (14.6 m, 60°). The third panel (14.6 m, 120°)
shows a magnitude of the real part that is approaching a factor
of 2 smaller than the first panel. The differences in the
imaginary part are more striking, with very different correlation
structures visible in each.
We also show covariance matrices for longer baselines in the

fourth and fifth panels, of length 29.2 m and 43.8 m,
respectively, both oriented E–W (0°). These baselines have
covariances with shorter correlation lengths than the equivalent
14.6 m baseline, which is expected as longer baselines are more
chromatic. The longer baselines also show reduced magnitude
of the real part compared to the shorter baselines.
Various point-source covariance calculations and fitting

functions exist (e.g., Santos et al. 2005; Murray et al. 2017;
Ghosh et al. 2020), and this study of the per-baseline
covariances seems to indicate that a one-size-fits-all approach
is likely to fall short. The simulations of Choudhuri et al.
(2021) include very bright sources such as Cen A, which can
significantly increase the total observed power (and therefore
the variance) as they transit, for example. This implies that
deviations from the assumptions we have made in calculating
the covariance—stationarity, and statistical homogeneity/
isotropy—can be significant. The orientation of the baselines
(and therefore the fringes) on the sky as sources rotate through
them at different rates (i.e., at different “fringe rates”) will also
contribute to the structure of the correlations in the real and
imaginary parts. We leave attempts at systematization to future
work, and for the results in later sections take the foreground
prior covariance F to be the covariance matrix evaluated using

Figure 3. Point-source foreground covariance matrices estimated from averaging over 1200 simulation time samples at a cadence of 40 s in the 100–120 MHz band.
Real and imaginary parts (in square janskys) are shown in the top and bottom rows, respectively, while the middle row shows the correlation matrix of the real part,
r = C C Cij ij ii jj . The first three columns are for baselines with length 14.6 m, oriented at approximately 0°, 60°, and 120° degrees from the E–W direction,
respectively (the shortest redundant baselines). A clear directional dependence is found in the structure and amplitude of the covariance matrix. The last two panels
show covariances from baselines of length 29.2 and 43.8 m (both E–W aligned). The real part of each of the covariances shows strong correlations, with an imaginary
part that has a smaller variance in general.
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Equation (29) for the baseline that we make use of to generate
mock data, a 14.6 m baseline oriented E–W.

For our EoR signal model we use a Gaussian plus a constant
offset in delay space. In frequency space, this is

n n
n n

w
d¢ = -

- ¢
+ nn¢E A r, exp

1

2
, 30g s

s
s

2

2⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( )

where dnn ¢ is a Kronecker delta function, and the parameters
take constant values, As= 0.25, ωs= 0.5, and rs= 0.025.
Realizations from this signal covariance model produce
Gaussian fluctuations with a correlation length and amplitude
parameterized by ωs and As, respectively. rs controls the size of
a diagonal (in frequency) component that also ensures that Eg is
positive definite. This signal model produces a power spectrum
that is a Gaussian function around delay zero, plus an offset
that is constant in delay.

4. Results

In this section we show results from each sampler over a
substantial number of iterations (800) and under different
simulated data scenarios, and compare the delay spectrum of
the recovered EoR component with the true, input EoR delay
spectrum. The primary statistic we consider is the distribution
of recovered delay spectra across the set of iterations, which
approximates the marginal posterior distribution of the EoR
delay spectrum.

First, we show results from runs of each Gibbs sampling
scheme under a fiducial testing setup with 5% random flagging
applied in the same way to each LST, a S/N of 5 at high delay
for each visibility, and the Gibbs sampler chain initialized at the
true signal and signal covariance values to avoid a lengthy
burn-in period. We then consider three different scenarios: how
changes to the flagging fraction affect delay spectrum recovery;
how the signal power spectrum recovery is affected by changes
to the S/N; and how an incorrectly estimated foreground
covariance matrix affects delay spectrum recovery (in this case,
one formed from visibility simulations that have no faint
sources below 15 Jy).

4.1. Simulation Realizations

We generate our simulated data using the following method.
A point-source foreground simulation from a 14.6 m E–W
baseline covering 1200 LSTs (40 s spacing) is taken as a base
(see Section 3). This simulation is held fixed throughout, i.e.,
we do not use any other realization of the foreground
visibilities than that in the simulated data. On top of it, we
add an independent complex Gaussian white noise draw to
each time and frequency channel, plus a simple EoR signal
component that we generate using 1200 independent complex
Gaussian random draws from the signal frequency–frequency
covariance matrix (Equation (30)). The shape of the EoR signal
power spectrum is not chosen to represent any particular
physical model; instead, we use a Gaussian shape with the peak
at τ= 0 ns and a width of around 1000 ns, as it provides a
simple but nontrivial shape to recover, and allows low-,
intermediate-, and high-S/N regimes to be studied in the same
power spectrum.

Since each time sample of the EoR signal is drawn
separately, the 1200 LSTs each contain an independent
realization drawn from the underlying signal power spectrum.

This is akin to each time sample being taken approximately one
primary beam crossing time apart, such that a different patch of
the sky has rotated into the mainlobe of the beam in its entirety.
For HERA, this timescale is of order ∼1 hr depending on the
observing frequency, and so the choice of independent samples
of the EoR signal is clearly an idealization. In reality,
observations 40 s apart would see a very similar sky within
the primary beam mainlobe, and so the signal realizations
would be strongly correlated. Recent HERA analyses (e.g.,
HERA Collaboration et al. 2022) have performed coherent
averaging of visibilities over timescales of a few minutes (with
fringe stopping to reduce decoherence), which effectively
increases the separation between each (post-averaging) time
sample. Coherent averaging over baselines may also be
performed to increase S/N. We do not model either of these
forms of averaging here, however.
At each iteration the samplers return 1200 EoR signal GCR

solutions, one for each LST. We estimate the “empirical” delay
spectrum of the samples at each LST separately, by multiplying
the Fourier transform of the mean-subtracted, tapered GCR
solution by its complex conjugate and then averaging across all
LSTs in the iteration to obtain

s s= ¼t tP , , 31i iempirical ,
2

,
2 T
N0

( ˆ ˆ ) ( )

for iteration i. We have used st i,
2ˆ to denote the same quantity as

in Equation (23), but with the delay mode tẽ replaced by an
equivalent quantity that was tapered and mean-subtracted
before the Fourier transform. Note that Pempirical is different
from the delay spectrum estimate P(τ) that is obtained via
sampling by the second step of the Gibbs scheme. In particular,
P(τ) is subject to (inverse-Gamma) sample variance while
Pempirical is not, and the calculation of Pempirical includes a
tapering operation while P(τ) does not. We run each sampler
for 800 iterations, which is sufficient to achieve good
convergence based on visual inspection of the traces of the
chains.

4.2. Comparison of the Three Gibbs Schemes

The results from runs of each Gibbs sampling scheme under
the conditions described above, for a 5% random channel
flagging pattern, are shown in Figure 4 (Scheme 1) and
Figure 5 (Schemes 2 and 3). The top panel in each figure
compares the true input power spectrum of the foregrounds and
EoR signal, the injected noise level (representative of the noise
on a visibility for a single time and baseline, i.e., before any
time averaging), and the mean recovered EoR power spectrum
(or total signal power spectrum, in the case of Figure 4). When
power spectra are calculated from samples of the frequency-
space visibilities (i.e., in the top and second panels), the
visibility data are first mean-subtracted and tapered with a
Blackman–Harris window, since the foreground component of
the visibilities is generally large and discontinuous at the band
edges and so would otherwise cause ringing. This procedure
causes a small dip at low delay in all power spectra. The
second-from-the-top panels show the fractional residual
between the true (input) signal power spectrum and the power
spectrum estimated by squaring and averaging the GCR
samples, along with 68% confidence intervals estimated from
the GCR samples. The lower panels in Figure 5 show the
recovered fractional residual between the true input signal
power spectrum and the delay spectrum samples obtained at
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each iteration from the second (covariance sampling) step of
the Gibbs sampling schemes.

Note that the delay spectrum estimate P(τ) obtained from the
second step in the Gibbs scheme is in principle the correct one
to use, as it properly takes into account sample variance. The
power spectrum estimated from the GCR samples is the
“empirical” power spectrum of the particular realization of the
EoR field that we see, and does not include sample variance. As
such, it is expected to have narrower error bars, which is indeed
what we see for Schemes 2 and 3.

In Schemes 2 and 3, shown in Figure 5, where the EoR
signal is separated from the foreground component, the
samplers exhibit a degeneracy in their solutions for the
foreground power spectrum and EoR signal power spectrum
where these components overlap in delay. Left unchecked, this
degeneracy results in the sampler exploring the degeneracy
region very slowly throughout the iterations. For this reason we
implement a prior on the delay spectrum (covariance) samples
at very low delay in these schemes, setting the delay spectrum
samples in the five central delay bins to be equal to their true
values, a “hard prior.” The region where the residual vanishes
at low delay corresponds to this hard prior. This simplistic
implementation of the prior is intended to show how these
schemes can work when this degeneracy is prevented from
being explored by the sampler. Other priors, such as a
continuity prior, are likely to be appropriate in practice. We
have checked that the results are not sensitive to the choice of
hard prior; setting the prior on the delay spectrum in the central
five bins to be 50% higher than the true value when carrying
out the same run configurations, we found that neither the

recovered signal power spectrum mean nor the error bars were
affected.
The Scheme 1 “total signal” sampler in Figure 4 recovers a

signal power spectrum that is biased low at higher delays,
where the S/N is lowest. The reason for the bias is unclear, but
we note that when the overall S/N is increased the bias no
longer appears. Schemes 2 and 3 recover ostensibly unbiased
signal power spectra as seen in their residuals (middle/lower
panels), with the width of the residual distribution increasing
toward higher delay where the S/N is lowest. Slight biases
(dips) are noted for Scheme 2, inside the foreground delay
range |τ| < 200 ns, around the edge of the hard prior, where a
degeneracy is expected between the signal and foreground
amplitudes (see below). Immediately outside of this range, the
middle panel shows a 68% confidence region spanning a
fractional residual of approximately ±0.5%, which increases to
±2.5% at high delay, consistent with the S/N decreasing with
delay. Wiggles with correlated error bars are observed in the
middle panels for both Schemes 2 and 3, which are expected as
a taper has been applied. The delay spectrum samples in the
lower panels also appear to be unbiased for both sampling
schemes, with larger error bars that show less evolution with
delay, as sample variance is the dominant source of uncertainty.
There is little to separate Scheme 2 and Scheme 3 based on

their performance in the residual with the true input power
spectrum, but Scheme 2, which relies on fitting a small number
of foreground templates rather than the entire foreground
covariance, reaches full sets of solutions for its GCR step
approximately twice as fast as Scheme 3 does. We do however
note the small dips in the recovered power spectra (both middle
and lower panels) for Scheme 2 just outside the prior-
dominated region of Figure 5. We suspect that this is caused
by the truncation of the set of foreground modes at the 8th
mode. If this is correct, including more modes in the
foreground model would allow more of the residual foreground
emission at low delay to be absorbed, and this feature would
not arise.
Finally, we note that an advantage of the Gibbs sampling

approach is that the samples can be used to directly reconstruct
the marginal posterior distributions of each parameter (or
subset of parameters), without resorting to Gaussian approx-
imations or otherwise. For the particular applications presented
here, we did not find any particularly compelling examples of
non-Gaussian behavior of the marginal posteriors, however.
Visually inspecting the marginal distributions for the fore-
ground amplitude parameters and delay spectrum bandpowers
for Scheme 2, for the 10% continuous flag and 10% random
flag cases, we found that they were generally consistent with
Gaussianity, i.e., we did not note any strong skewness, heavy
tails, etc. More quantitative tests for Gaussianity could be
performed if desired.
On a related note, the true EoR 21 cm field is expected to

have a non-Gaussian component (e.g., due to the formation of
ionized bubbles around early sources), but we have modeled it
as Gaussian in our analysis. Non-Gaussian features of the field
can be captured in this framework, and the power spectrum is
still a well-defined quantity that can be measured. Failing to
explicitly account for the non-Gaussianity of the field will lead
to these features, and therefore the power spectrum band-
powers, being weighted incorrectly, however, and so statistics
such as means and uncertainties could be biased. We leave an
examination of this issue to future work.

Figure 4. Signal recovery using Scheme 1 (total signal sampler) after 800
iterations. Top panel: true input power spectrum (sum of EoR and foreground
components, dashed line) compared with the mean of the power spectrum of
the total sky signal estimated from samples of the signal from the GCR step
(blue line). Power spectra are calculated after mean-subtraction and tapering
with a Blackman–Harris window, which produces a small decrease at τ = 0 ns.
The dotted–dashed line shows the noise power for each visibility (i.e., a single
time sample; S/N of 5 at high τ); 1200 time samples are combined to measure
the total power spectrum. The 95% confidence interval (green shaded region) is
too small to see. Bottom panel: fractional residual between the true power
spectrum and the recovered power spectrum from the upper panel. The error
bars show the 68% confidence region. Outside |τ|  1000 ns, where the S/N is
lower, this sampling scheme recovers a distribution that is biased low by
around 5%. This bias does not appear when the S/N at high delay is increased.
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We also calculated the covariance matrix for the parameters,
finding no strong evidence for substantial covariance between
the delay spectrum bandpowers and per-LST foreground
amplitudes, even at low delay. This is likely due to a
combination of the strong prior on the delay spectrum at low
delay and the fact that the foreground amplitudes are estimated
for each LST, whereas the bandpowers are estimated in an
LST-averaged sense, which will tend to average down any
correlations. We did however find covariance between the
foreground amplitude parameters themselves. This is not
unexpected considering that the foreground eigenmodes were
calculated from the LST-averaged frequency–frequency covar-
iance matrix, and so are not necessarily eigenmodes of an
equivalent per-LST quantity (fits that use nonorthogonal basis
functions will typically result in some covariance between their
coefficients). We also noted a weak positive correlation
between the τ= 0 ns delay spectrum bandpower and other
bandpowers, particularly at high delay, as well as a moderate
correlation between the 1 and 2 delay spectrum bandpowers
either side of the prior region. The latter is likely a
manifestation of the incompleteness of the eight-mode fore-
ground model, as mentioned above.

4.3. Dependence on Flag Fraction

In Figure 6, we use Scheme 2 to assess how the signal power
spectrum recovery changes when the flagging fraction is

increased. In this study we use a continuous (rather than
random) mask increasing up to 10% of the band in length, in
order to evaluate a reasonable worst-case scenario. We again
add noise such that the S/N takes a value of 5 at high delay,
and test a case with no flags, a 5% flag, and a 10% flag. The
flags are applied near the center of the frequency range and in
the same position at all LSTs.
The recovered signal power spectrum distributions in each of

these runs again appear unbiased, even in the 10% flagging
case. The width of the error bars increases as the size of the
flagged region increases, however, as one would expect from
reducing the effective number of data points in the data set.
Looking at the middle panels, we see that the error bar width
increases significantly at lower delays (e.g., just outside the
hard prior region) as the flag fraction is increased. A large
continuous flagging region in frequency space increases the
overall uncertainty in all Fourier modes, but particularly
prevents the lower-delay modes from being measured much
more accurately that the higher-delay modes, as they are in the
no-flagging case. Despite this, the power spectra sampled by
the second Gibbs step remain essentially unchanged, as they
are still dominated by sample variance. It is notable that no bias
has been introduced into these power spectra either, however;
the samplers are successfully marginalizing over the missing
signal inside the region in such a way that the Gibbs-sampled
power spectrum is recovered correctly. This is in contrast to,

Figure 5. Signal recovery using Scheme 2 (foreground template fitting, left panel) and Scheme 3 (joint foreground sampling, right panel). These runs match the
parameters seen in Figure 4: 800 total iterations, S/N at high delay of 5:1. These schemes differentiate between the foreground and EoR signal components and aim to
recover the EoR component separately (unlike Scheme 1). Top panel: mean of the EoR power spectrum estimated from the GCR samples of the EoR signal across 800
iterations, with 95% confidence region shown. The injected noise level is shown as a dashed–dotted line. Middle panel: fractional residual between the true (input)
EoR power spectrum and the mean of the power spectra derived from the GCR samples from the top panel. Outside the central delays where there is degeneracy
between the foregrounds and EoR, the EoR signal recovery is essentially unbiased (within ∼5% at high delay in both cases). Biases inside the degeneracy region are
seen to take on slightly different shapes for Scheme 2 and Scheme 3; 68% confidence regions are also shown. Bottom panel: fractional residual between the true delay
spectrum and the inverse-Gamma sampled delay spectrum from each iteration, at the covariance sampling step of the sampling schemes. The zero residuals at the
central delays are due to the prior that is imposed at low delays on this sampling step. Recovery of the delay spectrum is approximately unbiased when using both
Gibbs sampling schemes under this test setup.
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for example, a Wiener filter method, which would be biased
toward zero signal (lower power) due to the flagged regions.

4.4. Dependence on Signal-to-noise Ratio

Figure 7 shows results from runs that use Scheme 3 to
examine the effect of changing the S/N of the visibility data,
with S/N values of 30, 3, and 0.5 at high delay being compared
(reflected by the noise levels in the top panels). The data in
these runs are unflagged to simplify the comparison. We
change the S/N by rescaling the overall amplitudes of the EoR
signal and foreground components, keeping the simulated noise
level the same.

The highest-S/N run obtains subpercent error bars on the
average signal power spectrum from the GCR step (middle
panels). Decreasing the S/N by an order of magnitude (center
panels) causes larger fluctuations in the residual, on the order of
5%, to appear in the recovered mean, along with an increase in
the size of the error bars (around 4% at high delay). At the
lowest S/N of 0.5 (right panels), the size of the fluctuations in
the residual approaches 15% at high delay, and an oscillation-
like structure is observed, perhaps associated with the taper that
has been applied. In the top panel of this run, the 95%
confidence interval is much more clearly visible than it has
been in any of the previous figures. This interval substantially
increases in size once the EoR signal power falls below the
noise level. Nevertheless, the recovered power spectra (in both

the middle and lower panels) remain unbiased with respect to
the true input power spectrum.

4.5. Foreground Covariance from an Incomplete Sky Model

Schemes 2 and 3 both require a model of the frequency–
frequency covariance of the foregrounds. Any foreground
model based on observations will inevitably be incomplete, as
there will be potentially large numbers of faint sources missing
from the source catalog used to generate the model. We test the
robustness of the Gibbs sampling schemes to this scenario.
Figure 8 shows the results from runs using a foreground
covariance matrix model that is generated from point-source
simulations with a lower source flux limit of 15 Jy, i.e.,
containing only the brightest sources. (The fluxes and spectral
indices of the bright sources are assumed to be known and
perfectly calibrated, however.) We carry out runs using
Schemes 2 and 3 with a data S/N of 3 at high delay, and
find that there is no qualitative difference with runs carried out
using the correct foreground covariance matrix.
The “correct” (containing faint sources) foreground covar-

iance matrix and the matrix generated without faint sources
differ element wise at subpercent level, with the first eight
eigenmodes (as used by the Scheme 2 sampler) being close to
identical on inspection. In Figure 9, we show the scalar product
of the first eight eigenvectors of the correct foreground
covariance matrix with the corresponding set of eigenvectors
for the foreground model without faint sources. If the

Figure 6. Flagging fraction comparison using the Scheme 2 sampler (foreground templates) for 800 iterations, and with a S/N of 5:1 at high delay in each case. Left
column: no flags applied. Centre column: continuous flag through 5% of the band. Right column: continuous flag through 10% of the band. The applied flagging is
approximately in the center of the frequency range and is applied to the data at all LSTs. Top panels show the mean Pempirical(τ) and 95% confidence regions compared
with the true power spectrum, and the injected noise level. Middle and lower panels show the fractional residual on Pempirical(τ) and P(τ) samples across all iterations.
Both statistics are approximately unbiased outside of the region of signal/foreground degeneracy (|τ| < 300 μs) in all flagging cases, though as the flagging fraction
increases more fluctuations are noted in the residual means. Flagging can be seen to increase the width of the Pempirical(τ) distribution, particularly at low delay. The
width of the P(τ) residual does not appear to be altered significantly when increasing the flagging fraction, as this is dominated by sample variance, but the recovery of
the “best-fit” delay spectrum (i.e., the central estimate shown with each error bar) becomes noisier.
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eigenvectors were identical, the real part of the plot (left panel)
would be the identity matrix, and the imaginary part would be
all zeros. As it is, the two sets of eigenvectors deviate from
orthogonality at around the 1% level or less.

Subject to the caveat that we have assumed a perfect model
of the brightest sources, this result is encouraging: the
frequency–frequency covariance matrix derived from a sky
model containing all point sources, when averaged through the
time direction, differs minimally from the same covariance
matrix generated without faint sources. This is likely due to a
few bright sources making a dominant contribution to the
structure of the foreground templates. Depending on the
baseline, there may be an ideal number of foreground templates
(covariance eigenmodes) to use that capture the bright source
contributions well, and change very minimally when the
catalog is incomplete. We have not studied the potential for
optimization further here, however.

5. Conclusions

Power spectrum estimation for 21 cm EoR experiments is
subject to a number of challenges, with particular difficulties
arising from the large dynamic range between the EoR signal
and foreground emission. Great care must be taken to avoid
coupling Fourier modes inside and outside the foreground
wedge, as otherwise leakage of the foregrounds into unconta-
minated regions of Fourier space will occur. A serious source
of leakage is ringing due to sharp edges caused by RFI
masking; Fourier analysis becomes ill-posed in the case of a cut
(partially flagged) domain, and some way must be found to

effectively model the contribution of the missing data to each
Fourier mode. A common approach is to “in-paint” a plausible
signal into the flagged regions to reduce the discontinuity with
the unflagged data. Alternatively, knowing the flagging pattern
and the covariance of the data, one could in principle “undo”
most of the leakage by weighting the data by an appropriately
masked inverse covariance matrix, which would serve to
decorrelate the Fourier modes that were correlated by the
masking. In both cases, the difficulty is in finding a model of
the data and/or covariance matrix that is sufficiently accurate.
In this paper, we have presented an approach that effectively

acts as a combined foreground separation, in-painting, and
power spectrum estimation method. It is based on constructing
a parametric model of the foregrounds, EoR signal, and their
respective power spectra/covariance, and estimating the joint
posterior distribution of all of these parameters using the
combined techniques of Gibbs sampling and GCRs. By
exploiting the structure of the model and the Gaussianity of
the likelihood, we can write the joint posterior of all the
parameters as an iterative sampling scheme across multiple
tractable conditional distributions for subspaces of the para-
meter space. With a Gaussian likelihood and suitable Gaussian
or uniform priors, conditional distributions in which the model
is linear in the parameters reduce to multivariate Gaussian
distributions, which can be sampled from efficiently using
GCR, a method based on a simple extension of Wiener
filtering. This is possible even for very high dimensional
spaces, potentially with hundreds of thousands of parameters.
A useful byproduct of GCR (and Wiener filtering for that
matter) is their ability to fill-in regions of missing data with

Figure 7. Signal-to-noise ratio comparison using the Scheme 3 sampler (joint foreground sampling) for 800 iterations, and with no flags applied. Left column: S/N 30.
Centre column: S/N 3. Right column: S/N 0.5. Top panels show the mean signal GCR power spectrum and 95% confidence regions compared with the true power
spectrum, and the injected noise level per LST (the other quantities are averaged over LST). The middle and lower panels show the fractional residual on Pempirical(τ)
and P(τ) across all iterations. As the S/N is decreased, larger fluctuations appear in the residuals of both statistics. The largest fluctuations in the residual appear at high
delay, where the signal model is noise-like (flat) and the S/N is lowest.
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plausible realizations of the data model, constrained by the
surrounding unmasked data and an estimate of the signal
covariance. A statistically well-posed in-painting step is
therefore naturally incorporated in this method.

The iterative nature of the method also allows us to start with
a relatively poor/simplistic estimate of the signal and fore-
ground covariance matrices, but then converge to much better
estimates through repeated sampling. Once convergence is
achieved, the other sampling steps (e.g., the GCR steps) are (on
average) using the true inverse covariance to weight the data,
making it in some sense close to an “optimal” way of
estimating the power spectra. This is not quite the same as
performing an optimal quadratic estimate of the power
spectrum, however, as in that case one is conditioning on a
fixed estimate of the data covariance rather than marginalizing
over it. The marginalization over the joint posterior of the
signal and its covariance should also prevent signal loss
occurring (see Kolopanis et al. 2019), as possible correlations
between the signal and the covariance are properly taken into
account. We have gone some way toward a practical
demonstration that this is the case in Section 4, in that we
have shown that our methods are largely unbiased under
Schemes 2 and 3, with Scheme 1 showing signal loss at a 5%
level at high delay. We note that a similar effect can be
achieved by marginalizing over (rather than simply optimizing)
the kernel hyperparameters in GPR methods (Kern &
Liu 2021).

The Gibbs sampling approach permits a variety of modeling
choices, particularly in terms of how to parameterize the
foregrounds and the EoR covariance matrix/power spectrum.
We have presented three Gibbs sampling schemes that sample

from the joint posterior distribution of the EoR signal, its
covariance, and some representation of the foreground
emission. All three schemes make use of per-baseline fore-
ground frequency–frequency covariance matrices estimated
from point-source simulations with similar properties (e.g.,
beams) to a subset of the HERA array.
We tested each of the samplers on a fiducial simulation

containing 1200 LSTs for a single 14.6 m E–W baseline, with a
Gaussian EoR signal model with a S/N of 5 at high delay and
5% of the frequency band randomly flagged. We found that the
“total signal” sampling scheme (Scheme 1), which samples the
full signal-plus-foregrounds covariance matrix from a complex
inverse Wishart distribution, is biased at the 5% level at higher
delays, but that this bias is not present when the S/N in the data
is increased. This, along with the fact that sampling from a
dense covariance matrix containing both foregrounds and EoR
signal (as opposed to the EoR signal only, which can be
modeled as diagonal in Fourier space) decreases the efficiency
of exploring the joint posterior distribution, leads us to disfavor
Scheme 1.
Conversely, we found that foreground template fitting

(Scheme 2) and joint foreground sampling (Scheme 3) are
able to recover unbiased signal power spectra when the
degeneracy between EoR and foreground Fourier amplitudes is
broken by a prior on the EoR signal at the lowest delays during
the covariance sampling step. This would initially seem to be
an overly strong prior assumption; however, we confirmed that
using an incorrect hard prior (e.g., a 50% larger fixed value
than the true EoR signal at low delay) does not influence EoR
recovery at other delays. A different prior, such as a continuity
prior, would be more appropriate in practice, and this would be

Figure 8. Runs with Schemes 2 (left panel) and 3 (right panel) making use of foreground covariance matrix priors that have faint sources below 15 Jy cut from the
catalog. These runs are carried out to test the robustness of the method to faint source loss. The flux cut is set very high in order to examine a reasonable worst-case
scenario. Both runs return an unbiased residual, and have very similar error bars to runs where the “correct” covariance matrix is used, e.g., the right panel is directly
comparable with the center panels of Figure 7.
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an important line of inquiry for future work with Gibbs
sampling schemes following this structure.

While our analysis has only considered a single 14.6 m, E–
W oriented baseline as an example, we anticipate similar
behaviors of our method for longer baselines and different
orientations, albeit with increasing spectral structure (and
therefore more correlations with low-delay 21 cm signal
modes) as the baseline length increases and as the orientation
changes. The simulation-derived foreground frequency–fre-
quency covariance matrices shown in Figure 3 give some sense
of how the correlation structure changes with baseline length,
with the 43.8 m baseline showing substantially reduced off-
diagonal values compared with the 14.6 m baselines, for
instance. Orientations away from the E–W direction also have a
reduced level of frequency correlation, including enhanced off-
diagonal components in the imaginary part. Studying the
sensitivity of the method to these features, and the accuracy
with which they are modeled, is left to future work.

We further tested the foreground template and joint
foreground samplers under a range of flagging and noise
conditions. We found that the width of the error bar on the
recovered signal power spectrum increases when the flagging
fraction is increased, particularly at lower delay, which is
expected as more information has been lost by flagging a larger
fraction of the data. We find that a lower S/N of the data also
increases the uncertainty on the recovered EoR power
spectrum, particularly when it falls below 1, again as expected.

Finally, we tested the robustness of the method to missing
faint sources in the point-source sky model used to estimate the
foreground frequency–frequency covariance matrix. We found
no qualitative difference in the recovery of the EoR power
spectrum that was achieved, despite using quite a high flux cut
of 15 Jy to model missing faint sources. We attribute this result
to the fact that the covariance matrix of point-source
foregrounds (and particularly the leading principal compo-
nents) changes comparatively little when faint sources are
removed; the brightest sources appear to dominate its

frequency structure. An important caveat is that we have
ignored the contribution from diffuse foreground emission,
which is likely to play an important role in determining the
frequency structure of the foreground component, particularly
for the shortest baselines.
Another caveat is that we have assumed that the EoR signal

realizations are uncorrelated between time samples. This is an
optimistic assumption, as one would only expect them to be
independent on timescales of roughly the primary beam
crossing time (i.e., long enough for a beam-sized patch of the
sky to fully rotate through the primary beam mainlobe).
Coherent averaging of visibilities on timescales of a few
minutes would help a realistic analysis approach this idealiza-
tion, but it will still be important to quantify the time–time
covariance of the signal and foregrounds in order to avoid
overestimating the amount of independent information con-
tained within a given data set. The mathematical formalism
required to incorporate time (as well as frequency) correlations
should be a straightforward extension to what we have
presented here, but the computational cost may be considerably
higher.
Both the foreground template and joint foreground fitting

schemes appear to be sufficient to recover the EoR power
spectrum from individual baselines in an unbiased way, and
with similar error properties. In the absence of significant
differences in recovery of the EoR, we note that the foreground
template sampler (Scheme 2) completes iterations approxi-
mately twice as fast as the joint sampler (Scheme 3).

We are grateful to H. Garsden, B. Hazelton, N. Kern, A. Liu,
and M.Morales for useful comments and suggestions. This
result is part of a project that has received funding from the
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agreement No. 948764; P.B. and M.J.W.). P.B. and F.K.
acknowledge support from STFC grants No. ST/T000341/1
and No. ST/X002624/1.

Figure 9. Projection of the first eight foreground eigenmodes for the “correct” foreground covariance matrix (vertical axis) onto the ones for the foreground model
with a flux cut at 15 Jy (horizontal axis), calculated as g gfull faint· † . The real part is shown on the left and the imaginary part on the right. The color scheme is chosen
arbitrarily to highlight regions of similar value for the projection.
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Data Availability

The code used to generate the results for this paper is
available at https://github.com/fraserlkennedy/Hydra-PSpec-
prototype.

Appendix A
Wiener Filter Bias

Despite the Wiener filter being the MAP solution for the
combined signal s component of a data vector d= s+ n, in
general it is a biased estimator of s when the mean of the signal
component differs from zero. The expectation value of the
Wiener filter solution (Equation (8)) is

á ñ = +- - - -s S N N s , A1wf
1 1 1 1[ ] ¯ ( )

where we have defined º á ñs s¯ , i.e., the true mean of the signal.
Thus, in general 〈swf〉≠ s, but the bias vanishes when the mean
of the signal =s 0¯ . A separate bias is also incurred on the
variance of the Wiener filter, which impacts two-point statistics
like the power spectrum. Taking the covariance of
Equation (8), with data d drawn from the appropriate statistical
ensemble (i.e., not fixed), we find
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where the noise covariance N has been assumed to be diagonal.
If the data are instead treated as being fixed, we find

=sCov 0wf( ) , which is equivalent to the statement that the
Wiener filter with given data and prior assumptions is unique.
Comparing with the covariance of the GCR equation solution
(Equation (12)), and noting that independent Gaussian random
variables are uncorrelated, w w w wá ñ = á ñ = á ñ =n s 00 1 0 0

† † †

and w wá ñ = Ii i
† , we obtain
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The GCR equation solutions, scr, therefore have strictly greater
variance than Wiener filter solutions, swf, and the additional
variance has the form expected from the rearrangement shown
in Equation (10): a sum of inverses, stemming from the product
of Gaussian distributions in the posterior of Equation (4). This
difference in variance is expected, as the Wiener filter is a
summary statistic (the MAP estimate); summary statistics can
typically be measured with lower variance than the variance of
the parent distribution.

Appendix B
Sampling from the Complex Inverse Wishart Distribution

Equation (18) requires us to draw samples from a complex
inverse Wishart distribution. This appendix briefly describes a
practical algorithm to perform the necessary random draws.

Functions to draw random matrices from the real Wishart
distribution are available in numerical libraries such as scipy.

Real inverse Wishart samples can be drawn by noting that the
inverse Wishart distribution for a covariance matrix C is
closely related to a Wishart distribution where the covariance is
replaced by the precision matrix, P= C−1 (e.g., Zhang 2021).
A similar connection persists for the complex inverse

Wishart distribution, and so to sample from it we only need
to be able to sample from a complex Wishart distribution.
Unfortunately, a suitable function is not readily available in
most standard numerical libraries. A useful observation is that a
complex multivariate Gaussian distribution with N parameters
can be written as a real multivariate Gaussian with 2N
parameters by splitting the complex numbers into their real
and imaginary parts. Care must be taken to define the blocks of
the resulting covariance matrix correctly (e.g., Goodman 1963),
as the general complex multivariate Gaussian distribution
actually depends on two covariance-like objects. For a vector
of complex Gaussian random variates z, these are the
covariance, C∝ zz† (note the conjugate transpose), and the
relation matrix, D∝ zzT. In this work we are interested in the
“circular” case where D= 0, since the relative magnitude of D
compared with C for our visibility simulations is below the
expected level of noise given the number of samples used to
estimate the covariance (<0.5%), and furthermore the posterior
distributions we later aim to sample from are dependent on the
information contained in C rather than D.
With an appropriate splitting of the complex parameters into

their real and imaginary parts, and the covariance matrix
replaced with the precision matrix as explained above, it is then
possible to use the standard real Wishart sampling function to
make random draws from the inverse Wishart distribution for
the 2N real and imaginary parameters. We generate a 2N× 2N-
sized real block matrix of the form

=C
C C
C C

B1block
RR IR

RI II

⎛
⎝

⎞
⎠

( )

from the complex covariance matrix we wish to sample from
using the relations

= =

= = -

C C C C

C C C C

1

2
;

1

2
;

1

2
;

1

2
, B2

RR II

IR RI
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( ) ( ) ( )

R R
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where the relation matrix D has been assumed to be zero. We
then use a scipy routine to generate a real-valued inverse
Wishart sample using the Cblock matrix, which carries out a
Wishart sample using the precision matrix -Cblock

1 . This block-
form sample contains a random draw of not only the covariance
information C but also the relation information D, and so it is
not consistent with D= 0 in general. Because we are only
interested in sampling C, we calculate this quantity directly
from the block-form sample using the relation

= + + -C C C C Ci . B3RR II IR RI( ) ( )

A similar procedure is described in, for example, Wilson et al.
(2018) and Zhang (2021).
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