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Abstract: Climate variability and recurrent droughts have caused remarkable strain on water
resources in most regions across the globe, with the arid and semi-arid areas being the hardest hit.
The impacts have been notable on surface water resources, which are already under threat from
massive abstractions due to increased demand, as well as poor conservation and unsustainable land
management practices. Drought and climate variability, as well as their associated impacts on water
resources, have gained increased attention in recent decades as nations seek to enhance mitigation and
adaptation mechanisms. Although the use of satellite technologies has, of late, gained prominence in
generating timely and spatially explicit information on drought and climate variability impacts across
different regions, they are somewhat hampered by difficulties in detecting drought evolution due to
its complex nature, varying scales, the magnitude of its occurrence, and inherent data gaps. Currently,
a number of studies have been conducted to monitor and assess the impacts of climate variability and
droughts on water resources in sub-Saharan Africa using different remotely sensed and in-situ datasets.
This study therefore provides a detailed overview of the progress made in tracking droughts using
remote sensing, including its relevance in monitoring climate variability and hydrological drought
impacts on surface water resources in sub-Saharan Africa. The paper further discusses traditional
and remote sensing methods of monitoring climate variability, hydrological drought, and water
resources, tracking their application and key challenges, with a particular emphasis on sub-Saharan
Africa. Additionally, characteristics and limitations of various remote sensors, as well as drought
and surface water indices, namely, the Standardized Precipitation Index (SPI), Palmer Drought
Severity Index (PDSI), Normalized Difference Vegetation (NDVI), Vegetation Condition Index (VCI),
and Water Requirement Satisfaction Index (WRSI), Normalized Difference Water Index (NDWI),
Modified Normalized Difference Water Index (MNDWI), Land Surface Water Index (LSWI+5),
Modified Normalized Difference Water Index (MNDWI+5), Automated Water Extraction Index
(shadow) (AWEIsh), and Automated Water Extraction Index (non-shadow) (AWEInsh), and their
relevance in climate variability and drought monitoring are discussed. Additionally, key scientific
research strides and knowledge gaps for further investigations are highlighted. While progress has
been made in advancing the application of remote sensing in water resources, this review indicates
the need for further studies on assessing drought and climate variability impacts on water resources,
especially in the context of climate change and increased water demand. The results from this study
suggests that Landsat-8 and Sentinel-2 satellite data are likely to be best suited to monitor climate
variability, hydrological drought, and surface water bodies, due to their availability at relatively low
cost, impressive spectral, spatial, and temporal characteristics. The most effective drought and water
indices are SPI, PDSI, NDVI, VCI, NDWI, MNDWI, MNDWI+5, AWEIsh, and AWEInsh. Overall,
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the findings of this study emphasize the increasing role and potential of remote sensing in generating
spatially explicit information on drought and climate variability impacts on surface water resources.
However, there is a need for future studies to consider spatial data integration techniques, radar data,
precipitation, cloud computing, and machine learning or artificial intelligence (AI) techniques to
improve on understanding climate and drought impacts on water resources across various scales.

Keywords: aridity; climate change; drought assessment; satellite derived metrics; satellite data;
sub-Saharan Africa; water quantity

1. Introduction

Drought is a complex, naturally occurring hazard, resulting from climate variability and change,
leading to a change in the water balance, due to drastic decreases in precipitation over an extended
period of time [1–3]. Droughts occur in all climatic zones, irrespective of the region’s normal
precipitation rates and trends [4], and its onset and cessation are difficult to detect, rendering it
highly unpredictable, unlike other natural disasters [5]. Characterizing drought impacts is difficult,
because they differ spatially and temporally [6]. Atmospheric climate events, such as El Nino Southern
Oscillation (ENSO), may cause an increase in the frequency and intensity of droughts [7]. Lack of
precipitation, high evapotranspiration rates, and over-exploitation of water resources can lead to
drought [8]. The impacts of droughts are diverse, and these can be either direct or indirect. For example,
drought results in crop and biodiversity losses, loss of livestock/wildlife, disruptions in hydropower
generation, food losses, malnutrition, famine, and even death. In 2011, poor rains in Mauritania
led to drought conditions which caused poor harvests, loss of livestock, and an increase in food
prices [9]. In Mali, a drought impacted farming, leading to starvation in 2015, and 300,000 people
suffered from food insecurity [10]. In Cote d’Ivoire, a drought in 2018 led to 70% of the dams supplying
cities to run dry [11]. In 2018, approximately 3.7 million people in South Africa were affected by
drought, which was caused by below average precipitation rates [12]. In Madagascar at the end of
2019, more than 2.6 million Malagasy were affected by drought, resulting in severe food shortages,
which led to famine [13]. In Lesotho, in 2020, approximately 500,000 people are threatened with hunger,
and it is estimated that more than 30% of the population will experience acute food insecurity due to
ongoing drought conditions [14]. Therefore, to reduce and mitigate these impacts, there is a need for
effective drought and climate variability monitoring. Surface water resources are the major source
of freshwater for agriculture, drinking, sanitation, and energy for many countries of sub-Saharan
Africa [15]. However, previous studies by [6,15,16] and [17] demonstrate that surface water bodies are
vulnerable to climate change. Thus, surface water resources need to be monitored more accurately to be
able to: (i) Determine their state, (ii) assess the influence of drought conditions and climate variability
on their availability, as well as (iii) ensure their sustainable utilization. This paper therefore seeks to
provide a detailed overview on the progress of remote sensing applications in the monitoring of climate
variability and drought impacts on surface water resources in sub-Saharan Africa. To do this, the paper
first highlights the importance of monitoring climate variability and drought on water resources in
the region. This was followed by the details on how relevant literature were searched and consulted,
before highlighting key scientific research strides and knowledge gaps for further investigations.

2. Importance of Monitoring Climate Variability and Drought on Water Resources in
Sub-Saharan Africa

During the first two decades of the 21st century, 79 global big cities, including those in sub-Saharan
Africa, experienced severe drought conditions [18]. It is also projected that the occurrence of drought
events is likely to increase and become more intense in the future, due to climate change and
variability, which will further pose additional strain on the water supply [19,20]. Droughts affect
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both water quantity and quality. In terms of water quality, reduced flows result in a decrease in
organic matter, nutrients, and sediment pathways in surface water streams [21]. Reduced flows can,
in turn, affect wetlands’ stability in providing habitats for wildlife and aquatic species. Droughts can
also cause an intrusion of saline water into groundwater systems, a decrease in groundwater levels,
and water supply problems. The occurrence of droughts results in limited water available to support
and sustain the various social, environmental, and economic services. In this regard, it is a global
priority to reduce the social, environmental, and economic impacts of droughts and climate variability,
as well as to work towards creating resilient societies [22]. Monitoring climate variability and droughts
is essential for planning and management of water resources for various social, environmental,
and economic services, which include public supply and sanitation, ecosystems, hydroelectricity,
mining, and agriculture [16]. Understanding the different dimensions of droughts, such as historical
droughts in the region, their impacts, and their occurrence is also a crucial step towards developing
effective models to predict and investigate different drought occurrences [23]. The prediction of
drought occurrence permits drought preparedness [24] and necessitates the development of drought
specific contingency plans, such as water restrictions and the use of alternative water sources [25].

Water bodies are vulnerable to climate change and therefore, they need accurate, timely, and routine
monitoring [26]. This will help in determining the onset of drought conditions in order to come up
with mitigation and adaptation strategies and avoid loss of lives and crops, and famine [27]. On the
other hand, monitoring the size and dynamics of water bodies is vital for water resource management,
to determine how much water is available to supply and maintain the ecological state of surrounding
ecosystems [21]. In addition, monitoring the quantity of water resources can be used as a method to
predict droughts and therefore useful in arid and semi-arid areas, particularly in sub-Saharan Africa.

So far, a lot of scientific research work has been conducted to monitor these droughts and associated
impacts of climate variability [28,29], however, knowledge on the advancements in remote sensing
applications and data processing techniques, particularly in sub-Saharan Africa, remains poorly
documented. So far, droughts are monitored using paleoclimatology, satellite data, physical based
techniques, e.g., floats, sensors, buoy systems, pressure type equipment, ultrasonic and radar techniques,
as well as inferences from climate variability modelling studies. Thus, to achieve the objective of
this work, the paper describes methods used in reviewing and synthesizing relevant literature before
identifying key research advancements as well as knowledge gaps warranting further investigations.

3. Materials and Methods

Literature Search

To gather and determine the most relevant literature for this particular study, different search
strategies were adopted. The literature search consisted of English peer-reviewed articles and
relevant reports on droughts that were published between 1900 and 2020 covering sub-Saharan
Africa. Relevant articles were identified, using targeted searches in Google scholar, Scopus, and the
Web of Science. The criteria for the selection included (i) the use of remote sensing in drought,
climate variability, and surface water monitoring; (ii) geographical location and year of occurrence;
and (iii) publication in a scientific journal. This review omitted research that did not use geospatial
technologies from the selection. Each article was assessed according to the accuracy of results and
year of publication. The articles were then grouped into three main categories, namely (i) drought
monitoring using remote sensing, (ii) surface water monitoring using remote sensing, and (iii) impacts
of drought/or climate variability (Figure 1). Most interestingly, it was observed that in the category
on drought monitoring, using remote sensing constituted more than half of the review material and
consists of remote sensing data. Much of this work focused on drought risk assessment and drought
severity mapping, using various indices. The third and final category, impacts of drought, consisted of
articles analyzing effects of droughts on various sectors in different countries of sub-Saharan Africa.
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Various online reports and articles were also consulted in order to tabulate the occurrence of droughts
in the region from 1900 to 2020 (Table 1).

Figure 1. Number of journal article publications on drought monitoring using remote sensing,
surface water monitoring using remote sensing, and impacts of drought and/or climate variability.

Overall, the literature showed that the use of remote sensing for drought and surface water
body monitoring has increased significantly in recent years. However, remote sensing applications
have not diversified, as there are still many gaps in research, suggesting that its applicability has not
been fully tested or exploited for monitoring purposes. Furthermore, not enough studies have been
conducted using remote sensing for drought and surface water body monitoring, with approximately
only 18,000 articles regarding drought monitoring using remote sensing published from 2010 to 2019
(Figure 1). This observation implies that remote sensing needs to be harnessed to further advance its
scientific contribution in various application areas including, but not limited to, drought monitoring,
surface water body monitoring, and climate variability, especially in Africa.

4. Definitions, Occurrence, and Impacts of Droughts and Climate Variability

To date, several definitions of drought have been proposed depending on the perspective from
which drought is being assessed [6]. For instance, the Food and Agriculture Organization (1983) defines
drought as the percentage of years with poor crop yield due to the lack of soil moisture, whereas World
Meteorological Organization (1986) describes it as a sustained, extended deficiency in precipitation.
On the other hand, the UN Secretariat (1994) defines it as a naturally occurring phenomenon that
exists when precipitation is significantly below normal recorded levels, causing serious hydrological
imbalances that adversely affect land resource production systems. Thus, it is important to note
that the drought definitions significantly vary across different fields depending on the variables
such as concepts, observational parameters, and measurement procedures used to describe this
phenomenon, leading to different categorizations [8]. Droughts are usually classified into four different
categories [6,29,30], namely meteorological, hydrological, agricultural, and socio-economic drought [31].
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Recently, ground water drought was proposed as the fifth category by [29]. However, few studies have
been conducted on groundwater drought.

Meteorological drought occurs when there is a lack of precipitation over an extended period of
time [5,25,32]. Prolonged meteorological droughts lead to a decrease in soil moisture content that can
result in agricultural droughts [5]. When streamflow, groundwater, or total water storages are below
long-term means, hydrological drought occurs [33], meaning that stream flows and reservoir levels are
low [5]. This means that a given water source cannot supply the required amount of water needed for
its intended use, leading to limited water supply [3]. In contrast, agricultural drought occurs when
there is a deficit in soil moisture [1]. The lack of water caused by insufficient precipitation, in soil
and subsoil affects crop growth, thereby causing a decrease in crop yields [1,25,33]. Soil moisture is
dependent upon several factors, such as actual evapotranspiration and potential evapotranspiration,
physical and biological properties of soil, and the biological characteristics of specific plants [34].
Socio-economic drought occurs when the drought process affects production, because water resources
cannot meet water demands, leading to a shortage of certain economic goods [1]. In this regard,
the demand for economic goods is greater than supply, due to a shortage of water supply [29]. Thus,
socio-economic drought is driven by the other three drought categories [5]. For groundwater drought,
the lack of precipitation and high evapotranspiration rates result in low soil moisture, leading to low
groundwater recharge [35,36]. Low groundwater recharge, in turn, causes low groundwater levels,
thereby reducing groundwater discharge [29]. As the total amount of groundwater available is difficult
to determine, this drought category is usually defined by a decrease in groundwater level, groundwater
storage, and groundwater recharge or discharge [37].

Drought-related impacts are complex due to their effects on various water-dependent sectors,
such as recreation and tourism, energy, and transportation, as well as the environment [6].
The impacts of drought are classified as direct or indirect. For example, a reduction in crops,
land degradation, deforestation, increased fire hazard, reduced energy production, a decline in water
levels, increased mortality rates of fauna, and damage to wildlife and aquatic ecosystems are examples
of direct impacts [6,13]. A decrease in water levels can lead to water shortages, and therefore water
supply will be disturbed. Many countries experience drought-induced crop failure and water shortage
during drought periods [32]. Indirect impacts are the consequences of the direct impacts mentioned
previously. Decreases in crop, rangeland, and forest productivity can lead to farmers and agricultural
businesses running at a loss, thereby causing a decrease in food and timber, unemployment, and an
increase in crime rates [6]. Indirect losses often exceed direct losses, since these can cascade to other
critical socio-economic sectors.

Moreover, droughts and climate variability have severe consequences on the environment,
economy, and human wellbeing [38], and the impacts are connected through couplings in
land-atmosphere processes [32]. Groundwater resources become stressed when the region experiences
an extended period of decreased rates in precipitation and high temperatures, which, in turn,
affect groundwater recharge [8]. For example, droughts across the globe, particularly in sub-Saharan
Africa [13], affect surface water and groundwater resources, which lead to a lack of water supply,
reduction in water quality, crop failure, and a change in riparian habitats [4]. The occurrence of
droughts in developed countries, with adequate coping mechanisms, leads to economic losses that can
be alleviated through contingency funds or insurance schemes. However, in poor countries, like those
in Africa and South America, drought can lead to food shortages and famine [38].

The frequency of drought in Eastern Africa (EA) has doubled from once every six years to once
every three years since 2005 [13]; and between 2008 and 2010, droughts affected over 13 million
people in EA [39]. Djibouti, Eritrea, Ethiopia, and Somalia, also known as the Horn of Africa (HOA),
experienced severe droughts from 2010–2011, which caused food insecurity, famine, malnutrition,
and affected approximately 20 million people and led to a significant loss of lives [40]. In Somalia,
Kenya, and Ethiopia, drought led to socio-economic instabilities, with Somalia alone recording 250,000
deaths during the same period [13,40] (Table 1).
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Droughts have been recurring in sub-Saharan Africa in the past 30 years [39]. During the 1991/1992
drought, agricultural production in Zimbabwe was reduced by 45% and the gross domestic product
(GDP) decreased by 11% [1,41], leading to severe food insecurity and famine, due to its dependence
on rain-fed agriculture [38]. The Western Cape of South Africa experienced a severe drought from
2015–2018 [1,17,42], and dam levels dropped to approximately 20%, affecting ±3.7 million people [24].
Water restrictions reached level 6b, meaning that the consumption of water was limited to 50 L or
less per person per day, and the use of boreholes was discouraged to preserve groundwater resources
while the use of non-potable water was encouraged to water fields and gardens [43,44]. A detailed
summary on the occurrence and impacts of major recorded droughts in sub-Saharan Africa is provided
in Table 1. Overall, west Africa has experienced the highest number of droughts, followed by east
Africa, whereas central Africa experienced the least number of droughts. As for individual countries,
Tanzania in east Africa recorded the highest number of droughts. Figure 2 also indicates the risk of
drought occurrence globally based on the Global Precipitation Climatology Centre (GPCC) Drought
Index. It can be observed that the majority of countries in sub-Saharan Africa are high-risk areas
of drought occurrence. This further emphasizes the need for continuous monitoring of droughts in
the region.

Figure 2. Global drought map, calculated by using the Global Precipitation Climatology Centre (GPCC)
Drought Index, indicating the risk of drought occurrence globally, with red zones showing high risk
areas and blue zones indicating low risk areas. (Source: National Integrated Drought Information
System (NIDIS)).

Moreover, drought occurrence affects several Sustainable Development Goals (SDGs) envisaged in
the United Nations 2030 agenda [45]. The occurrence of drought affects Goal Number 1 “No poverty”,
Goal Number 2 “Zero hunger”, Goal Number 6 “Clean water and Sanitation”, Goal number 11
“Sustainable cities and communities”, Goal number 12 “Responsible production and consumption”,
Goal number 13 “Climate action”, and Goal number 15 “Life on land” [45,46].
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Table 1. Occurrence and impacts of major recorded droughts in Africa from the 1900s. No data available for Equatorial Guinea, Gabon, and Sierra Leone.

Region/Country Drought Years Number of Events Droughts Effects

North Africa 32

Algeria 1910–1920; 1945–1947; 1973–1980;
1981–1983; 1999–2002 5 90% loss of livestock in 1945; decrease in groundwater levels, shallow wells,

dry springs, wildfires, crop loss, and production loss causing famine in 1966.

Egypt 1972–1973; 1978–1987; 1990–2002;
2010–2011 4 Unemployment rates increased, as 55% of the population were employed by the

agricultural sector and riparian vegetation was severely affected.

Libya 1945; 1950s; 1960s 3 The 1945 drought led to loss of cattle. The details are not available due to political
issues and poor record keeping

Morocco
1917–1920; 1930–1935; 1945–1950;
1981–1984; 1991–1995; 1999–2003;
2015–2016; 2018

8
Disruptions in water supply, agricultural sector, and cereal production. In 1999,
approximately 275,000 people were affected, and economic damages were $900
million.

Sudan 1967–1973; 1980–1984; 1985–1993;
2008–2009; 2011–2012; 2017–2019 6

Approximately 7 million people suffered from severe food insecurity in 2019,
and approximately 21,000 people are experiencing famine conditions. In 2016,
Sudan experienced agricultural losses of over 2 million dinars ($900 million).

Tunisia 1961–1969; 1987–1988; 1993–1995;
1999–2002; 2000–2008; 2015–2016 6 Disruption in water supply, increase in salinity in water retentions, and decreased

production of grains and forages.

Central Africa 22

Angola 1981–1985; 2004–2006; 2012–2013;
2019 4

Approximately 1.8 million people and 2.3 million people were affected by the
drought in 2012 and 2019, respectively, leading to food insecurity and
malnourishment.

Cameroon 1971; 1990; 2001; 2005; 2011–2015 5 Cereal production fell by 30,000 tons in 2011 when compared to 2010, leading to
inflation. In 2015, 2.7 million people suffered from food insecurity.

Central African
Republic 1963; 1983 2 75% of Central African people rely on agriculture for their livelihoods,

while 1.9 million people were experiencing severe food insecurity.

Chad 1966–1967; 1969; 1993–1997;
2001–2005; 2012–2013; 2017–2018 6

Drought and food insecurity affected approximately 3.4 million people, leading to
high unemployment rates, as most people were employed in the agricultural sector
and are dependent upon subsistence farming.

Democratic
Republic (DR)

of Congo
1978; 1983; 2017–2020 3 The 2017 drought period affected hydroelectric power generation and left

13.1 million people to be severely food insecure.
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Table 1. Cont.

Region/Country Drought Years Number of Events Droughts Effects

Sao Tome &
Principe 1947; 1983 2 Drought led to food insecurity and severe famine and affected about 93,000 people.

West Africa 83

Benin 1977; 1984; 1992; 2010–2013;
2017–2019 5 In 2017, approximately 80% of the population dependent on the agricultural sector

was unemployed.

Burkina Faso 1968–1974; 1976; 1995; 1998; 2001;
2011; 2015–2019 7

Drought during 2016, led to water shortages and affected 2 million people, as over
80% of the population relied on subsistence farming, leading to malnutrition and
food insecurity.

Republic of
Cabo Verde

1941–1943; 1947–1948; 1969; 1977;
1998; 2002; 2015–2019 7

Drought in the 1940s killed approximately 45,000 people due to starvation,
and Santiago lost 65% of its population. In 2017, most farmers lost most of their
production, which caused severe food insecurity in 2018.

Cote d’Ivoire 1970–1974; 1976–1993; 2000–2005;
2006–2010; 2015–2019 5

Drought in 2005 caused disruptions in agricultural sector, reducing harvests,
per capita incomes, and water supply. In 2018, dams that supply 70% of cities ran
dry.

Gambia 1968–1974; 2012; 2016–2019 3
The 2012 drought led to 70% of crop failure, triggering food insecurity and high
unemployment rates, as 78% of the population is employed by the agricultural
sector.

Ghana 1980–1984; 1997–1998; 2006–2007;
2010–2012 4 Approximately 35% of total food production was destroyed in the 1980s, leading to

food shortages, and in 2006 there was a disruption of hydropower.

Guinea 1980; 1998; 2015–2016; 2018–2019 4
Drought led to disruption of income, interruptions in the agricultural sector,
and disturbed river regimes, and 2.5 million people were affected in 2016 and
suffered from severe food shortages.

Guinea Bissau 1910; 1940; 1969; 1980; 2002;
2004–2006 6 In 2002, drought affected 100,000 people, and 32,000 people in 2004 suffered from

food security through disruptions in the production of agriculture and livestock.

Liberia 1972–1973; 1983–1984; 1991–1992;
2019 4 In 2019, 360,000 children under the age of five suffered from acute malnutrition due

to extreme food shortages, which led to famine and death.

Mali 1982–1984; 2001; 2005–2006;
2010–2011; 2017–2019 5

Drought impacted farming, leading to starvation. In 2015, 300,000 people suffered
from food insecurity. Mali experienced severe food shortages, which led to famine
in 2019.
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Table 1. Cont.

Region/Country Drought Years Number of Events Droughts Effects

Mauritania
1910–1916; 1940s; 1968–1974;
1976–1978; 1993–1997; 2010–2012;
2017–2019

7

In 2011, drought led to poor harvests, loss of livestock, and an increase in food
prices, and in 2012 approximately 700,000 people in southern regions were affected
by food shortages, while in 2017 and 2018, 379,000 and 350,000 people were food
insecure, respectively.

Niger 1966; 1980; 1988–1990; 1997; 2001;
2005–2007; 2009; 2010–2012 8 Recurrent droughts led to food crises, loss of livestock, and desertification; in 2010, 8

million people needed food due to failure of crops.

Nigeria 1911–1914; 1951–1954; 1972–1973;
1984–1985; 2007; 2011 6

Crop and livestock production are a source of income for many people in Nigeria.
In 2010, 65% of the population worked in the agricultural sector, causing an increase
in unemployment rates.

Senegal 1979; 1980; 2002; 2011; 2014;
2017–2018 6 In 2018, drought left 245,000 people food insecure and 23,000 children suffering

from severe acute malnutrition due to crop failure and loss of livestock.

Togo 1942–1943; 1971; 1976–1977; 1980;
1982–1983; 1989 6 Severe famine due to a decrease in agricultural yields, death of livestock, and a

decrease in agricultural revenue. 71% of Togolese were vulnerable to food security.

East Africa 64

Burundi 1999; 2003–2005; 2008–2010 3 In 2004, drought affected 2 million Burundians and affected the agricultural sector,
which is the main source of livelihood for 90% of the population.

Comoros 1981; 2011–2012 2 Drought affected food security and led to food shortages.

Djibouti 1980–1983; 1988; 1996–1999; 2005;
2008–2014 5

In 2014, approximately 250,000 people were affected by more than four years of
consecutive drought, and 18% of the population suffered from malnutrition due to
crop loss and livestock.

Eritrea 1993; 1998–1999; 2000–2004; 2008 4 In 2004, 600,000 Eritreans were affected by drought, and 19% of the population
suffered from acute malnutrition.

Ethiopia 1973–1979; 1984–1985; 1997–1999;
2005; 2008–2009; 2015–2020 6

Continuous droughts led to crop failure, which caused food insecurity and famine.
In 1984, drought led to famine, which killed approximately 1 million people. In 2017,
7.7 million Ethiopians experienced severe famine and needed emergency food aid.

Kenya 1971–1975; 1994–1996; 1999–2000;
2004–2006; 2008–2012; 2016–2020 6

Drought led to disruptions in hydropower generation, increasing unemployment
rates and loss of lives, crops, and livestock. In 2010, 10 million people were at risk of
being food insecure due to failed harvests from drought conditions.
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Table 1. Cont.

Region/Country Drought Years Number of Events Droughts Effects

Madagascar 1981; 1988; 2000–2002; 2005–2007;
2010–2012; 2015–2020 6

In 2016, 1.1 million Malagasy suffered from food insecurity due to crop failure,
as agricultural production was 90–95% lower than usual. At the end of 2019,
more than 2.6 million Malagasy were affected by drought.

Mozambique 1991–1992; 2001–2003; 2005–2007;
2016–2019 4

In 2010, 81% of Mozambicans relied on agriculture for food and employment,
therefore increasing unemployment rates and food shortages, and by 2019,
more than 60,000 Mozambicans were affected and in some areas 60% of crops
were lost.

Rwanda 1976; 1984; 1989; 1996; 1999; 2003;
2016–2019 7 More than 100,000 Rwandese were affected by drought in 2016 due to crop failure,

which led to food shortages, and by 2017, 6.7 million Rwandese received food aid.

Somalia 1964; 1999; 2004; 2005; 2008;
2010–2020 6

The worst recorded drought after 60 years was experienced between 2010 and 2011,
as more than 250,000 people died, and in 2017, 2.1 million Somalians were displaced
by drought, and 6.7 million people suffered from food shortages.

Tanzania 1996; 1999–2002; 2004–2006; 2011;
2016–2019 10

In 2011, Tanzanians were affected by water and food shortages, and in 2017 the
agricultural sector suffered a loss of approximately $200 million, causing food prices
to increase by 12%.

Uganda 1998–1999; 2005, 2008; 2010–2011;
2014–2019 5

At least 200,000 Ugandans are affected every year due to drought conditions, and in
2010, the drought caused $1.2 billion of damages, which was equivalent to 7.5% of
Uganda’s GDP.

Southern Africa 53

Botswana 1981–1984; 1990; 2005; 2012–2013;
2014–2020 5

In 2015, some areas experienced decreased water pressure and water supply was
cut-off in some areas, and in 2019, 40,000 cattle died and led to a 70% drop in land
cultivation.

Lesotho 1968; 1983; 1990; 2002; 2007; 2011;
2015–2020 7

In 2019, approximately 71,000 people suffered from food insecurity, and in 2020
approximately 500,000 people are threatened with hunger, and it is estimated that
more than 30% of the population will experience acute food insecurity.

Malawi 1987; 1991–1992; 2001–2002;
2005–2007; 2012; 2016–2017 6 In 2016, maize production decreased by 12%, leading to food shortages. In 2017,

6.5 million Malawians were food insecure due to poor agricultural seasons.

Mauritius 1999; 2011–2013 2 The agricultural sector lost $160 million in 1999 due to crop failure and in 2011,
only 15–20% of the harvest was viable.
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Table 1. Cont.

Region/Country Drought Years Number of Events Droughts Effects

Namibia 1981; 1990; 1995; 1998; 2001; 2002;
2013; 2015–2020 8

In 2013, there were 463,581 people that suffered from food insecurity, and in 2019
The Agricultural Bank of Namibia’s employment opportunities from the
agricultural sector decreased from 34% in 2012 to 23%.

Seychelles 1998–1999; 2010–2011 2 The 1998 drought led to bleaching of 90% coral reefs.

South Africa 1964; 1986; 1988; 1990; 1995; 2004;
2015–2019 7

The worst drought experienced in 30 years occurred in 2015, and in 2018
approximately 3.7 million South Africans were affected by drought, leading to
cut-offs of water supply in certain areas and to nation-wide water restrictions.

Swaziland 1981; 1984; 1990; 2001; 2007;
2014–2020 5 In 2016, 80,000 cattle died; and maize production dropped by 67% between 2015

and 2016, and in 2017, 308,059 people suffered from food insecurity.

Zambia 1981; 1983; 1990–1995; 1999–2002;
2004–2005; 2015–2020 6

Drought in 1981 led to disruption in maize production, which led to severe famine,
and in 2019, 1.3 million people needed food aid, as maize production dropped from
2.4 million tons to 2 million tons, and there was a disruption in hydropower
generation.

Zimbabwe 1981–1983; 1986–1987; 1991–1992;
2010–2011; 2015–2020 5

In 2019, 2.3 million Zimbabweans needed food aid, and maize production dropped
by more than 70% compared to 2017/18, and the death of livestock affected
2.2 million people in cities and 5.5 million people in rural villages.
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Droughts and climate variability cannot be completely understood, without understanding their
impacts on the environment and societies [47]. Monitoring trends and profiling their impacts on
surface water resources is important, as it helps to make informed decisions to address and mitigate
the impacts [48]. Understanding the impacts of historical droughts can aid in future predictions or
the development of possible adaptation and mitigation measures. Advancements in technology have
expanded the ability to monitor droughts and surface water resources using remotely sensed data.
Thus, the use of remote sensing to monitor droughts/or climate variability and surface water resources
has been on the rise, demonstrating a promising future.

5. Advancements in Remote Sensing Systems and Their Role in Drought, Climate Variability,
and Surface Water Resource Monitoring in Sub-Saharan Africa

Before the launch of satellites, aerial photographs were taken on-board low orbiting aircrafts to
map the spatial distribution of land cover types. The first Landsat satellite was launched in 1972,
and since then remote sensing has been used to monitor changes on the land surface and provided
accurate information to ecologists, geologists, hydrologists, forest managers, and soil scientists [49].
Historically, aerial photography provided high spatial data, but with a low frequency, and images
were only updated every few years with a limited spectral range. However, with the improvements in
technology, aerial photography now provides high spatial data, with high temporal frequency and a
wide spectral range [16].

Currently, various satellites are in orbit, providing data at different resolutions, which can be used
for water resources monitoring, as well as in assessing droughts and climate variability. The different
sensors are provided in Table 2. For example, the Moderate Resolution Imaging Spectroradiometer
(MODIS) has a swath width of 2330 km, a revisit period of 1–2 days, and 36 spectral bands, with a
spatial resolution of 250–1000 m (Table 2) [16]. Surface water bodies are usually detected at 500 m using
the Green and Shortwave Infrared (SWIR) bands of MODIS, which have a spatial resolution of 500 m,
therefore detecting small surface water bodies, which are smaller than 4 km2, is problematic [50,51].
Since there are numerous surface water bodies in Africa that are smaller than 4 km2, they are likely to
be poorly detected when using this data, thereby rendering MODIS unsuitable for such applications.
Although the sensor has limitations for small water bodies, MODIS can record the frequency and
distribution of cloud cover, and measure properties such as the distribution and size of aerosols in
the atmosphere, liquid water, and ice clouds. MODIS also measures the photosynthetic activity of
land and marine plants (phytoplankton), which makes this satellite suitable to monitor lakes. A study
conducted by Moser et al. [52] monitored surface water bodies in Burkina Faso using MODIS data to
generate a time series from 2000 to 2012 with a temporal frequency of 8 days. The results were validated
using Landsat imagery to create a water mask and achieved an accuracy of 75.7%. In a different
study, d’Andrimont and Defourny [53] used MODIS data to monitor surface water bodies across
the entire African continent from 2004 to 2010 using daily observations. They used a surface water
detection method to derive indicators that describe the location, temporal characteristics, and intra-
and inter-annual variations. The results were cross validated with existing maps and water products,
and a commission error of less than 6% was associated with the findings. In addition, studies by
Caccamo et al. [54]; Klisch and Atzberger [55]; Qu et al. [40]; and Henchiri et al. [56] successfully
used MODIS data to monitor meteorological, hydrological, and agricultural drought conditions in
Australia, China, Kenya, north and west Africa, and the Horn of Africa, respectively. Henchiri et al. [56]
conducted a study in north and west Africa to evaluate the performance of MODIS data used to
monitor meteorological and agricultural drought from 2002–2018. The spatial correlation analysis
indicated that the Drought Severity Index (DSI) was unreliable in detecting meteorological drought
in north and west Africa, however, association analysis between the Normalized Vegetation Supply
Water Index (NVSWI) and the Normalized Difference Vegetation Index (NDVI), and NVSWI and DSI
efficiently monitored meteorological and hydrological drought in north and west Africa. Qu et al. [40]
used MODIS data from the years 2000 to 2017 to monitor meteorological and agricultural drought
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conditions in the Horn of Africa (HOA). Results from the study indicated that croplands deteriorated
due to drought conditions, and there was therefore an urgent need for sustainable solutions to aid
timely monitoring of drought and to determine the severity of food security. Studies by Yan et al. [57],
and Berge-Nguyen and Cretaux [58], used MODIS data to detect floodplain inundation from 2001 to
2006 and 2000 to 2013, respectively. A study by Berge-Nguyen and Cretaux [58], monitored floodplain
inundation over the Inner Niger Delta, using MODIS data from 2000–2013. They were able to describe
inundations in the delta and to separate the flooded areas in the Inner Niger Delta into open water
and mixture of water and dry land. This study indicated that MODIS data is able to detect surface
water body and monitor the Earth’s surface efficiently, due to its short repeat time and wide coverage.
However, its coarse spatial resolution causes low accuracies and therefore may make it unsuitable for
monitoring drought and climate variability, including smaller surface water bodies.

The Advanced Very High Resolution Radiometer on-board National Oceanic and Atmospheric
Administration satellites (NOAA/AVHRR) has a coarse resolution, but has a high temporal resolution
of 0.5 days, and a relatively high spatial resolution of 1100 m (Table 2) [16]. NOAA/AVHRR was
designed to monitor the ocean and atmosphere. Unganai and Kogan [59] were able to monitor
meteorological drought conditions in Southern Africa using NOAA/AVHRR data. However heavy
cloud contamination reduced the accuracy of the results. Anyamba and Tucker [60] calculated the
Normalized Difference Vegetation Index (NDVI) using NOAA/AVHRR data in the Sahel, situated in
Northern Africa, from 1981 to 2003, to improve the understanding of the persistence and spatial
distribution of meteorological drought conditions. Rojas et al. [61] used NOAA/AVHRR derived NDVI
and the Vegetation Health Index (VHI) for Africa from 1981 to 2009 to monitor agricultural drought
and observe changes in climate. The study demonstrated the utility of the sensors in identifying
high risk areas of drought, though the coarse resolution led to low accuracies over small study areas.
NOAA/AVHRR data might not perform optimally in monitoring drought and climate variability due to
its coarse resolution and susceptibility to cloud contamination. On the other hand, Medium Resolution
Imaging Spectrometer (MERIS) was designed to monitor ocean and land surfaces by using optical
sensors to detect water or floods. It has a spectral resolution of 300 m, 15 spectral bands, and a temporal
resolution of three days (Table 2). This satellite only has a 10-year data record, ranging from 2002 to
2012, and therefore is not recommended for long term monitoring of surface water bodies [16] due to
limited data records and its failure to provide near real-time data. MERIS data has been applied in
water quality monitoring, especially in Southern Africa. For instance, a study by Matthews et al. [62]
used MERIS data to monitor water quality and cyanobacteria-dominated algal blooms in near-real-time
in Zeekoevlei, a lake situated in Cape Town, South Africa. Chawira et al. [63] efficiently monitored
water quality in two lakes in Zimbabwe, namely Chivero and Manyame, from 2011 to 2012, and found
that MERIS is suitable for near-real-time monitoring of water quality parameters due to its ability to
predict chlorophyll-a (R2 = 0.91).

Systeme Probatoire d’Observation dela Tarre (SPOT) has four to five spectral bands with a
relatively high spatial resolution ranging from 5.5 to 20 m and a temporal resolution of 26 days
(Table 2) [16]. However, the data is not freely available, thereby limiting its application in detection of
surface water bodies and flood inundation. Haas et al. [64] used SPOT data to monitor temporary water
bodies in sub-Saharan western Africa from January 1999 to September 2007. The data had an overall
accuracy of 95.4% and proved to produce satisfactory results. IKONOS, RapidEye, and Quickbird are
commercially available high spatial resolution sensors, but due to their small scene coverage and low
revisit time, only small surface water bodies can be detected (Table 2). They are thus unable to detect
large surface water bodies, and their performance in urban and mountainous areas are weak due to
shadows, thus limiting their application in surface water monitoring at large spatial scales [16].

As previously mentioned, the first Landsat mission was launched in 1972 and has since been
supplying medium resolution images [47]. Additional Landsat satellite missions were launched in
the late 1970s and the 1980s [65]. The early Landsat satellites consisted of the Multispectral Scanner
(MSS) sensors, followed by the Thematic Mapper (TM) on Landsat 4 and Landsat 5. Landsat 7 was
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launched in 1999 and was comprised of the Enhanced Thematic Plus (ETM+) [65]. These Landsat
missions were often used to detect surface water bodies and detect changes on the Earth’s surface [47].
Landsat 8 was launched in February 2013 and consists of the Operational Land Imager (OLI) and the
Thermal Infrared Sensor (TIRS). Landsat 8 has a spatial resolution of 30 m and a 15 m panchromatic
band, which is a greyscale image covering the red, green, and blue portions of the electromagnetic
spectrum [66]. It has a temporal resolution of 16 days and a swath width of 185 km, with nine
reflective wavelength bands, and six of these bands are designed for land applications (Table 2). It has
a pushbroom nature of scanning the Earth’s surface, which means that the satellite scans along the
track design, therefore improving the sensitivity of critical surface features and reducing the problem
of saturation. Although many studies have been conducted using the Landsat OLI data to monitor
and detect surface water bodies, few of these have been conducted in Africa, with most of the studies
focusing on monitoring water quality. Zhou et al. [17], and Masocha et al. [66], successfully applied
OLI data to detect and monitor surface water bodies with high accuracies. These results from various
studies indicate that Landsat satellites have relatively high spectral and spatial resolutions that are
ideal for tracking land use and land cover change caused by climate change, drought, wildfires,
urbanization, and other natural and human-caused changes. The use of this data for drought or climate
variability monitoring remains rudimentary, particularly in sub-Saharan Africa, despite its potential to
revolutionize and improve our understanding in the region.

The Sentinel-2 sensor, launched in June 2015, provides the most requisite spatial data continuity
for climate variability and drought monitoring, in addition to SPOT and Landsat missions,
among others [47]. It consists of the Multispectral Instrument (MSI) and has 13 reflective wavelength
bands, four 10 m visible and near-infrared (NIR) bands, six 20 m red edge, near infrared, and shortwave
infrared (SWIR) bands, and three 60 m bands [47]. Sentinel-2 has a temporal resolution of 5 days and
has a swath of 290 km (Table 2). The data from the sensor has been used extensively in monitoring
surface water bodies [17,66,67]. Forkour et al., [66] used Sentinel-2 MSI data to map land use and land
cover (LULC), and differentiate between water bodies and non-water bodies, in Burkina Faso and
achieved an overall accuracy of 94.3%. In addition, different studies were conducted by Dotzler et
al. [68], Laurin et al. [69], Urban et al. [34], and Puletti et al. [70] to monitor drought conditions using
Sentinel-2 data. For example, Dotzler et al. [68] used Sentinel-2-derived Photochemical Reflectance
Index (PRI), Moisture Stress Index (MSI), Normalized Difference Water Index (NDWI), and Chlorophyll
Index (CI) to analyze the response of deciduous trees to drought conditions in the Donnersberg region,
Germany. The results highlighted the benefits of high spectral resolution of Sentinel-2 data to monitor
drought and climate variability. A study by Urban et al. [34] used Sentinel-1/-2 and Landsat 8 data from
March 2015 to November 2017 to investigate the spatiotemporal dynamics of surface moisture and
vegetation structure. The study found that it is vital to use land cover and vegetation information for
analyzing surface water dynamics and understanding the effects of drought on surface water bodies,
and is therefore suited for monitoring drought and climate variability, particularly in Southern Africa.
In another study, Laurin et al. [69] used Sentinel-2 data to differentiate forest types, dominant tree
species, and water used by plants, using various indices, in Ghana. The results were generated using a
Support Vector Machine and achieved an overall accuracy of 92.34%. These high accuracies indicate
that this sensor is suitable for monitoring water bodies, droughts, and climate variability, due to its
high resolutions (spectral, spatial, and temporal). Its utility in these application areas needs to be tested
further in Africa, more particularly, sub-Saharan Africa.
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Table 2. Summary of remote sensors discussed.

Sensor
Swath
Width
(km)

Temporal
Resolution

(Days)

Number
of Bands

Spatial
Resolution (m)

Data
Availability Uses Challenges

Moderate
Resolution

Imaging
Spectroradiometer

(MODIS)

2330 1–2 36 250–1000 1999–present

Measures distribution and size of
aerosols, liquid water, and ice
clouds, can also measure
phytoplankton activity, floods,
surface water bodies, and drought.

Coarse spatial resolution,
therefore cannot detect water
bodies smaller than 4 km2.

National Oceanic
and Atmospheric
Administration’s
Advanced Very
High Resolution

Radiometer
(NOAA/AVHRR)

2900 0.5 5 1100 1978–present

Able to monitor floods,
surface water bodies, clouds,
sea surface temperature,
and vegetation greenness.

Coarse spatial resolution and
susceptible to cloud contamination.

Medium
Resolution

Imaging
Spectrometer

(MERIS)

1150 3 15 300 2002–2012
Monitors ocean and land surfaces,
water quality, and occurrence
of floods.

Has a 10-year data record and
therefore cannot be used for
long-term and near real-time
monitoring.

Systeme
Probatoire

d’Observation
dela Tarre (SPOT)

60 26 4–5 20–5.5 1986–present Used to detect surface water bodies
and flood inundation.

Data is not available freely and can
only detect small water bodies due
to small scene coverage.

IKONOS 11 1.5–3 5 1–4 1999–present
Can map natural disasters,
land cover changes, and almost all
aspects of environmental studies.

Data is not freely available and can
only detect small water bodies due
to small scene coverage.

RapidEye 77 1–5.5 5 5 2008–present Can be used in agriculture, forestry,
mining, and hydrological studies.

Data is not freely available and has
limited application for monitoring
large water bodies due to small
scene coverage.

Quickbird 16.8/18 1–3.5 5 0.61–2.24 2001–2015
Used for environmental studies to
monitor changes in land use,
agriculture, and forests.

Has a 14-year data record and data
is not freely available.
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Table 2. Cont.

Sensor
Swath
Width
(km)

Temporal
Resolution

(Days)

Number
of Bands

Spatial
Resolution (m)

Data
Availability Uses Challenges

Landsat 1 185 18 4 60 1972–1978
Designed to monitor Earth’s
resources, such as water resources
and agriculture.

Problem of cloud cover.

Landsat 2 185 18 4 80 1975–1982 Used to monitor changes on land
surfaces, seas, and water resources.

Technical issues caused it to be
decommissioned.

Landsat 3 185 18 4 80 1978–1983
Designed to extend data acquisition
of Earth resources by
Landsat 1 and 2.

Became decommissioned due to
equipment failure.

Landsat 4 185 16 7 30 1982–1993 Designed to provide global satellite
data on Earth resources. Banding affected data.

Landsat 5 185 16 7 30 1984–2013 Used to observe and monitor
Earth’s land and coastal areas.

Data loss occurred due to technical
issues.

Landsat 6 185 16 8 15–30 1993 Designed to continue the
Landsat mission. Failed to reach orbit.

Landsat 7 185 16 8 15–30 1999–present
Aimed to improve and extend
medium-resolution data record of
Earth’s surfaces.

Issues of cloud cover affects data.

Landsat 8 185 16 9 15–30 2013–present

Designed to continue to provide
medium-resolution data of Earth’s
surfaces and monitor land changes
due to climate change,
urbanization, drought, wildfires,
and other natural and
human-caused changes.

Clouds contaminate images.

Sentinel-1 400 6–12 1 5 2014–present

Developed to provide data
continuity for the SPOT and
Landsat missions and used to
monitor changes on the
Earth’s surface.

Satellite images may suffer from
cloud contamination.
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Table 2. Cont.

Sensor
Swath
Width
(km)

Temporal
Resolution

(Days)

Number
of Bands

Spatial
Resolution (m)

Data
Availability Uses Challenges

Sentinel-2 290 5 13 10–60 2015–present

Used for land monitoring for
mapping land cover and detecting
land changes, and to monitor
vegetation and burned areas.

Cloud contamination affects
images.

Sentinel-3 1270 1–27 21–11 300–1000 2016–present

Designed to measure sea surface
topography, and sea and land
surface temperature for
environmental and climate
monitoring.

Data missing due to anomalies.

Sentinel-4 8 0.1 3 0.5 nm–0.12 nm 2019–present
Designed to monitor air quality
trace gases and aerosols
over Europe.

Only monitors Europe and does
provide global data.

Sentinel-5 2670 16 7 5.5–7 2017–present
Aimed to monitor trace gas
concentrations for atmospheric
chemistry and climate changes.

Data anomalies due to issues
onboard.

Sentinel-5P 2600 1 7 8–50 2018–present
Designed to provide data delivery
for atmospheric services between
2015–2020.

Data anomalies due to issues
onboard.
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The above review has shown an increase in the number of studies that are applying remote
sensing data in monitoring dynamics in quantity and quality of surface water resources, including
drought and climate variability. However, in resource constrained regions such as Africa, most studies
have taken advantage of the ready availability of satellite data such as NOAA/AVHRR, MODIS,
and Landsat, as well as the relatively long-term data record of some of the sensors, e.g., Landsat
(>40 years). Unlike the aforementioned sensors, IKONOS, SPOT, and QuickBird have coarse temporal
resolution and are commercially available, thereby limiting their applications in water related studies
in resource constrained environments such as Africa. Deciding on which data set to use will depend on
the type of study and the scale of monitoring. There is therefore a further need to test the applicability
of freely available satellites to monitor water resources, drought, and climate variability over large
areas. With technological advancements, sensors that have higher temporal, spectral and spatial
resolutions need to be designed to integrate multi-datasets to monitor water resources and making
remote sensing a more viable option.

6. Remote Sensing Products for Drought and Climate Variability Monitoring

With the advancement in technology, there has been an increased use of satellite images for
various water related studies [47]. For instance, advancements in the development of water indices,
analysis or integration techniques, and availability of multi-temporal and multi-spectral images mean
that it is easier to detect changes in surface water bodies [26]. It also enables the monitoring of
various aspects of hydrology, such as precipitation, evapotranspiration, soil moisture, groundwater,
water quality, and surface water variability. Although rain gauges are the main source of rainfall
data, their networks are inadequate in many countries of sub-Saharan Africa due to their sparse
distribution. The limited networks are therefore unable to provide reliable data to produce detailed
rainfall information over large spatial scales. On the other hand, rainfall can be estimated using satellite
data, which provides information in near real-time and more spatially distributed estimates [31].
The most common satellites used to estimate precipitation are the Climate Hazards Group Infra-Red
Precipitation with Stations (CHIRPS), Tropical Rainfall Measuring Mission (TRMM), Meteosat-8,
Geostationary Operational Environmental Satellite (GOES), the Tropical Applications of Meteorology
using Satellite data and Ground-based observations (TAMSAT), and the Special Sensor Microwave
Imager (SSM/I) [71]. Dinku et al. [72] compared the performance of CHIRPS data, African Rainfall
Climatology version 2 (ARC2), and TAMSAT data over Ethiopia, Kenya, Somalia, Uganda, Rwanda,
and Tanzania, and the results indicated that CHIRPS had the highest accuracy, but often overestimated
precipitation. In addition, a study by Seyama et al. [73] evaluated TAMSAT data in Southern Africa to
accurately estimate precipitation and found that the algorithm needs improvement in accurate detection
of high precipitation events. Measuring evapotranspiration is important for modelling hydrological
processes and climate change, as well as estimating evapotranspiration through using physical-based
methods [74]. Using remote sensing techniques to estimate evapotranspiration has been done using
various sensors such as the AVHRR, MODIS, and Landsat [74]. A study by Kiptala et al. [75] used
MODIS data and the Surface Energy Balance Algorithm of Land (SEBAL) model to estimate the actual
evapotranspiration for 16 land use types from 2008 to 2010 in the Upper Pangani River Basin, shared by
Kenya and Tanzania. The study indicated a good agreement from different validations and achieved a
correlation coefficient of 0.74. On the other hand, Alemayehu et al. [76] used daily MODIS data and
Global Land Data Assimilation System (GLDAS) to effectively estimate evapotranspiration in the Mara
River basin, shared by Kenya and Tanzania.

Soil moisture is vital for understanding and predicting variations of surface temperature, droughts,
floods, impacts of climate change, and weather forecasting [77]. Soil moisture controls the rate and
amount of precipitation infiltrating into the soil and recharging into aquifers [39]. Remote sensing
techniques are preferred to monitor soil moisture over ground-based methods, as it has a wider spatial
scale [39]. In this regard, Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature
(LST) are the most common parameters used to remotely estimate soil moisture, with MODIS, Landsat,
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and Soil Moisture Active Passive (SMAP) being the most popular satellites [78]. For example,
Xulu et al. [79] used MODIS-derived Normalized Difference Vegetation Index (NDVI) and precipitation
data for KwaMbonambi, northern Zululand, from 2002 to 2016 to understand the effects of drought on
forest resources, by using remote sensing techniques. The results were validated using multiple linear
regression and Mann–Kendall tests and proved to be reliable indicators for temporal drought conditions
and characterized plantations, and their response to climate variability efficiently. A study by Ugbaje
and Bishop [80] used remote sensing observations of soil moisture and ancillary climatological data to
assess the impact of hydrological controls of vegetation greenness dynamics over Africa from 2003 to
2015. To do this, the study used daily soil moisture data from the European Space Agency Climate
Change Initiative data portal and was resampled to co-register with the MODIS EVI data. The accuracy
was assessed by comparing the out-of-bag prediction of EVI against the observed values and found
that it is one of the robust ways to assess the importance of hydrological variables.

Groundwater is a vital component of the hydrological cycle, as it contributes significantly to
water resources, as well as agriculture and ecosystem health [36]. Traditional methods are still
popular for studying groundwater–surface water interactions [81] despite the increasing use of
remote sensing-based methods in monitoring groundwater such as the Gravity Recovery and Climate
Experiment (GRACE) and Thermal Airborne Spectrographic Imager (TASI). Munch and Conrad [82]
combined remote sensing and GIS techniques to create a GDE (groundwater dependent ecosystem)
probability rating map for the Sandveld region in South Africa using Landsat TM imagery. The results
provided useful information, and it proved to be a cost-effective solution, however, the imagery
was unsuitable for detailed mapping of GDE features. Nanteza et al. [83] integrated GRACE and
Lake altimetry data within a soil moisture model to compare GRACE-derived groundwater storage
changes to in-situ groundwater observations in East Africa, from 2003 to 2011. The results proved
that GRACE data is efficient in monitoring groundwater resources in data scarce and hydrologically
complex regions. The results indicated a 0.6 correlation between GRACE-derived data and in-situ data,
suggesting that the results were fairly accurate despite overestimation of groundwater by GRACE.
A similar study by Bonsor et al. [84] found that changes in groundwater storage of 12 sedimentary
aquifers in Africa could be monitored using GRACE data combined with physical datasets derived
from Land Surface Models (LSMs). In another study, Agutu et al. [81] found a strong link between
GRACE-derived groundwater changes and climate variability in the Greater Horn of Africa based
on a 10-year dataset. Specifically, GRACE-derived groundwater changes correlated well (R2 = 0.7)
with results from the WaterGap Hydrological Model (WGHM), further indicating the potential of
GRACE in groundwater monitoring. Using GRACE data from 2003 to 2016, Frappart [85] characterized
dynamics in groundwater storage that occurred in the major North African transboundary aquifers. In
the study, a moderate correlation (R2 = 0.5) was observed between GRACE and the Tindouf Aquifer
System (TAS), with the correlation attributed to the small size of the system. This implies that the
coarse spatial resolution of GRACE is problematic for monitoring groundwater resources for small
areas. A recent study by Skaskevych et al. [86] assessed the feasibility of GRACE-based estimation of
groundwater storage change in the Ngadda catchment in the Lake Chad Basin and demonstrated that
GRACE-based modelling is a cost-effective method to monitor groundwater changes. While important
insights have been gained from using this sensor, the coarse resolution limits its application over
finer spatial scales. There is therefore the need for an improvement in spectral, spatial, and temporal
resolutions of this sensor to overcome some of the shortfalls of this sensor to enable monitoring of water
resources, drought, and climate variability in near real-time. In fact, the potential of high-resolution
images, i.e., Landsat-8 and MODIS, in monitoring groundwater is promising, as demonstrated by
Nhamo et al. [87] in a study that quantified groundwater use by crops in Venda-Gazankulu, Limpopo
Province, South Africa.
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7. Current Remote Sensing-Based Approaches for Monitoring Drought and Surface
Water Resources

Droughts and surface water bodies can be monitored using traditional physical-based methods
and/or remote sensing methods. Physical-based methods of droughts include paleoclimatology and
recording meteorological data, such as rainfall, river flow, and soil moisture [53]. Paleoclimatology takes
advantage of past climatic conditions using data records from ice sheets, tree rings, sediments, rocks,
diatoms, and coral to understand past climates and to predict future climate conditions [88]. However,
the most common paleoclimatic datasets used for drought monitoring are tree rings and peat lands.
Physical-based methods of surface water monitoring are in-situ measurements, which include manual
measurements of water levels using equipment such as floats, sensors, buoy systems, pressure type
equipment, and ultrasonic and radar techniques [89–91]. Remote sensing uses cameras on satellites and
airplanes and sonar systems on ships to obtain remotely sensed images, by measuring its reflected and
emitted radiation at a distance, to detect and monitor physical characteristics [65]. Computer models
use paleoclimatic data as a framework to base these models on [88]. However, physical-based methods
are costly, time consuming, and equipment cannot be installed in remote or mountainous areas, thus the
use of satellite data for monitoring surface water bodies is increasing, due to its ability to make high
frequency and repeatable observations at a low cost [51].

7.1. Traditional Drought and Surface Water Body Monitoring Techniques

Dendroclimatology is the study of determining past climates from tree rings. The use of tree ring
data is widely used in highland and lowland environments of the Mediterranean basin, the Middle
East, and Asia, however, this method is not often used for drought studies in Africa, because there
are still many methodological problems with its use in sub-Saharan Africa [92], and it is often used
as a means to validate remote sensing data in other countries [93]. Measuring and recording surface
water levels can be done using various types of level recording sensors, which are often used across
Africa, such as bubblers, pressure transducers, and ultrasonic sensors; the results from these sensors
can be recorded directly into a data logger or into a specialized flow meter [90]. Bubblers are sensors
in which air or an inert gas is forced through a small bubble line which is submerged in the river
channel and measures the water level by determining the pressure needed to force air bubbles out
of the line [20]. Pressure transducers use a probe which is fixed to the bottom of the channel and
senses the pressure of the overlying water [90]. Ultrasonic sensors or ground-based weather radar
are placed about the flow stream and transmits a sound pulse that is reflected by the surface of
the flow, and the time it takes between sending the pulse and receiving an echo determines the
water level [90]. Ground-based weather radar has been used to detect precipitation by sending out
pulses of microwave energy in narrow beams that scan in a circular motion, and when these pulses
encounter precipitation particles, the energy is scattered in all directions, and some of this energy is
sent back to the radar [94]. The energy measured is then used to estimate the intensity, altitude, type of
precipitation, and motion. These different types of level recording sensors provide measurements
of dam and other surface water body levels, such as rivers and lakes. These measurements indicate
changes in water levels, and if there is a drastic drop in water levels associated with low levels of
precipitation, it could mean that there is an onset of drought conditions. Rain gauges are the most
common physical-based method to measure the amount of precipitation received [94]. Rain gauge
measurements are point-based and measure the amount of precipitation received at a specific location.
Rain gauges can be classified into non-recording rain gauges and recording rain gauges. Non-recording
rain gauges collect precipitation, but do not record the amount of precipitation. Recording rain gauges
automatically record the amount of precipitation on a graph paper and note the duration of rainfall
events. However, manual measurements are not effective due to human errors and point-based
measurements, which might not be representative of the entire area, as precipitation might fall more-
or less-intensely at the location of the gauge [95]. Physical-based readings are often difficult to
record during drought periods as the accuracy of readings decrease, however, if water levels are high,



Remote Sens. 2020, 12, 4184 21 of 36

physical-based methods are easier to record [16]. Damage to equipment may induce measurement
errors. As the measuring equipment is in direct contact with water, its life span is limited due to
chemical and physical properties of water, such as corrosion, pressure underwater, and the composition
of the water. This causes physical based techniques to be costly and time consuming [96].

7.2. Remote Sensing Techniques of Drought Monitoring

Due to its wide coverage, repeatable observations, multi-band features, and its applicability to
local and global scales in data-rich and data-poor areas, the use of remotely sensed data, and more
specifically spectral water indices derived from multispectral sensors, is a promising approach to
drought monitoring [79,97]. Remote sensing is an important tool that provides consistent and
continuous data [33,98]. Radar altimetry has been used for more than 10 years to monitor the
changes in elevation of surface water bodies, such as inland seas, lakes, rivers, and wetland zones [99].
Altimetry data can be used to monitor changes in surface water storage [100]. Surface water is measured
with a repeatability varying from 10 to 35 days, depending on the satellite [99]. Weather conditions do
not affect data collection; however, altimetry does not have a global view and has several limitations.
Varying topography and complex terrains reduce the accuracy of elevation data, and the target
size and surface roughness affect the accuracy of altimetry-derived data, and therefore limits global
surveying [99]. The use of altimetry data is limited to monitoring rivers that are larger than 1 km,
due to its low temporal and spatial resolutions, and thus monitoring smaller water bodies accurately
is challenging [101]. Recently, studies have focused on developing indices for reliable detection of
drought and identifying surface water bodies using satellite data [3]. These indices are applied in the
early detection of drought onset, intensity, cessation, duration, and spatial extent, as well as mapping
surface water bodies [3]. A suite of indices exists, and each has its own advantages and weaknesses [33].
In this study, a number of indices were selected based on their performance as reported in literature
(Tables 3 and 4).

Advances in remote sensing and associated indices (algorithms) provide an alternative source
of data. These indices are obtained from satellite-based infrared (IR), passive microwave (PMW),
or spaceborne precipitation radar (PR) data. Drought conditions can be identified by using a drought
index, which assesses the effect of drought, as well as intensity, duration, severity, and spatial extent of
drought [48]. These drought indices use meteorological data, such as precipitation, temperature, and soil
moisture data [56]. Meteorological drought has been detected using the Standardized Precipitation
Index (SPI), Palmer Drought Severity Index (PDSI), Standardized Precipitation Evapotranspiration
Index (SPEI), and Enhanced Vegetation Index (EVI) [18]. Indices used to detect hydrological drought
include the Palmer Drought Severity Index (PDSI), Normalized Difference Vegetation Index (NDVI),
Anomaly Vegetation Index, Normalized Difference Water Index (NDWI), Normalized Difference
Drought Index (NDDI), and Temperature Condition Index (TCI) [102]. Agricultural drought can be
detected using Palmer Drought Severity Index (PDSI), Drought Severity Index (DSI), Evapotranspiration
Deficit Index (ETDI), Vegetation Condition Index (VCI), and Standardized Precipitation and Evaporation
Index (SPEI) [102]. There are many indices developed for drought monitoring, however, the indices
considered in this study are SPI, PDSI, NDVI, VCI, and WRSI, based on their widespread use (Table 3).

The Standardized Precipitation Index (SPI) was developed by Mckee et al. [103] to monitor the
status of drought in Colorado, and has since been used to monitor dry and wet conditions over
various time scales [104]. It is based on the long-term precipitation record for the study period and
is then fitted to a probability distribution to ensure the mean SPI is zero for the study period and
location [103]. Palmer [105] developed the Palmer Drought Severity Index (PDSI), and it was developed
to quantify and compare the spatial and temporal drought characteristics across various regions [106].
It uses precipitation and temperature data to estimate moisture supply and demand within two soil
layers. The Normalized Difference Vegetation Index (NDVI) measures the photosynthetic ability and
productivity of plants, which is the difference between the near-infrared band and the red band [79].
It has been widely used to evaluate drought conditions across the globe [40,56,107]. The Vegetation
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Condition Index (VCI) was developed by Kogan [108] to detect and track drought by focusing on the
impact of drought on vegetation. It records changes in vegetation vigor by using the visible band and
near-infrared bands, and compares it with historical data. VCI provides information on prolonged
and short-term droughts. The Water Requirement Satisfaction Index (WRSI) was developed by the
Food and Agriculture Organization [47]. WRSI is a ratio of actual evapotranspiration to potential
evapotranspiration and indicates the performance of crops based on water availability during the
growing season [109,110]. It is used to monitor crop production in regions that suffer from famine.

Surface water bodies can be identified from optical sensors or microwave sensors. Optical sensors
are used to calculate the differences between spectral bands, and microwave sensors are dependent
upon the reflection of water surfaces relative to surrounding land surfaces, however, return signals can
be reduced by waves on the water surface [16]. There are many methods to extract surface water bodies
from remote sensing imagery, based on the principle of comparing the low reflectance of water to land
cover types with a higher reflectance in infrared channels. Water indices can be used to extract surface
water bodies, which are calculated from two or more bands, to distinguish between water bodies
and non-water bodies [17,51,79]. Many indices have been developed, but for this study, only seven
indices will be considered, namely Normalized Difference Water Index (NDWI), Modified Normalized
Difference Water Index (MNDWI), Land Surface Water Index VI (LSWI+5), Modified Normalized
Difference Water Index VI (MNDWI+5), Automated Water Extraction Index shadow (AWEIsh), and the
Automated Water Extraction Index non-shadow (AWEInsh), based on their performance in previous
studies (Table 4).

NDWI was introduced by McFeeters [111] in 1996 and extracts water bodies from satellite data.
Water bodies have positive values and non-water bodies have zero or negative values, and they are
enhanced and suppressed, respectively [112]. MNDWI was proposed by Xu in 2006 [113] to improve
the accuracy of NDWI in built-up areas [16]. The Near Infrared (NIR) band in NDWI was replaced with
the Shortwave Infrared (SWIR) band, because SWIR better reflects subtle characteristics of water [111],
and SWIR is less sensitive to sediment concentrations in water than the NIR band [112]. Water bodies
have positive values, and non-water bodies have negative values [114]. LSWI+5 is derived from LSWI,
and was introduced by Menarguez [49] and uses the NIR and SWIR portions of the electromagnetic
spectrum. It was developed to identify flooding and water bodies. MNDWI+5 was also introduced
by Menarguez [49] and uses the NIR and red bands to map flooding or clear water [17]. AWEI was
introduced by Feyisa et al. in 2014 [115], and it can detect water bodies. It includes two indices;
AWEInsh, is applied when there are no shadows, and AWEIsh is applied to distinguish between water
pixels and shadow pixels.

However, the results of these indices are region specific, and therefore certain indices will yield
low accuracies due to cloud cover, pixel mixing, and shadows in mountainous or built-up areas.
Some indices also need to be used in conjunction with other indices and/or meteorological data, as they
cannot account for factors such as evapotranspiration, runoff, and infiltration. Therefore, there is a
need to improve indices to improve monitoring conditions, which will be useful in detecting the onset,
duration, and end of droughts.
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Table 3. Drought indices used and their performance in previous studies.

Drought Index Reference of Study Key Findings Limitations of Index

Standardized
Precipitation Index (SPI)

Tirivarombo and
Hughes, [116]

Rainfall data from 1960 to 2002 was used to calculate SPI for
selected parts of the Zambezi River Basin, in Africa, for a
comparative analysis of the relationship between agricultural
drought and food security.

Needs to be used with other indices, because it does not
account for deficits caused by evapotranspiration, infiltration,
and runoff.

Chisadza et al. [117]
SPI calculated for the Mzingwane catchment, in the Limpopo
River Basin, situated in Southern Africa, by using rainfall data
from 1999 to 2013 to determine drought severity.

Achieved poor results over short study periods and achieved
highly accurate results over longer study periods.

Khezazna et al. [118]
SPI indices calculated for 13 rainfall stations in Seybouse basin,
Algeria to differentiate between dry, normal, and wet periods to
analyze variations in annual rainfall over the basin.

Required historical rainfall data.

Tirivarombo et al. [119] SPI was able to detect temporal variations of droughts in the
Kafue Basin, in northern Zambia.

SPI to be used with caution to characterize drought, as it only
uses rainfall data and not temperature data, and temperature
data is important to characterize droughts.

Lawal et al. [120] Used SPI to quantify severity of drought over Southern Africa. Low accuracy achieved in regions where precipitation was low
and short time periods.

Kalisa et al. [121]

Calculated SPI over East Africa from 1920 to 2015.
Adequately estimated dryness or wetness, and the study
proved it can be used to assess drought intensity, especially in
drought-prone regions.

Results highly variable for shorter time scales, however,
for longer time scales results were more accurate, therefore
should be used for long-term studies.

Palmer Drought Severity
Index (PDSI)

Mehta et al. [122]

PDSI was correlated with the PDSI forecast by the MIROC5
Earth System Model (ESM) from 1961 to 2019–2020, to assess
the predictability accuracy over Southern Africa, and this
method achieved efficient results.

Higher accuracies over longer study periods. Decadal results
were more accurate.

Zeleke et al. [123]

PDSI obtained from station and satellite-based observation data
sets from the Ethiopian National Meteorological Agency (EMA)
for drought monitoring in Ethiopia from 1979 to 2014, accurate
data which indicated drought periods.

Only accounted for drought impacts based on temperature and
precipitation data.

Asfaw et al. [124]

PDSI data collected from Climate explorer: KNMI Climate
change atlas and used to analyze extent of meteorological
drought from 1951–2013. Detected increase in drought years
since the 2000s, in the Woleka sub-basin, situated in Ethiopia.

Short-term application is problematic, due to lower accuracies
compared to long-term application.

Orimoloye et al. [125] PDSI used to identify the susceptibility of Cape Town,
South Africa, to drought. Less accurate in areas with extremely dry vegetation.

Ogunrinde et al. [126] PDSI detected hydrological drought approximately 12 months
before low flow occurred in the River Niger, in Nigeria.

More effective in long-term monitoring of meteorological
drought impacts than short-term monitoring.
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Table 3. Cont.

Drought Index Reference of Study Key Findings Limitations of Index

Normalized Difference
Vegetation Index (NDVI)

Gelassie [127]
Analyzed NDVI to monitor the development of biomass in
Amhara, Ethiopia and found that NDVI can be used to estimate
crop yield.

Noise presence due to cloud cover and shadows which
decreased NDVI values.

Tonini et al. [128]
NDVI data collected using SPOT 4 and SPOT 5 satellites from
1998 to 2009, and accurately identified which areas are more
prone to drought in the Tigray region, Ethiopia.

Accuracies affected by the atmosphere, aerosol scattering, snow,
and cloud cover.

Chisadza et al. [117]

Evaluated vegetation condition and tracked drought severity
and occurrence by using the GEONETCast ten-day composite,
SPOT VEGETATION, NDVI (S10 NDVI) over the Beitbridge,
Esighodini, Mangwe and Mwenezi districts, in Zimbabwe,
from 1998 to 2013.

Background brightness led to lower accuracies.

Klisch and Atzberger [56] NDVI was calculated in Mandera and Garissa, Kenya using
MODIS data and successfully monitored vegetation. High noise interference due to cloud cover.

Lawal et al. [120] NDVI used to understand impacts of drought on southern
African vegetation and achieved efficient results.

Errors in seasonal NDVI data due to different algorithms used
to translate measured wavelengths.

Qu et al. [40]
NDVI data derived from MODIS was used to investigate
drought conditions in the Horn of Africa (Djibouti, Eritrea,
Ethiopia, and Somalia) from 2000 to 2017.

Mainly sensitive to vegetation greenness, therefore limited in
monitoring drought directly.

Vegetation Condition
Index (VCI)

Unganai and Kogan [59]
AVHRR/NOAA data was successfully able to monitor the
temporal and spatial characteristics of drought conditions in
Southern Africa.

Cloud cover affected drought signal.

Gelassie [127]
Examined spatial drought by using VCI and found that
drought can be detected and mapped in the Amhara region,
Ethiopia from 1999 to 2009.

Drought conditions can be monitored during the growing
season.

Ghoneim et al. [129]
Used MODIS data to calculate VCI and to assess spatial and
temporal distribution of drought occurrence in Tunisia from
2000–2013 and accurately identified drought periods.

Problematic with occurrence of excessive rain.

Qu et al. [40]
Investigated agricultural drought by calculating NDVI from
MODIS data from 2000 to 2017 in the Horn of Africa (Djibouti,
Eritrea, Ethiopia and Somalia) and achieved a 95% accuracy.

Cloud contamination affected accuracy.

Frischen et al. [38]
VCI used to assess vegetation health and drought conditions in
Zimbabwe, from 1989 to 2019 and found it detects
drought dynamics

Not suited for analyzing one single season.



Remote Sens. 2020, 12, 4184 25 of 36

Table 3. Cont.

Drought Index Reference of Study Key Findings Limitations of Index

Water Requirement
Satisfaction Index (WRSI)

Gelassie [127] The spatial distribution of drought was examined using WRSI
in Amhara, Ethiopia.

Ground truthing for crops and detailed crop calendar is
essential, as well as a water balance calculation.

Moeletsi and Walker [130] WRSI was used to quantify droughts in the Free State Province,
South Africa, affecting rain-fed maize production. WRSI values in semi-arid areas are locality dependent.

Jayanthi et al. [131] WRSI was used to monitor crop productivity in Southern
Africa.

Limited hazard and exposure data, therefore long-term
synthetic rainfall record had to be generated.

Legesse and
Suryabhagavan [109]

WRSI was used to assess the spatio-temporal variation in
agricultural drought patterns in East Shewa Zone, Ethiopia and
found to be a good indicator of agricultural drought.

Showed good results for agricultural drought, but further
investigation is required for other types of droughts.

Table 4. Surface water body indices used and their performance in previous studies.

Surface Water
Body Index Reference of Study Key Findings Limitations of Index

Normalized Difference
Water Index

(NDWI)

El-Asmar et al. [132]
Used MSS, TM, ETM+, and SPOT images to obtain NDWI data
to quantify change in the Burullus Lagoon in Egypt between
1973 and 2011 and accurately noted changes in size.

Had to apply radiometric normalization to adjust solar angles.

Masocha et al. [27]
Had an overall accuracy of 77% when extracting surface water
bodies from Landsat-8 OLI data in Mutiriki catchment,
Zimbabwe.

Cannot suppress the signal from built-up features efficiently.

Orimoloye et al. [125]

Used Landsat 8 data to derive NDWI to assess drought
occurrence in Cape Town, South Africa from 2014 to 2018,
and mapped changes in water bodies. Results agreed with dam
levels recorded by the City of Cape Town.

Does not consider soil type, geographic location,
and climate zone.

Asfaw et al. [133]
NDWI used to note changes in Lake Ziway, Ethiopia from 2009
to 2018 using Landsat ETM+/OLI data and obtained an overall
accuracy of 91%.

Problematic in urban areas with higher reflectance.

Fujihara et al. [134]
Calculated NDWI using Landsat-8 data to classify land cover
types in the Gash River, Sudan and achieved a Kappa
coefficient of 0.960 and is reasonably good.

Problematic in built-up areas, water features often confused
with built up.
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Table 4. Cont.

Surface Water
Body Index Reference of Study Key Findings Limitations of Index

Modified Normalized
Difference Water Index

(MNDWI)

El-Asmar et al. [132]
MNDWI data obtained from MSS, TM, ETM+, and SPOT
images to quantify change in the Burullus Lagoon in Egypt
between 1973 and 2011 and accurately noted changes in size.

Radiometric normalization applied to adjust solar angles.

Malahlela [135]

Landsat-8 data was used to calculate MNDWI to extract
waterbodies in South Africa, Republic of Congo and
Madagascar from 2013 to 2015 and achieved an overall
accuracy of 78.4%.

Classified shadows as waterbodies.

Masocha et al. [27]
Landsat-8 OLI data was used to map surface water bodies in
Mutirikwi catchment, Zimbabwe, it achieved an overall
accuracy of 84.3%.

Higher performance in areas with vegetation compared to
other land covered surfaces.

Asfaw et al. [133]
Used MNDWI to note changes in Lake Ziway, Ethiopia from
2009 to 2018 using Landsat ETM+/OLI data and obtained 99%
overall accuracy.

Misclassified shadows as waterbodies.

Ndehedehe et al. [136]
Used Sentinel-2 data to calculate MNDWI to detect changes in
the Lake Chad Basin from 2015 to 2019 and achieved an overall
accuracy of 97.4%.

Sensitive to water content in soil and vegetation.

Slagter et al. [137]

Used MNDWI for wetland mapping and surface water
dynamics in St Lucia wetlands, South Africa using Sentinel-1
and Sentinel-2 data from 2016 to 2018 and achieved an overall
accuracy of 87.1%.

Highly vegetated areas led to lower accuracies.

Land Surface Water Index
(LSWI+5)

Jin et al. [71]
Used MODIS data in Southern Africa to monitor vegetation
phenology from 1999 to 2009 and results agreed with
in-situ data.

Problematic in built-up areas.

Benefoh et al. [138]

Used TM, ETM, and OLI data to get a comprehensive
understanding of the landscape in Ghana from 1986 to 2015.
Results were correlated with in-situ data and achieved an
overall accuracy of 82.6%.

Lower accuracies in dry regions.

Masocha et al. [27]

Had an overall accuracy of 86% when mapping surface water
bodies in Mutirikwi Catchment, Zimbabwe and outperformed
the other indices when applied to map surface water bodies in
sub-tropical catchments.

Further investigation required for performance in various
climatic zones.

Ali et al. [139] Used LSWI+5 to analyze plant and soil water content in various
watersheds in Ethiopia from 2006 to 2016 from Landsat-7 data. Cloud contamination affected results.
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Table 4. Cont.

Surface Water
Body Index Reference of Study Key Findings Limitations of Index

Modified Normalized
Difference Water

Index(MNDWI+5)
Masocha et al. [27] Used to map surface water bodies in Mutirikwi Catchment,

Zimbabwe and had an overall accuracy of 79.3%. Performed best in vegetated areas.

Automated Water
Extraction Index

(shadow) (AWEIsh)
and

Automated Water
Extraction Index

(non-shadow)
(AWEInsh)

Feyisa et al. [115]

Used Landsat-5 data to map waterbodies in South Africa,
Ethiopia, Denmark, Switzerland, and New Zealand and
achieved a Kappa coefficient of 0.98 and 0.97 in South Africa
and Ethiopia, respectively.

Variables that were not tested and could affect accuracies are
variations in the angle of the sun, atmospheric composition,
and biophysical and chemical changes in waterbodies.

Malahlela [135]
Landsat-8 data was used to extract waterbodies in South Africa,
Republic of Congo and Madagascar from 2013 to 2015 and
achieved an overall accuracy of 83.8%.

Classified shadows as water in built-up areas.

Masocha et al. [27]
AWEIsh and AWEInsh had an overall accuracy of 81.6% and
50.3%, respectively, when mapping surface water bodies in
Mutirikwi Catchment, Zimbabwe.

AWEInsh problematic due to background noise and unable to
differentiate between water bodies and built-up areas.

Asfaw et al. [133]
Used Landsat ETM+/OLI data to note changes in Lake Ziway,
Ethiopia from 2009 to 2018 using and obtained an overall
accuracy of 99.2%.

Problematic in urban areas due to high reflectance.

Danladi et al. [140] Used Landsat imagery to delineate coastal erosion and
accumulation in Nigeria from 1973 to 2017. Problematic in built-up areas.

Herndon et al. [141] Achieved an overall accuracy of 98% when using Landsat-8
data to identify waterbodies in the Nigerian Sahel. Background noise led to misclassification.
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8. Challenges of Remote Sensing in Drought, Climate Variability, and Surface Water Resource
Monitoring, and Possible Future Research Directions

The vulnerability of Africa to droughts is high due to poverty and the dependence on rainfed
agriculture. Therefore, there is a need for drought monitoring in an efficient, timely manner and the
use of satellite data could significantly provide better monitoring techniques and improve drought
planning and mitigation strategies. Remote sensing is a useful tool for drought and surface water
monitoring, especially in large areas with limited ability to conduct in-situ monitoring, as this approach
is cost effective and repeatable. The use of remote sensing, especially in Africa, will provide information
on past, current, and future conditions of drought and will help understand the need for sustainable
monitoring solutions. Early drought detection is vital for decision-making and preparedness. However,
there are many satellites that provide meteorological data, such as near-surface air relative humidity
and vapor pressure deficit, which can improve the early detection of drought and provide vital
information [28]. A major limitation of using remote sensing for drought and surface water monitoring
is data continuity [28]. Many of the current available satellite datasets, such as GRACE, do not have
long historical records and only provide approximately 10–15 years of data, which might not be enough
for drought studies from a climatological perspective, however, these records can be used for impact
studies [28]. Satellites with sufficient records are Landsat, GOES, and AVHRR-MODIS-VIIRS. A major
challenge of satellite data is background noise, which negatively influences the classification of land use
zones. Another challenge of using remote sensing data is sensor uncertainties, which is why models and
indicators were developed for uncertainty assessment of satellite-based data. However, with continuous
developments in algorithms and free access to satellite data there is a promising approach for monitoring
the impacts and onsets of drought and various other climatological changes [79].

9. Future Research Directions and Recommendations

This review has shown that remote sensing technology has improved drought and water resource
monitoring including climate variability. However, there are still grey areas that need further research
if data from earth observation is to make significant impact in resource poor regions such as those
in sub-Saharan Africa. For instance, most of the aforementioned drought monitoring and water
detection indices were developed for specific satellite data, therefore with the development of new
satellites, new indices need to be developed and tested across diverse environments to enhance their
utility [16]. There is also a need for more studies to be conducted in sub-Saharan Africa to test remote
sensing applications and data processing techniques, to improve drought detection, mitigation, and the
monitoring of water resources. Future studies need to be conducted to determine which datasets are
best suited for monitoring groundwater resources, as researchers are currently struggling with the
coarse resolution provided by GRACE, which reduces the accuracy of the results over small areas [85].
More studies need to be conducted using Landsat, GOES, or AVHRR-MODIS-VIIRS data, as these
satellites have historical data, which will aid in impact studies, characterizing patterns and future
predictions for drought models [47]. Indices and satellites also need to be developed to reduce the
inaccuracies caused by background noise, cloud cover, pixel mixing, and shadows in mountainous or
built-up areas, as mountains and clouds are often classified as water bodies due to their reflectance.
There is also a need for further studies to investigate the applicability and feasibility of blending remote
sensing methods with rain gauge estimates and/or climate models and precipitation models to test
whether and in what way blending of these datasets reduces estimation variance. Similarly, the fusion
of different remote sensing datasets (e.g., active and passive remotely sensed data) with various earth
imaging characteristics is promising for improved detection and spatial characterization of droughts
and water resources. Furthermore, more studies need to be conducted using rain gauge estimates
integrated with radar data, as radar data is useful for estimating precipitation [74]. Machine learning
(ML) is another promising field whose utility in drought monitoring needs to be explored [47].
Commonly used ML algorithms are artificial neural network (ANN), support vector machine (SVM),
minimum distance classification, maximum likelihood classification, regression tree-based algorithms,
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ISODATA, and K-means clustering, however, these methods have yet to be tested in sub-Saharan Africa.
The utility of panchromatic images with a higher resolution has been theoretically studied in surface
water detection and monitoring, but it still needs to be implemented and tested [47]. Future studies
could also test the effectiveness of integrating Digital elevation models (DEMs) with multi-spectral
data in cloud removal to enhance water detection and delineation, [74].

10. Conclusions

Drought is characterized by various climatological and hydrological parameters, and to reduce
the impacts of droughts and climate variability, these parameters need to be understood and monitored
in a timely and efficient manner. Due to climate change, the occurrence of drought is likely to increase,
which means the impacts of droughts based on historical, present, and future scenarios need to be
analyzed, especially in Africa, which is a data-scarce continent. The use of remote sensing for the
monitoring of drought and surface water resources has become popular, since the launch of satellites
with improved spatial, spectral, and temporal resolutions that were designed to monitor and detect
changes on the earth’s surface, however, it is not being utilized to its full potential, especially in
data-poor areas. Advancements in indices, techniques, and the availability of multi-temporal and
multi-spectral images, led to the improvement of monitoring and detecting droughts and surface water
resources, however, there is still a need to improve indices in order to remedy cloud contamination and
the problem of shadows in mountainous and built-up areas. Remotely sensed data has the potential
to be used in data-scarce areas, such as Africa, where there are limited physical monitoring stations,
due to the high costs involved and location. With these advancements, there is an urgent need for
future studies to test the applicability of these satellites and indices, to improve drought early warning
systems and preparedness and aid in proactive decision making. This approach allows for fast drought
identification, and this is essential for drought-prone regions, like Africa, for water resource planning
purposes, and can help decision makers set appropriate measures to alleviate future drought events.
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