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Abstract

In view of the vast number of natural products with potential antiplasmodial bioactivity

and cost of conducting antiplasmodial bioactivity assays, it may be judicious to learn from

previous antiplasmodial bioassays and predict bioactivity of these natural products before

experimental bioassays. This study set out to harness antimalarial bioactivity data of

natural products to build accurate predictive models, utilizing classical machine learning

approaches, which can find potential antimalarial hits from new sets of natural products.

Classical machine learning approaches were used to build four classifier models (Naïve

Bayesian, Voted Perceptron, Random Forest and Sequence Minimization Optimization of

Support Vector Machines) from bioactivity data of natural products with in-vitro antiplasmo-

dial activity (NAA) using a combination of the molecular descriptors and two-dimensional

molecular fingerprints of the compounds. Models were evaluated with an independent test

dataset. Possible chemical features associated with reported antimalarial activities of the

compounds were also extracted. From the results, Random Forest (accuracy 82.81%,

Kappa statistics 0.65 and Area under Receiver Operating Characteristics curve 0.91) and

Sequential Minimization Optimization (accuracy 85.93%, Kappa statistics 0.72 and Area

under Receiver Operating Characteristics curve 0.86) showed good predictive performance

for the NAA dataset. The amine chemical group (specifically alkyl amines and basic nitro-

gen) was confirmed to be essential for antimalarial activity in active NAA dataset. This study

built and evaluated classifier models that were used to predict the antiplasmodial bioactivity

class (active or inactive) of a set of natural products from interBioScreen chemical library.

Introduction

The devastating effect of malaria is evidenced by 584,000 deaths of which 78 percent were chil-

dren under five years of age in 2013 [1] and thousands of person-hours lost to morbidity [2,3].

Majority of deaths due to malaria are caused by Plasmodium falciparum, the most virulent

amongst the species that cause the disease [4–6]. The growing resistance and failure of existing
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first-line antimalarial drugs have exacerbated the situation leading to an exigent need to

develop novel antimalarial drug candidates [7–9]. Judging by the immense contribution of

nature to existing antimalarial drugs [10–13] and the likelihood to encounter novel chemo-

types in natural products, in-vitro malarial screen data of natural products may be the appro-

priate starting point for the discovery of new antimalarial drugs.

Recently a number of publications have reported the in-vitro antiplasmodial activities of natu-

ral products from plants [10–13] and marine life forms [14,15]. In addition, datasets of in-vitro
antiplasmodial bioassays of natural products and synthetic compounds have been made available

in public domain [16–18]. The availability of such data for malaria drug discovery has motivated

us to create predictive models based on molecular properties using machine-learning approaches.

Machine Learning, an aspect of artificial intelligence, is the practice of using algorithms to

analyze input data (training data), learn from it, and then make a prediction on another set of

related or unrelated data. Machine learning approaches may be supervised or unsupervised if

the algorithms learned from labelled or unlabeled data [19]. Unsupervised statistical learning

allows learning of relationships and structure of input data. Supervised machine learning

involves building a model for predicting an output based on one or more sets of input data.

It has been shown that machine learning approaches could accurately predict the activities

in assorted sets of compounds with activities as diverse as anti-tubercular [20], antimalarial

[21] and RNA-binders [22]. To our knowledge, there has not been any bioactivity predictive

model specifically for natural products with antiplasmodial or antimalarial activities. Increas-

ing number of natural products, mostly from ethnomedicine in malaria-endemic regions,

show good in-vitro and/or in-vivo antiplasmodial activities [23–26]. The antiplasmodial bioac-

tivity data for these natural products present a dais to build models that may be used to screen

other natural products and predict their potential antiplasmodial activities.

This present study focused on the development of machine learning classification models for

natural products with varying in-vitro antiplasmodial activities (NAA). Four classification models

were built from the bioactivity class (Active or Inactive) and a combination of molecular descrip-

tors (MD) and molecular fingerprints (MF) of the NAA dataset. The performances of the classifi-

cation models were assessed with standard model evaluation parameters (including accuracy and

area under the Receiver Operating Characteristic (ROC) curve). We also analyzed the chemical

structures of the datasets to find molecular fragments or chemical features enriched within the

active and inactive compounds. Finally, we showed that the machine learning models built in this

study might be used to screen large natural compound libraries in-silico and identify potential

antiplasmodial compounds. This may limit the need for in-vitro screening and drastically reduce

the expense of finding hits from natural products for antimalarial drug discovery.

Materials and methods

An original Konstanz Information Miner (KNIME) workflow [27,28] was set up (Fig 1) and

used for the machine learning from our set of natural products with in-vitro antiplasmodial

activities (NAA) in order to predict the activity class (active or inactive) of NAA.

Data

The dataset used in this study consist of natural products that have been tested for in-vitro anti-

plasmodial activities (NAA) compiled in-house from literature, PhD and Masters Theses and

public chemical databases. The chemical structures of the compounds in NAA were either

downloaded in the SMILES format from public chemical databases (ChEMBL or PubChem)

or drawn using Chemtool version 1.6.13 (http://ruby.chemie.uni-freiburg.de/~martin/

chemtool) running on a Linux platform. The dataset (NAA) was subdivided into two groups
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based on their in-vitro antiplasmodial activities (IC50): Active (A) (IC50: < 10 μM) and Inactive

(A) (IC50:�10 μM). A total of 1155 NAA compounds were used in this study, with 70% classi-

fied as active and 30% as inactive (S1 Table).

Machine learning algorithms

Four classifier algorithms were used to learn from the dataset: Naïve Bayesian classifier

[29,30], Sequential Minimization Optimization (SMO) classifier, a strategy for solving the qua-

dratic problems during training with Support Vector Machine (SVM) [31,32], Random Forest

(RF) classifier [33,34] and Voted perceptron (VP) classifier [35,36]. The specific classifiers

were chosen in an attempt to represent four major types of classifiers models: Naïve Bayes rep-

resents the Bayes classifiers; Random Forest represents the tree-based classifiers; SMO repre-

sents the function-based classifier; and the Voted Perceptron represents the neural network

classifiers. The classifier algorithms were executed with Waikato Environment for Knowledge

Analysis (Weka 3.6) nodes [37] in Konstanz Information Miner (KNIME) [38].

Dataset pre-processing and calculation of molecular descriptors and

molecular fingerprints

The “RDKit Descriptor Calculation” and “RDKit Fingerprint” nodes [39] were used to calcu-

late the molecular descriptors and molecular fingerprint. The “Data_preprocessing” node was

Fig 1. KNIME workflow. Screen-shot of the KNIME workflow used to build the classifier machine-learning models.

https://doi.org/10.1371/journal.pone.0204644.g001
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then used to normalize the molecular descriptors using a minimum-maximum normalization

model. The bit vector representing the molecular fingerprint was expanded into individual col-

umns for each compound.

Selection of descriptors or features

The objective of features selection is three-fold: improving the prediction performance of the

predictive model, providing faster and more economical predictive models, and providing a

better understanding of the underlying process that generated the data [40]. The “Feature

Elimination” (FE) meta-node in KNIME was used to select descriptors that are beneficial to

build efficient classifier models.

Training of classifier models

The purpose of the classification algorithm was to build a classifier model that assigns a class

(e.g. active/inactive) to molecules defined by a set of attributes (e.g. molecular descriptors). A

metanode in the KNIME workflow (Fig 1) was designed to build the various classifier models

that were earlier mentioned (i.e. Naïve Bayesian classifier, Sequential Minimization Optimiza-

tion (SMO) classifier, Random Forest (RF) classifier and Voted perceptron (VP) classifier).

The Partitioning node was used to split the data coming from the Feature Elimination meta-

node into 80% training cum validation set and 20% independent test set by stratified sampling.

The former was then piped into the “CostSensitive_Classifier_Cross_Validation” meta-node

while the later was passed to the Weka Predictor (3.6) node. The Weka “Cost Sensitive Classi-

fier” was used to build the classifier models and the Weka Predictor generated predictions

from the test data. Regarding the features used to build the model, the molecular descriptors

and molecular fingerprints were initially used separately to train the models. In an attempt to

improve the accuracy of the model, we combined the molecular descriptors and the molecular

fingerprints for each compound and used that combined feature to train the models.

Class Imbalance and cost-sensitive classification

The imbalance bioactivity class (70% active and 30% inactive) was recognized as a major limi-

tation to building a reliable model. Most bioassay datasets are imbalanced where one class is

overly represented as observed in our datasets (approximately 70% active class (A) and 30%

inactive class (N)). Prior to building the classifier model, the “SMOTE (Synthetic Minority

Over-sampling Technique)” node within the KNIME was used to balance the bioactivity clas-

ses [38]. This node oversamples the input NAA dataset to enrich the inactive instances in the

training dataset.

In addition, cost-sensitivity, which does not assume equality of the costs caused by different

kinds of errors, was applied to the classifier algorithms used in this study. The Weka “meta-

CostSensitiveClassifier” node in KNIME [38] was used to build the classifier models from

NAA dataset. The Weka “meta-CostSensitiveClassifier” makes its base classifier cost sensitive

and provide it with the capability to predict a class that leads to the lowest expected cost

[37,41]. For our datasets that have two class representations (i.e. active (A)/inactive (N)), cost

sensitivity was introduced by using a ‘2 ×2’ dimension cost matrix (Table 1).

The four sections of a cost matrix can be read as True Positives (TP)—actives classified as

actives; False Positives (FP)–inactives classified as actives; True Negatives (TN)—inactives clas-

sified as inactives; False Negatives (FN)—actives classified as inactive. The Weka “meta-Cost-

SensitiveClassifier” enforces a penalty or weight on the base classifier for generating false

positives (FP) or false negatives (FN) during learning. By default, the weight on the cost matrix

is set to one for FP and FN. However, it has been reported that during the development of the
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classifier models the cost of misclassification may not always be the same [42]. In bioactivity

prediction, the cost of FN (misclassification of an active compound as inactive) may be greater

than the cost of FP (misclassification of an inactive compound as active) [20]. That is, the cost

of missing a potential active compound is greater than the cost of predicting an inactive com-

pound as active [20]. Therefore, the weight or penalty for FN was set to two (Table 1) to mini-

mize the chance of FN misclassification. This cost matrix was used to build the NB, VP, SMO

and RF classifier models.

Classifier model performance evaluators

Accuracy statistics and receiver operating characteristic. The performances of the clas-

sifier models were assessed by accuracy statistics and Receiver Operating Characteristic graph

after a 10-fold cross validation of a training set and prediction of the bioactivity class of an

independent test set. In the KNIME workflow (Fig 1), the Scorer node and the ROC node were

attached to the output from the Weka predictor nodes (from the cross-validation and the inde-

pendent test data prediction). The outputs from the Scorer node include a confusion matrix

and evaluation statistics (including accuracy of the prediction, Kappa statistic and mean abso-

lute error). Accuracy indicates the proximity of measurement of results to the true value. This

can be mathematically expressed as:

Accuracy ¼
TP þ TN

TPþ FPþ TN þ FN
� 100 ð1Þ

Where TP is True Positives; FP is False Positives; TN is True Negatives and FN is False

Negatives.

The outputs from the ROC node encompass the Receiver Operating Characteristic (ROC)

curve, which is a graphical plot of True Positive Rates (TPR) vs. False Positive Rates (FPR) for

a binary classification system. The Area under Curve (AUC) value was also computed from

the ROC curve and in our case, it denotes the probability that a classifier will rank a randomly

chosen active compound higher than a randomly chosen inactive compound.

Applicability domain (AD)

Generally, machine learning models methods are more likely to show good predictive perfor-

mance for compounds that share similar properties to compounds in the training set. Thus, it

is necessary to define the “applicability domain” (i.e. the boundary defined by the chemical

space in the training set) of the models and to check if new test compounds fall within such

domain [43]. One of the simplest and commonly applied methods used to define AD is based

on range-based definition with a preliminary Principal Components (PC) rotation [44]. In the

present study, we defined the AD of the models using the training data and evaluated the

extent to which the independent test data fit into the AD. This will be helpful to explain the

accuracy of prediction from models and assess whether a new compound is inside or outside

the AD of the models.

Table 1. Cost matrix used by weka “meta-cost sensitive classifier”.

TP (0.0) FN (2.0)

FP (1.0) TN (0.0)

The cost values for each possible classification are in brackets. True Positives (TP), False Positives (FP), True Negatives
(TN) and False Negatives (FN)

https://doi.org/10.1371/journal.pone.0204644.t001

Machine learning approach to predict natural products with antimalarial bioactivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0204644 September 28, 2018 5 / 15

https://doi.org/10.1371/journal.pone.0204644.t001
https://doi.org/10.1371/journal.pone.0204644


Principal Component Analysis (PCA) of the molecular fingerprints of the compounds in

the training/validation data was done with Unsupervised learning metanode in the machine

learning KNIME workflow (Fig 1). The PCA was carried out for the training data from the

Partition node in the KNIME workflow before cross- validation (Fig 1). PCA of the indepen-

dent test dataset was also performed in order to validate if the compounds within the test data-

set fall within the chemical space or applicability domain (AD) of the compounds in the

training dataset.

Enriched molecular fragments in the NAA datasets

The molecular fragments or substructures (or chemical features) enriched within the active

and inactive compounds in the NAA dataset was searched with the Molecular Substructure

(MoSS) node in KNIME (Fig 1) [27,28]. Minimum and maximum fragment sizes were set to 1

and 100 respectively. Pure carbon fragments were ignored and the ring mining option was

enabled (set at 3 to 8 to avoid finding fragments with partial rings). The algorithm used is the

Christian Borgelt’s MoSS implementation [45].

Results and discussion

In the present study, we have trained and evaluated four antiplasmodial activity classification

models based on a combination of molecular descriptors and molecular fingerprints of natural

products with antiplasmodial activity (NAA).

Molecular descriptors and molecular fingerprints

A total of 117 molecular descriptors were generated with RDKit Descriptors Calculation node

in KNIME [46,47] for the compounds in the NAA dataset. The resultant data was then pre-

processed, as described under the method section, before passing on to the “Feature Elimina-

tion” meta-node [48] to remove redundant molecular descriptors. Approximately 35% of the

molecular descriptors were removed from the NAA dataset. The molecular fingerprints of the

compounds in NAA datasets were also generated with RDKit Fingerprint node in KNIME

[36,37]. The remaining 76 molecular descriptors were combined with the molecular finger-

prints and used to train the classification models.

Training of classifier models and cross-validation

Four classifier models were trained with natural products with in-vitro antiplasmodial activi-

ties (NAA) (using Weka version 3.6 node in KNIME): Voted Perceptron (VP), Naïve Bayesian

(NB), Random Forest (RF) and Sequential Minimization Optimization (SMO). Running on a

Dell Vostro laptop (Intel Core i3-2328M CPU @ 2.20 GHz x 4), SMO was the slowest in terms

of program runtime to build one model (2.88 seconds); the NB was the fastest (0.12 seconds)

followed by VP (1.05 seconds) and RF (1.31 seconds). A total of 1147 NAA (labelled as 70%

active and 30% inactive) was used in this study. This was divided into 917 NAA for training

cum 10-fold cross-validation of the classifier model and 230 NAA as the independent test data-

set. Misclassification cost was set to two for false negatives (FN).

The values of the accuracy (percentage of correctly classified compounds) of the classifier

models over the 10 fold cross-validation are presented in Fig 2. Accuracy may be defined, spe-

cifically for this study, as the proportion of compounds that were correctly classified as active

and inactive (i.e. the number of compounds correctly classified divided by the total number of

compounds classified multiply by 100). From the results (Fig 2), SMO and RF classifier models

showed greater predictive accuracies than the NB and VP classifier models for the NAA

Machine learning approach to predict natural products with antimalarial bioactivity
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dataset. Moreover, the values of the predictive accuracy were fairly consistent over the 10 fold

cross-validation for SMO and RF judging by the slope of approximately 0.2 for the data points

on the graph. This is an indication of the consistency of the predictive abilities of these classi-

fier models.

The goal here is to see the performance of the trained classifier models to predict the activity

class of 10 randomly selected test datasets. From the result (Fig 2), we may conclude that SMO

and RF classifier models showed good and fairly consistent predictive performance of the 10

randomly selected test datasets. However, we used all classifier models generated to predict the

bioactivity class of the independent NAA test dataset that was not included in the training and

cross-validation dataset.

Prediction of bioactivity class of an independent NAA test dataset

The classifier models (Sequential Minimization Optimization (SMO), Random Forest (RF),

Voted Perceptron (VP) and Naïve Bayesian (NB)), previously trained and cross-validated as

described earlier, were used to predict the bioactivity class of an independent test dataset of

natural products with in-vitro antiplasmodial activities (NAA). The performances of the classi-

fier models were evaluated using accuracy, Kappa statistics and Receiver Operating Character-

istic curve.

Fig 2. The graph shows values of the accuracy (percentage of correctly classified compounds) of the four classifier models over the 10 folds

cross-validation. The sequence minimization optimization (SMO) and Random Forest (RF) classifier models showed greater predictive accuracy

than the Naïve Bayesian (NB) and Voted Perceptron (VP) classifier models.

https://doi.org/10.1371/journal.pone.0204644.g002
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Accuracy. From the results (Table 2), the Sequence Minimization Optimization (SMO) of

Support Vector Machine model showed the highest accuracy (85.94%) followed by the Ran-

dom Forest (RF), 82.81%. Naïve Bayes (NB) and Voted perceptron (VP) models displayed

accuracy just above 70% (73.05% and 71.48% respectively). When we compared the results

from the fusion model to the individual models (RF and SMO), we see that the accuracy did

not change.

The objective here was to identify the classifier model trained with both molecular descrip-

tors and molecular fingerprints that best predict the bioactivity class of the independent NAA

test dataset. From the results, we may conclude that SMO of SVM and RF models are the most

suitable classifier models for NAA. Though accuracy provided an overall estimation of the per-

formance of the classifier models, one limitation to the use of accuracy as a metric for assessing

predictive performance of classifier models is “accuracy paradox” (i.e. a classifier model with a

given level of accuracy may have greater predictive power than models with high accuracy).

Therefore less biased metrics like the Kappa statistics and area under Receiver Operating

Curve (ROC) were used as a more objective evaluator of the predictive powers of the classifier

models.

Kappa statistics. The results (Table 2) showed that the kappa statistics of SMO and RF

classifier models (0.72 and 0.65 respectively), like their accuracy values, were higher than that

of the other classifier models in this study. The results also showed that the fusion model

showed a very slight increase in its Kappa statistics when compared to the individual models

(RF and SMO). The value of the Kappa statistics is often used as a measure of consistency or

agreement between the “ground truth” (the actual class of each compound to be classified) and

classifier models’ classification (the class assigned to the compounds by the classifier model). It

accounts for the chance of random classification of compounds into the two bioactive classes

(Active and Inactive). Kappa statistic values of 1 suggest a perfect agreement between the

“ground truth” and classifier models’ classification. Judging by the kappa statistics of SMO and

RF models (Table 2), which are closer to 1 than that of NB and VP models, we concluded that

SMO and RF classifier models showed the best predictive power as similarly observed with the

use of accuracy as the evaluator of the classifier models.

Receiver operating characteristic plot (ROC). Fig 3 shows the Receiver Operating Char-

acteristic (ROC) curve of the classifier models trained and evaluated. Receiver Operating Char-

acteristic (ROC) curve is a graphical plot that shows the performance of a binary classifier

model as its discrimination threshold is varied.

ROC is a plot of the true positive rate (Sensitivity) against the false positive rate (1 –Specific-

ity) at various threshold settings. The diagonal grey line represents classifier models that ran-

domly assign compounds to bioactivity class. The blue line shown in the ROC plot of Voted

perceptron represents classifier models that perfectly predict bioactivity class of compounds.

Table 2. Evaluation parameters from the prediction of bioactivity class of an independent NAA test dataset by the four classifier models used in this study.

Classifier Models Accuracy (%) Kappa Statistics Area Under Curve (ROC)

Random Forest (RF) 82.81 0.65 0.91

Voted Perceptron (VP) 71.48 0.42 0.72

Sequence Minimization Optimization (SMO) of Support Vector Machine 85.94 0.72 0.86

Naïve Bayesian (NB) 73.05 0.45 0.74

Fused Model (RF and SMO) 82.03 0.68 0.92

Comments: RF: Random forest of 10 trees, each constructed while considering 11 random features. Out of bag error: 0.1797. SMO: The polynomial kernel. Fused Model

(RF and SMO): The predictions from RF and SMO were combined (mean) using the “Prediction Fusion” node in KNIME [38].

https://doi.org/10.1371/journal.pone.0204644.t002
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The red line is the ROC curve from the predictions by the four classifier models in this study.

In contrast to NB and VP classifier models, SMO, RF and the fusion classifier models showed

ROC curves that were initially very close to the true positive rate axis (i.e. minimizing false pos-

itive rate (maximizing specificity) and maximizing true positive rates (maximizing sensitiv-

ity)). An optimum prediction aims to maximize sensitivity and specificity. However in all the

models, as the threshold changes the false positive rate increases (i.e. the specificity decreases)

and the true positive rate (i.e. sensitivity) approaches its maximum value. Hence low specificity

values may lead to high incidence of false positives (i.e. detecting inactive compounds as

active). It is therefore expedient to choose the threshold that will have good specificity and

thus avoid investing resources to synthesize and conduct bioassays for compounds that may

not be active and fail along the drug development pipeline [49–52].

Area under the receiver operating characteristic curve (AUC). The values of the area

under the ROC curve (AUC) are shown in Table 2. The RF had the highest value of AUC of

0.91 followed by SMO with an AUC value of 0.86. The VP and NB classifier models showed

AUC values of 0.72 and 0.74 respectively. The fusion model showed AUC that is higher than

AUC of SMO but similar to the AUC seen for RF. The ROC The area under the ROC curve

(AUC) is a measure of how well a model can discriminate between two classes in a dataset (e.g.

Fig 3. The Receiver operating characteristics (ROC) curve for the four classifier models. The diagonal grey line represents classifier models that

randomly assign compounds to bioactivity class (and will have an area under the curve (AUC) of 0.5). The blue line shown in the ROC curve of Voted

perceptron (will have an AUC of 1.0) represents classifier models that perfectly predict bioactivity class of compounds. The red line is the ROC curve

from the predictions by the four classifier models. The area under the ROC curve (AUC), a measure of bioactivity class discriminatory power of a

classifier model, is shown on each ROC curve.

https://doi.org/10.1371/journal.pone.0204644.g003
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active and inactive compounds) [53]. In this study, AUC depicts the probability that the active

class predicted by the classifier models for a randomly selected compound will exceed that of a

randomly selected non-active class [54]. Where the prediction of the bioactivity class of com-

pounds is purely random, the AUC will be equal to 0.5 (i.e. the ROC curve will coincide with

the diagonal line). When the prediction results in perfect separation of the bioactivity class of

the compounds, i.e. where there is no overlapping of the distributions of the bioactivity classes,

the area under the ROC curve will be one.

The values of the AUC for the four classifier models indicate that the discriminatory or pre-

dictive power (separation of the bioactivity class of the compounds) of the models range from

fair (0.7–0.8) to excellent (> 0.9). The discriminating powers of the classifier models, judging

by the AUC, were thus: RF, SMO, NB and VP in decreasing order of discriminating power to

predict a bioactive class of the compounds in the NAA dataset. Overall, the nature of the ROC

plot and the higher AUC values of RF and SMO suggest their suitability as good classifier mod-

els for the NAA dataset used in this study.

Applicability domain (AD) of the classifier models

Applicability Domain (AD) of the classifier models refers to the chemical space, defined by the

training set, within which a test compound should be in order for its bioactivity class to be reli-

ably predicted. In this present study, the AD of the models was defined with the training and

cross-validation dataset and its validity evaluated on the independent test dataset. Principal

Component Analysis (PCA) was used to define the AD of the models and to map the test data-

set (active and inactive compounds) in their respective chemical spaces.

Fig 4 is the visualization of the first three principal components of the compounds in the

training and cross-validation dataset (Fig 4 (X)) and compounds in the independent test data-

set (Fig 4 (Y)) for the NAA dataset. From Fig 4(Y) and 4(X), we observed that almost all com-

pounds in the test dataset fell within the chemical space or AD of the training dataset used to

build the classifier models.

The results also revealed no clear boundary between the active and inactive compounds in

the training dataset and the independent test dataset for NAA. This implies some level of

chemical structural similarity amid the active and inactive compounds in the datasets, which

may pose a restriction on the discriminatory ability of the models. Overall, this analysis

enabled the identification of the AD for the models built in this study. Therefore the models

may reliably predict new compounds that fall within this AD.

Enriched molecular fragments in the NAA datasets

We sought to understand the molecular substructures (or chemical features) associated with

antiplasmodial activity and inactivity of compounds in the NAA (natural products with in-
vitro antiplasmodial activities) dataset. To this end, we used the Molecular Substructure

(MoSS) node in KNIME to search for most common molecular substructures in the active and

inactive compounds in the NAA dataset.

A total of 52 most common molecular substructures from active compounds (717 com-

pounds) and 48 most common molecular substructures from inactive compounds (323) were

identified. The molecular similarities amongst the substructures from the active and inactive

compounds were estimated and projected in a three dimensional (3D) space (Fig 5).

From these results, most of the substructures from the active and inactive compounds over-

lapped in the 3D space indicating their high molecular similarity. However, some of the sub-

structures from the active and inactive compounds occupy a distinct region of the 3D space

(Fig 5). These include hydroxyisoquinoline and isoquinoline substructures from active
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compounds and hydroxyflavone from inactive compounds. These substructures may be deter-

minants of antiplasmodial activities and may guide rational selection and design of active anti-

plasmodial compounds. A closer at difference in the functional groups between the active

NAA dataset (A) and inactive NAA dataset (N) revealed the following: Akylamine (29% in A,

13% in N); Aromatic amine (1.5% in A, 3% in N); Basic nitrogen (36% in A, 14% in N); Acidic

oxygen (4% in A, 9% in N). In all, the amine chemical group (specifically alkyl amines and

basic nitrogen) was confirmed to be essential for antimalarial activity in active NAA dataset.

Benefits of models from machine learning (in-silico compound screening)

To illustrate the benefit of the machine learning and the resultant classifier models, the

Sequential Minimization Optimisation (SMO) and Random Forest classifier models, adjudged

the top classifier models in this study, were used to screen 450 natural compounds of a private

natural product chemical library from InterBioScreen (http://www.ibscreen.com). The results

(S2 Table) showed that the SMO classifier model predicted that 39% of the compounds will

possess active antiplasmodial activities while Random Forest predicted a higher proportion of

the natural product chemical library as active (87%). Although there was a significant differ-

ence in the proportion of compounds predicted as active by the classifier models the output

from the RF classifier model may be less reliable due to the tendency for RF models to overfit-

ting data [33,34]. The two classifier models showed consistent antiplasmodial bioactivity class

prediction for 54% of the compounds in the natural product chemical library.

The natural compounds predicted as active, which are readily available from InterBioScreen

and other chemical libraries, may be prioritized and readily purchased for in-vitro antiplasmo-

dial screening. Overall, these results attest to the importance of bioactivity predictive models

Fig 4. A visualization of the applicability domain (chemical space) of the of classifier models built in this study. Active compounds (red dots)

and inactive compounds (purple dots) are represented using the first three Principal Components. Panel X depicts the range of Principal

Components of compounds in the training set that define the applicability domain (AD). Panel Y shows that almost all compounds in the test set

fell within the AD of the defined by the training set. Therefore, classifier models generated in this study can reliably predict the bioactivity class of

new compounds that fall within this AD. NAA: natural products with in-vitro antiplasmodial activity.

https://doi.org/10.1371/journal.pone.0204644.g004
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built with machine learning algorithms that are capable of effective and efficient learning from

existing bioactivity data and predicting biological activities in-silico to modern drug discovery.

Conclusions

In this study, we used machine learning as a method to build various antimalarial predictive

models that can predict the bioactivity class of natural products. The classifier models that

were most suitable for the dataset (natural products with in-vitro antiplasmodial activities)

were identified. These models were used, in-silico, to annotate potential antimalarial com-

pounds in a large natural product library. Such compounds may be prioritized for the more

expensive in-vitro bioactivity screening. In addition, we generated a pool of chemical features

that were present within active and inactive natural products with in-vitro antiplasmodial

activities (NAA) used in this study. Such chemical features from active NAA in conjunction

with the molecular scaffolds that may be identified from the active NAA could be valuable in

designing antimalarial specific virtual compound library.

The knowledge of the classifier models that provide the most accurate prediction of the desired

bioactivity for a particular class of compounds will enable medicinal chemist to pre-screen

Fig 5. Chemical features from active and inactive compounds from NAA dataset. The blue markers represent most common substructures from

active compounds (IC50� 10 μM) while the red markers represents most common substructures from inactive compounds (IC50> 10 μM). The most

common substructures were projected in a three-dimension (3D) space based on molecular similarity. Some of the most common substructures that are

peculiar to the active and inactive compounds are highlighted. This may guide rational selection and design of active antiplasmodial compounds. NAA:

natural products with in-vitro antiplasmodial activity.

https://doi.org/10.1371/journal.pone.0204644.g005
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compounds prior to the expensive step of synthesis and in-vitro assay. Accurate prediction of bio-

activity class of compounds will improve decision-making processes in antimalarial drug design

and development to achieve better and cost-effective outcomes (i.e. drug candidate for malaria).

Overall, knowledge provided by this study could contribute significantly to and accelerate the on-

going efforts for antimalarial drug discovery, especially from natural products.
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