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A B S T R A C T   

Monitoring key pollinator taxa such as the genus Ceratina requires precise near real-time predictions to facilitate 
better surveillance. The potential habitat suitability of Ceratina moerenhouti was predicted in the Eastern Afro-
montane biodiversity hotspot (EABH) in Kenya using presence-only data, to identify their potential distribution 
and vulnerability due to climate change. Bioclimatic, edaphic, terrain, land surface temperature, and land use 
and land cover (LULC) variables were used as predictors. Three machine learning techniques, together with their 
ensemble model, were evaluated on their suitability to predict current and future (the shared socioeconomic 
pathways (SSPs), i.e., SSP245 and SSP585) habitat suitability. Predictors were subjected to variable selection 
using the variance inflation factor resulting in a few (n = 9) optimum variables. The area under the curve (AUC) 
and true skill statistic (TSS) were used for the accuracy assessment of the modeling outputs. The results indicated 
that 30% and 10% of the EABH in Murang’a and Taita Taveta counties are currently suitable for C. moerenhouti 
occurrence, respectively. However, future projections show a ±5% decrease in C. moerenhouti habitats in the two 
counties. Further, the ensemble model harnessed the algorithm differences while the random forest had the 
highest individual predictive power (AUC = 0.97; TSS = 0.96). Clay content, LULC, and the slope were the most 
relevant variables together with temperature and precipitation. Integrating multi-source data in predicting 
suitable habitats improves model prediction capacity. This study can be used to support the maintenance of 
flowering plant communities around agricultural areas to improve pollination services.   

1. Introduction 

Pollinators offer a crucial service to the environment and livelihoods 
as they are vital contributors to global food security (Landmann et al., 
2015; van der Sluijs and Vaage, 2016). Approximately 75% of global 
food crops depend on natural insect pollination (Gallai et al., 2009). 
Unfortunately, earlier research showed that over 40% of invertebrate 
pollinators are threatened with global extinction, and about 9% of wild 
bee and butterfly species face local extinction (Dicks et al., 2021; Zattara 
and Aizen, 2021). The decline and population losses in most of these 

crucial pollinators have been attributed to climate change, diseases, 
habitat loss, increased anthropogenic use of pesticides, and monoculture 
(Janzen and Hallwachs, 2019; Ochungo et al., 2019). 

Bees are the largest and most important group of insect pollinators, 
especially for crop production (Schatz et al., 2021). These pollinators are 
diverse, particularly in Africa’s eight biodiversity hotspots including the 
Eastern Afromontane biodiversity hotspot (EABH) (Eardley et al., 2009). 
However, studies on improving pollinator diversity, population size, and 
pollination services are scarce in Africa, despite the abundance of 
pollinator-dependent crops (Korpela et al., 2013). Of the few studies 
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available, most have mainly focused on the honeybee (Apis mellifera) 
(Ochungo et al., 2019; Sagwe et al., 2021; Tola et al., 2020) while 
pollination by wild bees may be more important (Garibaldi et al., 2013). 

The small Ceratina moerenhouti Vachal 1903 is one of the most 
important bee pollinators for both wild and agricultural plants (Gari-
baldi et al., 2013), but its ecology is largely understudied (Eardley and 
Daly, 2007). Earlier studies have reported Ceratina genus as an impor-
tant pollinator of a spectrum of wild and agricultural plant families 
(Altieri et al., 2015; Eardley and Daly, 2007; Eardley et al., 2009). The 
genus Ceratina is polylectic and has also been reported to visit flowers 
from different families, including Zygophyllaceae, Vitaceae, Rutaceae, 
Rosaceae, Resedaceae, Tamaricaceae, Simaroubaceae, Scrophular-
iaceae, Plumbaginaceae, Oleaceae, Molluginaceae, Malvaceae, Lil-
iaceae, Lamiaceae, Fabaceae, Euphorbiaceae, Dipsacaceae, 
Cucurbitaceae, Campanulaceae, Convolvulaceae, Chenopodiaceae, 
Cynareae, Boraginaceae, Brassicaceae, Asteraceae, Araliaceae, Ana-
cardiaceae, and Apiaceae (Terzo and Rasmont 2011). 

The genus Ceratina is highly diverse and has approximately 380 
species distributed throughout the world, with about 29 species occur-
ring in Africa (Discover, 2022; ITIS, 2022). Although they are not honey 
producers, they are an essential part of the pollination process for crops 
and wild plants (Eardley and Daly, 2007). Some Ceratina species seem to 
have nests consisting of several adult females, and most live solitary or 
in small colonies (Rehan, 2020). Most Ceratina bee species make nests in 
deadwood, stems, or piths in various locations mostly in shaded envi-
ronments (Eardley et al., 2009). However, very few studies have 
investigated the effect of climate change on the distribution of suitable 
habitats for most of these species including C. moerenhouti (Tabor and 
Koch, 2021). 

In general, the global geographic occupancy of many pollinators 
such as C. moerenhouti has declined in the last 5 decades (Dicks et al., 
2021; Gallai et al., 2009). Pollinators and the host plants of pollinators 
will be significantly impacted by climate change in natural and agri-
cultural ecosystems (Mudereri et al., 2019; Sango and Godwell, 2015). 
Anthropogenic-induced climate change may increase temperature and 
alter rainfall patterns. As the atmospheric CO2 and temperature increase 
or decrease, they will possibly result in warmer, colder, wetter, or dryer 
conditions (IPCC, 2014; Niang et al., 2014). Thus, habitat suitability 
may change for specific pollinators or vegetations, leading to changes in 
population size, hence altering potential inter- and intraspecific 
competition (Duan et al., 2020; Okello et al., 2021). A mean temperature 
increase or decrease will thus likely alter the known life cycles, repro-
ductive success, and mobility of most insects across the globe, including 
the C. moerenhouti species (Ghisbain et al., 2021). Ultimately, promoting 
evidence-based studies that guide pollinator management and moni-
toring policies that target the improvement and increase in wild pop-
ulations is key to reducing pollination deficit in smallholder production 
systems. 

In this study, we used three species distribution models (SDMs) based 
on machine learning (ML) tools i.e., maximum entropy (MaxEnt), sup-
port vector machines (SVM), random forest (RF), and their ensemble 
combination to predict the best suitable habitat for the C. moerenhouti 
species. These ML algorithms and field-gathered presence-only refer-
ence occurrence data were used to predict the current and future habitat 
suitability within one of the eight biodiversity hotspot areas in Murang’a 
and Taita Taveta counties in Kenya. SDMs have broadly been used for 
numerous objectives in conservation biology (Moshobane et al., 2022), 
biogeography (Bradie and Leung, 2017), and ecology (Mohammadi 
et al., 2019; Mudereri et al., 2021; Otunga et al., 2017) across different 
continents, climates, and ecologies (Eshetae et al., 2019). ML SDMs such 
as the RF, MaxEnt, and SVM have demonstrated their strength and 
capability to deliver excellent predictive performances as well as their 
flexibility to cope with autocorrelations (Muthoni et al., 2021; Naimi 
et al., 2014). In contrast, earlier studies have shown concern over the 
uncertainties caused by different algorithms. As a result, the ensemble 
modeling approach is increasingly popular due to its ability to combine 

multiple models’ predictive strengths and lessen their weaknesses 
(Chemura et al., 2021). 

Of particular concern to modeling biological species is that many 
species, mainly insects, will likely depend on the prevailing climate 
conditions (Volis and Blecher, 2021). These conditions usually define 
most geographical distribution noted in numerous species’ distribution 
modeling outputs (Mutamiswa et al., 2022; Otieno et al., 2019). Among 
others, vegetation composition, precipitation, temperature, and altitude 
have been reported by earlier studies as critical environmental factors 
that affect the ability of insect pests to adapt to an area and eventually 
their distribution depending on their tolerable thresholds (Azrag et al., 
2018; Otieno et al., 2019). Climate factors are the determinants of most 
arthropod species, including C. moerenhouti, and they are presented as 
the key factors that affect the abundance and distribution of these spe-
cies. As a result, climate change will pose a fair amount of risk to the 
species, making an immediate understanding of the consequences 
necessary. 

Recent studies have used the shared socio-economic pathways 
(SSPs), land use, energy, and emissions implication to determine and 
predict the potential future climate scenarios (Chemura et al., 2021; 
Riahi et al., 2017). SSPs are part of a new scenario framework suc-
ceeding the international panel on climate change (IPCC), representa-
tive concentration pathways (RCPs), to facilitate the integrated analysis 
of future climate impacts, vulnerabilities, adaptation, and mitigation. 
The SSPs explain alternative socio-economic developments in five nar-
ratives that describe sustainable development, inequality, regional ri-
valry, fossil-fuelled development, and middle-of-the-road development 
(Riahi et al., 2017). In addition to the commonly used bioclimatic pre-
dictors, an earlier study found that incorporating remotely sensed data 
and environmental variables such as topography, land cover, land sur-
face temperature, and other environmental variables improved the 
predictive capacity of models (Jetz et al., 2019; Ropars et al., 2020). 

Thus, this study contributes to understanding of the Kenyan scenario 
in C. moerenhouti occurrence and contributes to the overall body of 
knowledge that facilitates the understanding of the connectivity of the 
global ecosystems and the importance of the EABH for C. moerenhouti 
conservation and management. The study’s specific objectives were to: 
(1) predict and understand the determining factors of the suitability of 
C. moerenhouti habitat at a landscape scale in Kenya and (2) estimate the 
suitable areas using the future scenarios i.e., SSP245 and SSP585. 

1.1. Study area 

The study was conducted in two separate counties of Kenya, i.e., 
Murang’a and Taita Taveta, which lie within the EABH. The EABH 
stretches from the north in the Middle East to the south in southern 
Africa covering over 7000 km from Saudi Arabia through widely scat-
tered biogeographically similar mountains in East Africa until the 
eastern highlands between the border of Mozambique and Zimbabwe. 
The EABH is one of the 36 global biodiversity hotspots and is one of the 
highly biologically diverse regions among the world’s biodiversity hot-
spots. Kenya is rich in plant diversity within several unique habitats, 
with an estimated ±7000 indigenous plant species (Mahiga et al., 2019). 

Murang’a county lies at latitude 0.7839◦ S and longitude 37.0400◦ E 
covering an area of 2326 km2. It is a major tea and coffee growing region 
located in central Kenya bordering Nyeri and Kirinyaga counties in the 
north, Machakos and Embu counties in the east, and Kiambu county in 
the south (Fig. 1). The mean annual temperature and rainfall range from 
18 ◦C to 21 ◦C and 1000 to 1500 mm, respectively. The rainfall pattern is 
bimodal with ‘long rains’ occurring from March to May and ‘short rains’ 
from October to December (Ndayisaba et al., 2021). Furthermore, 
Murang’a is characterized by forest fragments, coffee, and tea with other 
fruit trees such as avocado (Persea americana), macadamia (Macadamia 
integrifolia), mango (Mangifera indica), and hedgerow trees like grevillea 
(Grevillea robusta) including intercrops such as bean, maize, sweet po-
tato, banana, and tree tomato on an average farm size of 0.5 ha 
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(Aduvukha et al., 2021; Murang’a County Government, 2021). 
On the other hand, Taita Taveta covers a spatial area of 17,084 km2 

and lies between latitude 3.3831◦ S and longitude 38.3625◦ E located in 
southern Kenya which borders Kajiado and Makueni on the northwest, 
Kitui, and Tana River on the North while Kilifi and Kwale are in the East 
(Fig. 1). Taita Taveta is characterized by a very high diversity of flora 
and fauna with a high level of endemism. The dominant land use 
characteristic in the study area is subsistence small-scale farming. 
Within these small-scale farms, the common crops in Taita Taveta 
include beans, peas, potatoes, maize, bananas, tomatoes, cabbages, 
sorghum, cassava, millet, and avocados. Both high population pressure 
and dominant subsistence farming have caused dynamic changes in 
land-use patterns resulting in significant levels of land degradation. 
Since the 1950s indigenous forests have suffered significant levels of 
deforestation and degradation and it is assumed that approximately 1% 
of the original forest remains. This forest loss is mainly due to the 
clearing of indigenous forests for exotic timber plantations and agri-
cultural expansion, hence affecting the diversity and abundance of in-
sects in the area. In the greater part of this study area, indigenous forests 
have been replaced by exotic plantations. 

2. Methodology 

2.1. Reference occurrence data collection 

A total of sixty farms for both Murang’a and Taita Taveta that had a 
standard separation distance of at least 3 km were used. The survey units 

were farms, hedgerows, forest fragments, and roadsides (Baard and 
Kraaij, 2019). Reference occurrence data collection was conducted 
twice i.e., for five consecutive days between the 11th to the 15th of 
November 2019 and again from the 26th to the 30th of October 2020. The 
data collection phase was purposefully matched with the peak flowering 
of crops and weeds within the farms in the study area. The 
C. moerenhouti were captured, using sweep nets between 07:00 h to 
17:00 h to match their most active foraging time. A sampling unit of 5 ×
100 m transect was set up on each farm following the method of Roul-
ston et al. (2007). Direct observations and recording of bee-flower in-
teractions were done for 30 min repeatedly at ten different random 
locations along the transect before moving to the next farm (Roulston 
et al., 2007). Plants were sampled within the same transects, using 4 
replicates of 2 × 2 m quadrats where plant species and cover were 
determined. A handheld global positioning system (GPS) device with an 
error margin of ±3 m was used to capture the coordinates of the 10 
sampled locations as well as the central coordinate of the transect. A 
total of 55 “presence-only” C. moerenhouti reference data were collected 
covering the selected farms in the two study sites of Murang’a and Taita 
Taveta. The sampling design to scout for the occurrence of 
C. moerenhouti followed an elevation gradient from the high to the low 
elevation areas. However, most of the occurrences were observed within 
high-altitude areas. 

The collected bees and plant samples were stored in the freezer and 
plant presser, respectively. These bee specimens were identified using a 
camera microscope in tandem with bee identification manuals and vir-
tual insect collections using wing pattern morphology and other 

Fig. 1. Location of the study area in Africa and Kenya. The two counties of Murang’a and Taita Taveta with the Ceratina moerenhouti (n = 55) occurrence points 
superimposed on the shaded relief Natural earth data (https://www.naturalearthdata.com/features/). 
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distinguishing morphological features (terga, sterna, clypeus, mandi-
bles, metanotum, propodeum, etc). The collected insects were sorted at 
the International centre of insect physiology and ecology (icipe) African 
reference laboratory for bee health (ARLBH) according to their order, 
family, genus, and species level. The sorted specimens were stored and 
labeled separately from each farm location and were matched to the 
central coordinate of the transect where they were collected from and 
were used in this analysis as the presence-only data. 

2.2. Predictor variables 

The predictor variables that were used to predict the suitability of the 
C. moerenhouti habitat were derived from the bioclimatic, topographic, 
edaphic, land surface temperature (LST), and land use and land cover 
(LULC). To match the size and extent of edaphic variables, all variables 
were clipped to the study area boundary and resampled to 250 × 250 m 
pixels. Thus, the spatial and temporal resolution of our models should 
not impact their accuracy since the farms were at least 3 km apart. 

2.2.1. Bioclimatic variables 
One of the benefits of SDMs is that predictive models fitted in current 

conditions are transferable to novel periods under emission scenario 
projections (Mesgaran et al., 2014; Zurell et al., 2012). This provides 
opportunities to understand and compute the potential variations in 
species ranges due to climate change. In our first analysis, we used 19 
bioclimatic variables that were downloaded from the WorldClim plat-
form (www.worldclim.org) at approximately 1 × 1 km spatial resolution 
(Fick and Hijmans, 2017). The data has been interpolated from data 
obtained from weather stations around the world, using the thin plate 
smoothing spline algorithm implemented in ANUSPLIN (Fick and Hij-
mans, 2017). 

2.2.2. Edaphic variables 
Five soil properties, from the ‘AfSoilGrids250m’, were downloaded 

from https://www.isric.org/explore and used in the predictive models 
(Hengl et al., 2015). These soil grids are provided at different soil 
depths, and we opted to use the 0–30 cm depth with a spatial resolution 
of 250 × 250 m. It was assumed that this depth can influence the species 
of plants and their growth form and rate. Thus, the types of available 
plants either provide or limit the areas for foraging and nesting for the 
C. moerenhouti. Specifically, we used total soil nitrogen (N) (mg/kg: 
ppm), soil pH, soil organic carbon (SOC) in g/kg, clay content (g/100 g), 
and sand content (50–2000 μm) in g/100 g (Hengl et al., 2015). These 
variables broadly influence soil fertility for vegetation growth, and thus 
the potential production of flowers for the foraging of the C. moerenhouti 
as well as the production of soil organic matter to enhance interaction 
with other insects (Eardley and Daly, 2007; Okello et al., 2021). 

2.2.3. Land surface temperature 
The LST from the climate modeling Grid product (LST_Day_CMG), 

available in K and simulated from moderate resolution imaging spectro- 
radiometer (MODIS) data, was downloaded at https://lpdaac.usgs. 
gov/products/mod11c2v006/ (Wan et al., 2015). Specifically, we used 
the ‘multi-day’ MOD11C2 LST product of 5.6 × 5.6 km spatial resolution 
available from the year 2000 to the present. The LST variable was 
chosen for inclusion in the analysis as the temperatures are at the ground 
surface. Thus, LST together with atmospheric temperature must be 
within the threshold tolerable temperatures of the insects and hence 
would influence the suitability of the habitat (Azrag et al., 2017). 
Therefore, we hypothesized that the surface fluxes measured by LST 
would be one of the proxy key variables that greatly predict the potential 
occurrence of the C. moerenhouti species. 

2.2.4. Terrain variables 
The terrain variables were derived from the shuttle radar topo-

graphic mission (SRTM) data that is provided at 1 arc sec (~30 m 

resolution) digital elevation model (DEM) with a 16 m vertical error 
(Farr et al., 2007). We assumed that this error margin would not 
significantly influence the performance of our models. In addition to the 
elevation, we derived six other terrain variables i.e., aspect, slope, flow 
direction, roughness, terrain ruggedness index (TRI), and terrain posi-
tion index (TPI) using the ‘terrain’ function available in the raster 
package (Hijmans, 2020) in R version 4.0.5 (R Core Team, 2021). The 
influence of terrain variables on bees’ occurrence was reported by 
earlier studies and was anticipated to influence the occurrence and 
propagation of C. moerenhouti by altering precipitation, temperature, 
vegetation including crops, and the angle, direction, and intensity of the 
sun on the earth’s surface (Azrag et al., 2017; Makori et al., 2017). 

2.2.5. Land use and land cover (LULC) 
The 20 × 20 m pixel size Sentinel-2 prototype land cover data for 

Africa is provided by the European Space Agency (ESA) and freely 
available from http://2016africalandcover20m.esrin.esa. int/down-
load.php was used as the LULC variable in this study (ESA, 2020). The 
data include a legend comprising ten generic classes i.e., ‘trees cover 
areas’, ‘shrubs cover areas’, ‘grassland’, ‘cropland’, ‘vegetation aquatic 
or regularly flooded’, ‘lichen and mosses or sparse vegetation’, ‘bare 
areas,’ ‘built-up areas’, ‘snow or ice’ and ‘open water’. Of these ten 
classes, only nine are available in the study area except the ‘snow or ice’ 
class. This ESA-derived LULC dataset was derived from a one-year of 
Sentinel-2A observations from December 2015 to December 2016 clas-
sified using the RF algorithm (ESA, 2020). Other studies on bees or other 
insect species have demonstrated the interdependence of land cover 
patterns and insect species, regarding their relative potential spatial 
distribution (Adan et al., 2021; Nyabako et al., 2020; Ropars et al., 
2020). However, these regionally developed datasets such as the 
Sentinel-2 prototype land cover data for Africa used in this study often 
have accuracy limitations. However, they provide a critical gridded view 
of the spatial location of various LULC classes at scale but must be 
treated with caution. 

2.3. Future projection variables 

In this study, the topographic and edaphic, LST, and LULC were 
assumed and considered to remain static to project the future potentially 
suitable habitat for the C. moerenhouti, while the independent climatic 
predictors were those extracted from the global climatic model (GCM) 
provided by the center for climate system research (Japan, MIROC6). 
This GCM was selected because it provides completely bias-corrected 
data for all the periods including 2050 (2041–2060) data that was 
used in this analysis (Chemura et al., 2021). 

The impact of climate change was evaluated from the projected 
climate and socio-economic conditions defined by the combination of 
the RCPs and SSPs (Riahi et al., 2017). The RCPs consider the impact of 
potential future greenhouse gas emission trajectories on the climate 
system based on the forcing until the end of the twenty-first century 
(IPCC, 2014). Four levels of RCP have been proposed by the IPCC i.e., 
RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5. In contrast, the SSP concept 
narrates the future of the world using trajectories of population growth, 
economic growth, trade development, technological development, and 
implementation of environmental policies (Riahi et al., 2017). The five 
SSPs are commonly referred to as (i) the most sustainable development 
(SSP1), (ii) middle-of-the-road development (SSP2), (iii) regional rivalry 
(SSP3), (iv) inequality (SSP4), and (v) full fossil-fuelled development 
(SSP5) pathways (Chemura et al., 2021). Therefore, the combination of 
RCPs and SSPs simulates a more probable integration scenario matrix of 
radiative forcing and socioeconomic development influences because 
each SSP is broadly aligned with one or two RCPs. For analysis of the 
future impact of climate change on the C. moerenhouti, we used two of 
the four possible combinations i.e., SSP2-RCP4.5 (SSP245) and 
SSP5-RCP8.5 (SSP585) to enable comparison in similar studies that 
apply the same combinations. 

M. Mukundamago et al.                                                                                                                                                                                                                       

http://www.worldclim.org
https://www.isric.org/explore
https://lpdaac.usgs.gov/products/mod11c2v006/
https://lpdaac.usgs.gov/products/mod11c2v006/
http://2016africalandcover20m.esrin.esa


Physics and Chemistry of the Earth 130 (2023) 103387

5

2.4. Collinearity test of variables used in the species distribution models 
(SDM) 

Collinearity amongst the predictor variables in most SDMs causes 
instability and overfitting of models thus reducing the reliability of the 
outputs (Dormann et al., 2013). The variance inflation factor (VIF), 
which detects multicollinearity by taking each predictor and regressing 
it against the other variables in multiple linear regression analysis was 
used for selecting optimum variables for the modeling (Plant, 2012). The 
resulting coefficients of determination (R2) value attained from these 
multiple regressions are then replaced in the VIF calculation formula for 
each pair as shown in equation (1). 

VIFi =
1

1 − R2
i

(1)  

Where i is the predictor. 
In this study, the ‘vifcor’ function in the ‘usdm’ package available in 

R version 4.0.5 (Naimi et al., 2014; R Core Team, 2021) was used to 
calculate the VIF values for each of the variables. The ‘vifcor’ function 
iteratively selects pairs of variables with high linear correlation, then 
eliminates the one with the highest VIF. The threshold for elimination 
was set as th = 0.7, which represents a Pearson correlation coefficient (r 
≥ 0.7) following the recommendation of Kyalo et al. (2018). Predictor 
variables that have VIF values that are greater than 10 demonstrate 
evidence of high collinearity with other variables within a model and 
hence are often eliminated (Dormann et al., 2013). A correlation matrix 
was then used to test the level of correlation on the retained variables to 
enhance the empirical selection and retention of key variables that have 
been reported in the literature to be of ecological significance to bees 
(Makori et al., 2017). Our variable elimination procedure resulted in a 
selection of nine optimum variables from a total of 32 bioclimatic and 
remotely sensed variables. The nine variables that were used in the final 
modeling procedure are highlighted in Table 1. 

2.5. Species distribution models implementation 

The ‘sdm’ package (Naimi and Araújo, 2016) in R version 4.0.5 (R 
Core Team, 2021) was used to predict the current distribution of the 
C. moerenhouti as well as to project the suitability of the habitat into the 
future. The 55 presence-only points data that were collected in the field 
were used together with 10,000 pseudo-absence points generated using 
the ‘sdmdata’ function inherent in the ‘sdm’ package to build the 

models’ reference base for the presence and absence of the 
C. moerenhouti species. The number of points used as presence data was 
within the sufficient sample size required for accurate predictions when 
robust ML algorithms are used such as those employed in this study 
(Stockwell and Peterson, 2002). The ‘sdm’ package provides a single 
platform with the possibility to run 15 ML algorithms using the same 
presence-only and pseudo-absence data by applying an object-oriented 
reproducible and extensible framework for SDM in R (Naimi and 
Araújo, 2016). In the present study, we selected and inter-compared 
only three of the 15 modeling techniques in ‘sdm’ as follows: RF, Max-
Ent, and SVM. 

In the RF model, the prediction is achieved by selecting the highest 
probability occurrence value from multiple decision trees (Muthoni 
et al., 2021). On the other hand, MaxEnt predicts the species occurrence 
by finding the largest spread (maximum entropy) (Mutamiswa et al., 
2022; Phillips et al., 2017) while SVM uses a hyperplane to estimate the 
divergence of class groupings for the prediction (Hastie et al., 1994; 
Vapnik, 1979). These three algorithms were selected in this study 
because they are widely used in conducting complex output predictions 
with relatively high modeling accuracies for regression and classifica-
tion (Abdel-Rahman et al., 2013). A summary of these models’ execution 
syntax and their corresponding packages used by ‘sdm’ in the parallel 
model simulations is provided in Table 2. 

2.6. Rank sum test for variable importance 

The ranking of variables to predict their relative importance was 
done using a rank sum test. Within each of the ML methods, variables 
were ranked according to their degree of variable importance. For each 
variable, ranks were summed across the three ML methods and those 
rank sums were sorted to predict the importance of variables across 
different methods. A quantitative method was also used to create a 
contingency table of the observed values. The row and column products 
were then standardized for the whole sample dataset as a table of ex-
pected values. For each variable in each ML method, we calculated the 
deviation observed from the expected value (obs-exp)2/exp. The least 
deviating values were predicted as the best-performing variables and ML 
methods. Thus, the variance in variable importance showed that the 
MaxEnt is more strongly deviating from the SVM and RF. 

2.7. Ensemble modeling 

As ensemble modeling binds together different models that have the 
highest precision and accuracy, it maximizes the prediction accuracy 
with a higher degree of reliability. As a result of the present study, the 
function ‘ensemble’ within the ‘sdm’ package was used to harmonize the 
results of the three occurrence prediction algorithms by using the area 
under the curve (AUC) weighted average approach. (Naimi and Araújo, 
2016). 

2.8. Models’ accuracy validation 

A 10-fold cross-validation approach was used to test the validity of 
our models. These folds were randomly split using the semi-automated 

Table 1 
The nine bioclimatic and remotely sensed variables that were retained after the 
correlation test elimination and were used in the species distribution models 
(SDMs) for C. moerenhouti occurrence prediction and their variance inflation 
factor (VIF) values.  

Variable Description Units V.I.F 
Value  

Bioclimatic variable   
Bio1 Annual mean temperature ◦C 9.58 
Bio4 Temperature seasonality (standard 

deviation × 100) 
– 9.73 

Bio12 Annual precipitation mm 9.81 
Bio15 Precipitation seasonality (coefficient of 

variation) 
– 3.00  

Edaphic variables   
Clay 

content 
Quantity of clay in the soil g/100g 4.21  

Land surface temperature (LST)   
LST Land surface temperature K 5.50  

Terrain variables   
Aspect Slope direction Degrees 1.55 
Slope Ground steepness % 2.27  

Land use and land cover   
LULC The land use and land cover categorical 2.00  

Table 2 
R software packages used by ‘sdm’ in the parallel execution of the three models: 
namely random forest (RF), maximum entropy (MaxEnt), and support vector 
machines (SVM).  

Algorithm Syntax code in 
‘sdm’ 

Package used Reference 

Random forest ‘rf’ randomForest Liaw et al. (2002) 
Maximum entropy ‘maxent’ dismo Hijmans et al. (2021) 
Support vector 

machines 
‘svm’ Kernlab Karatzoglou et al. 

(2004)  
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sampling approach in the ‘sdm’ package. The performances of the three 
models were evaluated using the receiver operating curve (ROC) by 
analyzing the AUC and true skills statistic values (TSS: Allouche et al., 
2006). The values for the AUC range between 0 and 1. Imprecise models 
have an AUC of 0, while accurately predicting models have an AUC of 1. 
In principle, high model prediction performances are demonstrated by 
models with AUC > 0.7 (Mohammadi et al., 2019). In contrast, TSS 
(equations (2)–(4)) merges the sensitivity and specificity of the models 
to account for the model commission and omission errors (Kyalo et al., 
2018). The values of TSS range between − 1 to +1, where +1 demon-
strates a perfect agreement between the observed and the predicted 
C. moerenhouti occurrence, while values ≤ 0 indicate no agreements or 
that most of the predictions for the C. moerenhouti occurrence were 
produced by chance (Allouche et al., 2006). 

TSS= Sensitivity + Specificity – 1 (2)  

Sensitivity=
a

a + b
(3)  

Specificity=
d

c + d
(4)  

where a is true positive, b is a false negative, c is false positive, and d is 
true negative. 

2.9. Model outputs visualization 

The QGIS software version 3.20 was used to visualize the outputs of 
the three models and their respective ensembles (QGIS Development 
Team, 2021). Based on a suggestion by (Abdelaal et al. (2019), we 
reclassified our probability maps into five classes of C. moerenhouti 
habitat suitability and probability of occurrence. These classes were: (i) 

very low probability (≤ 0.05), (ii) low probability (0.051–0.10), (iii) 
moderate probability (0.11–0.30), (iv) high probability (0.31–0.50), and 
(v) very high probability (≥ 0.50). 

Using these five classes of suitability as highlighted in (i – v) above, 
we reclassified the pixel values in each of the ensemble images of the 
current, SSP245, and SSP585 using numerical values of 1–5 to allow for 
standardized numerical evaluation of the suitability losses caused by the 
potential climatic changes using the QGIS software version 3.20 (QGIS 
Development Team, 2021). Image differencing was used by subtracting 
the current image from the future (SSP245 and SSP585) probability of 
habitat suitability. Classes of gains (+) and losses (− ) in suitability were 
obtained from the image differencing per each pixel and were mapped 
within the two counties i.e., Murang’a and Taita Taveta. 

3. Results 

3.1. Models’ accuracy, comparison, and validation 

Details of the VIF values for the variables are provided in Table 1. 
The lowest values of VIF were obtained from aspect (1.55), LULC (2.00), 
and slope (2.27) while higher values of VIF were observed in bioclimatic 
variables (VIF > 9). The R2 values for the selected variables were rela-
tively low while high correlation values were observed against Bio4, 
Bio12, or LST (Fig. 2). Despite these values, these variables were not 
large enough to be eliminated from the model. The variables that had 
VIF values greater than 10, were excluded from our modeling 
experiments. 

Using the ROC, the patterns of the smoothened graphs of the ten 
replicated ROCs showed that all three models were relatively consistent 
in their prediction amongst the model replicates (Fig. 3). Also, all the 
models generally showed very high accuracy in predicting 
C. moerenhouti habitat suitability in EABH, with all the models 

Fig. 2. Pairwise correlation scatter plots, variable histograms, and the correlation coefficient of the selected variables used in the modeling of C. moerenhouti habitat 
suitability in the Eastern Afromontane biodiversity hotspot (EABH). The red stars represent the level of correlation i.e., 1 red star representing R2 < 0.4, 2 red stars 
representing 0.41 < R2 < 0.45, and 3 red stars representing R2 > 0.45. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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producing acceptable accuracies with AUC ≥ 0.90 and TSS values ≥ 0.89 
(Fig. 3). 

3.2. Variable importance analysis 

Nine out of the 32 predictor variables were selected and used in the 
final analysis. None of the models had a similar hierarchy of variable 
importance. However, LULC and Bio 15 appeared twice in the top five of 
two of the models, i.e., RF and MaxEnt. The three most important var-
iables highlighted by the three models are clay content, LULC, and slope 
by RF, MaxEnt, and SVM, respectively. Although the three models 
showed no regular pattern regarding the variables’ hierarchy, further 
analysis showed that bioclimatic variables were often appearing toward 
the top of the list (Fig. 4). The results of MaxEnt deviated strongly from 
RF over the aspect, Bio1, and slope, but agreed over LST, Bio4, 15, and 
Bio12. However, the rank sum approach suggested that the most 
important variables across the three models were clay, LULC, and Bio1 
while slope was the least important. 

3.3. Ensemble modeling and spatial predictions of the suitable habitat of 
the Ceratina moerenhouti in Murang’a and Taita Taveta 

The three ML models using the nine predictor variables demon-
strated diverse results for predicting C. moerenhouti probability of 
occurrence in EABH (Fig. 5). However, all three models predicted the 
C. moerenhouti ecological niche and occurrence to be mostly in the 
southern region in Murang’a and the central region in Taita Taveta 
particularly Taita Hills as shown by the warmer colors (yellow, orange, 
and red) in Fig. 5. Areas represented by the cooler colors (blue) were 
predicted to be very low or have low habitat suitability for the 

C. moerenhouti. All the models show a general trend of decreasing suit-
ability with climate change for both SSP245 and SSP585. In general, the 
ensemble models show that the C. moerenhouti suitable habitat and 
probability of occurrence is skewed towards the southern Murang’a and 
around the Taita Hills in central Taita Taveta. The current area suitable 
(moderate, high, and very high) for C. moerenhouti occurrence in Mur-
ang’a is 30% of the total area, while it is 10% in Taita Taveta. A decrease 
from the current suitable habitat of 2% and 4% is likely by the end of 
2050, using the SSP245 climate scenario in Murang’a and Taita Taveta, 
respectively. Similarly, using the SSP585 climate scenario, a decline in 
the current suitable habitat of 4% and 5% is likely by the end of 2050 
using the SSP585 climate scenario in Murang’a and Taita Taveta, 
respectively. Therefore, the approximate area currently suitable for the 
occurrence of C. moerenhouti in Murang’a is 697.8 km2 from a total of 
2326 km2 while in Taita Taveta the currently suitable area is 1708.4 km2 

from a total country area of 17,084 km2. 
The image differencing showed that some potential gains and losses 

were likely to occur because of climate change. Fig. 6 shows that areas in 
the south of Murang’a and the peak of Taita Hills will likely experience 
the greatest losses in habitat suitability while some portions in the east 
of Murang’a county will gain in suitability. Most of the regions in the 
study area will remain unchanged within the very low to low suitability 
for the occurrence of the C. moerenhouti species (Fig. 6). 

4. Discussion 

The conservation of suitable habitats for pollinators enhances overall 
biodiversity. This also maintains the ecosystem services they provide, 
protects the soil integrity, improves the water quality by mitigating 
runoff, safeguards against soil erosion, and enriches rural aesthetics. 

Fig. 3. Results of the receiver operating curve 
(ROC) for the three-machine learning (ML) and 
species distribution models (SDMs) used to predict 
C. moerenhouti habitat suitability in the Eastern 
Afromontane biodiversity hotspot (EABH) namely: 
(a) random forest (RF), (b) maximum entropy 
(MaxEnt), and (c) support vector machines (SVM). 
The red curves symbolize the smoothened mean 
area under the curve (AUC) using the training data, 
while the blue curve depicts the smoothened mean 
AUC using the test data from the 10-fold cross- 
validation sampling. The cyan curves show the 10- 
fold replicated model runs using the training data. 
(For interpretation of the references to color in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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Integrating these secondary benefits into decision-making processes aids 
stakeholders to assess the trade-offs implicit in supplying ecosystem 
services (Wratten et al., 2012). Thus, in this current study, three of the 
most robust ML, MaxEnt, and SDMs were used to predict the potential 
current and future distribution as well as habitat suitability of one of the 
most important pollinator species i.e., C. moerenhouti in EABH. We fol-
lowed, the best practice standards when conducting SDMs that include 
assessing the quality of the reference data, eliminating correlated pre-
dictor variables, performing model evaluation ideals, and building 
multiple models using the same data. Therefore, the results from this 
study can be relied on for use in decision-making within the study area. 

4.1. Habitat suitability for the C. moerenhouti in the current climate 
conditions and under climate change scenario 

Essentially, model input data pre-processing improves the robust-
ness, precision, and dependability of the derived outputs (Araújo et al., 
2019). All SDMs are designed to reflect the intrinsic interrelations and 
connections between the species, their niche, and the environment 
where they exist. The ‘usdm’ package and the ‘vifcor’ function enabled 
easy and pragmatic ways of eliminating the correlated variables sys-
tematically as well as performing the ML SDMs using the same data 
(Jafarian et al., 2019). In particular, the use of the VIF enabled the 
elimination of redundant and conflating variables from 32 to nine which 
improved the computation and accuracy of our modeling process. Other 
earlier studies have also successfully used the VIF to select a few non-
correlated predicted variables (Abdelaal et al., 2019; Muposhi et al., 
2016). The non-conflated variables (n = 9) that were finally used in the 
modeling experiments were crucial in explaining the occurrence of 
C. moerenhouti. Nevertheless, the variables that were selected by our 

approach are relevant for modeling C. moerenhouti in EABH and can 
change if used elsewhere on the globe. 

The results obtained in this study showed that the climatic variables 
i.e., temperature (Bio1 and Bio4) and precipitation (Bio12 and Bio15) 
together with clay content and LULC were central in predicting the 
habitat suitability of the C. moerenhouti. This concurred with the results 
reported by Makori et al. (2017), who attributed the distribution of most 
bee species to climatic and LULC variables. This can mainly be attributed 
to the influence of pedoclimatic variables to enable the establishment, 
growth, propagation, and success of flowering plants (Fox, 2019; 
Landmann et al., 2018; Petanidou et al., 2014). Using the SSP scenarios 
envisions the future of the world using trajectories of population growth, 
economic growth, trade development, technological development, and 
implementation of environmental policies (Riahi et al., 2017). In Africa, 
there is little anticipation of massive growth enough to reach the SSP585 
climate scenario thus the most practical and expected scenario to affect 
the C. moerenhouti is the SSP245. However, the changes that may be 
observed in the EABH could be an indirect result of the massive de-
velopments and emissions from the developed world enough to warrant 
the observed potential loss in suitability that is likely to occur because of 
the SSP585 climate scenario. Climate change might reduce agricultural 
production by reducing precipitation and increasing temperature and 
CO2 in most parts of the world (Niang et al., 2014). This reduction in 
cropping will result in the loss of flowering hosts for most pollinators 
(Janzen and Hallwachs, 2019). Additionally, agriculture and urbaniza-
tion are the main drivers of plant diversity loss, with intensified systems 
using lethal doses of insecticides, fungicides, and herbicides that could 
contribute to negative impacts on wild and managed bees, including 
C. moerenhouti. Our results using the SSPs 245 and 585, point to a 
reduction in the most suitable habitat crucial for the survival of 

Fig. 4. The nine most important variables that were selected using the variance inflation factor (VIF) variable selection method for the three species distribution 
models used to predict Ceratina moerenhouti occurrence in Eastern Afromontane biodiversity hotspot (EABH) i.e., (a) random forest (RF), (b) maximum entropy 
(MaxEnt), and (c) support vector machines (SVM). 
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Fig. 5. Spatial probability of C. moerenhouti occurrence using nine predictor variables and three machine learning algorithms: (a) random forest (RF), (b) maximum 
entropy (MaxEnt), and (c) support vector machines (SVM). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 
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C. moerenhouti in the future. Because of the limited amount of forage and 
feed, C. moerenhouti populations and viability may be locally reduced or 
driven into extinction because of the loss of various floral resources from 
their diet. Therefore, any efforts targeted at curbing the loss of 
C. moerenhouti habitat in the future should focus on areas with the 
likelihood of temperature increase and a reduced amount of rainfall. 

The genus Ceratina has a diverse distribution and can be found on 
every continent; with rare and limited distribution in Australia (Mich-
ener 2007). In Africa, Ceratina is widely distributed in South Africa, 
Liberia, Angola, Ethiopia, Sudan, Malawi, Botswana, Zimbabwe, 
Zambia, the coast of Mozambique, Burundi, Ghana, Uganda, Kenya, and 
Tanzania (Daly 1988; Eardley and Daly 2007; Eardley et al., 2009). The 
C. moerenhouti bees can be found in numerous habitats in East Africa 
such as rangelands, grasslands, woodlands, natural forests, open habi-
tats, protected areas, farmlands, wetlands, marshlands, and riparian 
areas. The genus Ceratina comprises xylophilous mass-provisioners that 
nest in deadwood, stems, or piths by creating linear burrows in various 
locations mostly in shaded environments (Raju and Rao, 2006). The 
nesting biology of several species of Ceratina such as C. smaragdula 
(Kapil and Kumar, 1969), C. calcarata (Rehan and Richards, 2010) and 
C. binghami (Udayakumar and Shivalingaswamy, 2019) in Rubus idaeus 
L., Rhus typhina L., Syzygium cumini and Cassia siamea is well docu-
mented and conservation in different habitats can be achieved. On the 

other hand, C. moerenhouti is known to nest on Aloe littoralis, Hibiscus 
cannabinus, Hyparrhenia dissoluta, Jacaranda mimosifolia, Poaceae (roof 
thatch), Lantana camara, Moringa oleifera. Thus, the damage to nesting 
habitats for these native bees due to deforestation, clearing of dead-
wood, and intense agricultural activities will have an immediate effect 
on the valuable pollination services they provide (Eardley et al., 2009). 
Declines in bee abundance and richness in agricultural landscapes, 
driven by habitat loss, have been observed several times (Kevan, 1999; 
Ricketts, 2004). Moreover, studies have also reported the loss of natural 
vegetation from exotic species, particularly in Taita Taveta where the 
exotic species are introduced for planned and purposeful agroforestry 
purposes. This reduces the potential plant biodiversity that can be 
realized within an area as the exotic species often become invasive. 

Consequently, the indicative impact of climate change (weather 
variability) on the plant-pollinator interaction is the influence on the 
plant flowering period, which in turn can alter the pollinators’ primary 
food sources (Petanidou et al., 2014). Thus, the co-dependency of plants 
and pollinators can be interrupted by climate changes when their life 
cycles are altered in diverse ways in response to the environment and 
human socioeconomic shifts (Schweiger et al., 2010). The relationship 
between plants and their pollinators is at stake for desynchronizing 
when environmental signals are distinct and when there is not enough 
overlap of generalist pollinator populations. For example, some insects’ 

Fig. 6. Suitability losses and gains derived from the ensemble models in Murang’a and Taita Taveta using the two climate scenarios (a) and (b) SSP245 while (c) and 
(d) were for the SSP585 climate scenario. Red shows the areas that have the potential to experience the greatest loss in suitability while brown and yellow show high 
and moderate losses, respectively. The white color represents the areas that were unchanged while the green shows areas that positively gained suitability because of 
climate change. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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larval stage is programmed to mature when local flowers first bloom and 
nectar begins to flow (Garibaldi et al., 2013; Forrest and Thomson, 
2011). Even a polylectic bee like C. moerenhouti may be affected as both 
larval development and survival can differ by available pollen diet as 
influenced by the prevailing climate and climate variability. A 2007 
study by Lindsey on the impacts of rising temperatures on a 
plant-pollinator network showed that seasonal cycle shifts reduced flo-
ral resources for 17%–50% of pollinator species. These studies reveal 
that temperature-based temporal mismatches between plants and pol-
linators do occur but vary by species and region (Lindsey 2007). Addi-
tionally, these bees are also efficient pollinators of crops such as apples, 
coffee, sesame, cowpeas, and beans which may also be affected by 
changes in LULC because of anthropogenic activities (Janzen and Hall-
wachs, 2019). The loss of a diversity of host plants for nesting and 
foraging may be detrimental to the C. moerenhouti as research has re-
ported that disruption of visitations for pollination purposes and nesting 
resources by both biotic and abiotic factors can threaten their existence 
(Garibaldi et al., 2013). This is also supported by the importance of clay 
content to C. moerenhouti in this study as most high clay content areas 
have better fertility to host most crops hence the relevance of clay 
content identified in this study. 

4.2. Model performances 

Generally, SDMs with AUC and TSS beyond 0.7 are indicative of 
credible predictive and simulation performance (Elith et al., 2010). The 
AUC and TSS values obtained from the three models used in this study 
were above the 0.9 threshold, suggesting that the models performed well 
in simulating the distribution of C. moerenhouti in EABH. As would have 
been expected from models that run different mathematical functions, 
the model accuracies and the predicted areas differed across the three 
models (Araújo et al., 2019), hence must be treated with caution. Results 
from this study pointed to RF as the best predictive model for the 
C. moerenhouti distribution. However, the values of AUC and TSS for the 
MaxEnt and SVM did not differ much (±1) hence these models can all be 
used to deliver similar accuracy within the EABH. These methods (RF, 
MaxEnt, and SVM) have also been used and suggested by many re-
searchers as the best for simulating predictions for occurrence and 
mapping their geographical niches (Mudereri et al., 2020). However, the 
spatial outputs were visually different hence the use of the ensemble 
approach. 

The varied outputs obtained in this study have been reported by 
other studies that have used multiple ML models in SDMs (Jafarian et al., 
2019; Mohammadi et al., 2019). For instance, Jafarian et al. (2019) 
concluded that the ensemble method yielded high analytical and robust 
strength compared to the four predictive models that they used to 
simulate the occurrence of five dominant plant species in Iran. Again, 
Mohammadi et al. (2019) predicted two rodent species using MaxEnt 
and ‘sdm’ and they determined that all models were similar, and all 
showed high predictive power. Comparably, in this study, there is no 
convincing evidence to substantiate that one of these models is consid-
erably better than the other. Therefore, the ensemble modeling 
approach is recommended to reduce the modeling uncertainties 
(Mtengwana et al., 2021; Schulz et al., 2021). 

4.3. Variation of variable importance hierarchy from the three models 

The mystery in using ML algorithms is their ability to provide ac-
curate predictions without a realistic interpretation of the context of the 
application. Herein we dealt with a species in its ecological niche and 
were expecting all algorithms to provide similar variable importance 
and hierarchy to the contribution of the realized niche. Unfortunately, 
this was not the case as each algorithm presented a different level and 
hierarchy of variable importance. Moreover, this is brought about by the 
optimization problem in which we used supervised learning by inputting 
data with a set target. Therefore, a loss function (Loss function = set target 

- model outputs) is established during computation, when the loss func-
tion estimates are largely diverted from the target, the errors are big, and 
hence algorithms provide poor predictions (Wang et al., 2020). This 
happens because, in all optimization problems where we need to mini-
mize the errors, obtaining the global minimum is a challenge; most al-
gorithms converge when a local minimum is found (Cassioli et al., 
2012). To overcome such difficulty, an automated search of the best 
parameters can be used or a rank sum approach such as that used in this 
study. However, this process is time-consuming and requires 
high-performance computers (HPC) which are not always readily 
available. 

4.4. Implications of our study 

Modeling the potential habitat suitability of insects such as 
C. moerenhouti is useful in agricultural management systems. Our study 
supports national scale management strategies for such key pollinators 
that enhance productivity. Pollination by bees promotes sustainable 
development goals (SDGs) through food security (SDG2) and biodiver-
sity (SDG15) and other less explored SDGs (Patel et al., 2021). This is 
because they offer an array of ecosystem services that support the wel-
fare of people whilst sustaining the planet’s life support systems. There 
is therefore a need for the establishment of flower-rich habitats within or 
around intensively farmed landscapes to increase the availability of 
pollen and nectar resources. Furthermore, results from the present study 
show that using SDMs is one of the most reliable and central tools for 
determining the fundamental and realized niche of species such as 
C. moerenhouti within a geographical space. 

5. Conclusions 

Our results showed that the type of LULC, clay content, temperature, 
and precipitation are the key drivers of the occurrence of C. moerenhouti 
that will result in the loss of suitable habitat in the future. Therefore, 
immediate action is critical to promote the growth of preferred flower-
ing plants and suitable nesting sites for C. moerenhouti. This can be 
achieved by promoting flower-rich habitats within or around intensively 
farmed landscapes. Also, because of the loss of suitable habitat because 
of climate change, our results highlight the need to quickly employ and 
implement effective and early C. moerenhouti management options to 
reduce the chances of this loss of habitat before they go into extinction. 
Additionally, since the LULC emerged as one of the most relevant vari-
ables, studies that predict future scenarios of the C. moerenhouti occur-
rence or habitat suitability must consider the future LULC changes that 
are likely to occur. Although we used only part of Kenya as a case study, 
our modeling approach can be upscaled to the rest of the other biodi-
versity hotspots or countries that possess similar agroecological char-
acteristics. Further, we assessed the utility of the ML SDMs i.e., MaxEnt, 
RF, and SVM, and their respective ensemble for predicting the proba-
bility of C. moerenhouti occurrence in EABH using multi-source biocli-
matic and remotely sensed data. We established that RF, MaxEnt, SVM, 
and the ensemble approach, yield the most accurate C. moerenhouti 
occurrence prediction results in EABH. 
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