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Abstract

Background: De novo transcriptome assembly of short transcribed fragments (transfrags) produced from
sequencing-by-synthesis technologies often results in redundant datasets with differing levels of unassembled,
partially assembled or mis-assembled transcripts. Post-assembly processing intended to reduce redundancy typically
involves reassembly or clustering of assembled sequences. However, these approaches are mostly based on
common word heuristics and often create clusters of biologically unrelated sequences, resulting in loss of unique
transfrags annotations and propagation of mis-assemblies.

Results: Here, we propose a structured framework that consists of a few steps in pipeline architecture for Inferring
Functionally Relevant Assembly-derived Transcripts (IFRAT). IFRAT combines 1) removal of identical subsequences,
2) error tolerant CDS prediction, 3) identification of coding potential, and 4) complements BLAST with a multiple
domain architecture annotation that reduces non-specific domain annotation. We demonstrate that independent of
the assembler, IFRAT selects bona fide transfrags (with CDS and coding potential) from the transcriptome assembly
of a model organism without relying on post-assembly clustering or reassembly. The robustness of IFRAT is inferred
on RNA-Seq data of Neurospora crassa assembled using de Bruijn graph-based assemblers, in single (Trinity and
Oases-25) and multiple (Oases-Merge and additive or pooled) k-mer modes. Single k-mer assemblies contained
fewer transfrags compared to the multiple k-mer assemblies. However, Trinity identified a comparable number of
predicted coding sequence and gene loci to Oases pooled assembly. IFRAT selects bona fide transfrags representing
over 94% of cumulative BLAST-derived functional annotations of the unfiltered assemblies. Between 4-6% are lost
when orphan transfrags are excluded and this represents only a tiny fraction of annotation derived from functional
transference by sequence similarity. The median length of bona fide transfrags ranged from 1.5kb (Trinity) to 2kb
(Oases), which is consistent with the average coding sequence length in fungi. The fraction of transfrags that could
be associated with gene ontology terms ranged from 33-50%, which is also high for domain based annotation. We
showed that unselected transfrags were mostly truncated and represent sequences from intronic, untranslated
(5′ and 3′) regions and non-coding gene loci.

Conclusions: IFRAT simplifies post-assembly processing providing a reference transcriptome enriched with
functionally relevant assembly-derived transcripts for non-model organism.
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Background
Whole transcriptome analysis using next generation se-
quencing (NGS) or sequencing-by-synthesis (SBS) tech-
nologies offers the possibility of interrogating genes and
their expression en masse without knowledge of their
underlying genomes. Transcriptome sequencing is often
preferred over genome sequencing because of the
reduced size of the sequence target space and the high
functional information content [1,2]. However, sequen-
ces generated from NGS platforms are often too short to
represent entire protein-coding transcripts, and genomes
for reference-guided transcriptome reconstruction are
rare. De Bruijn graph assemblers allow de novo assembly
of transcripts but represent only approximate computa-
tional solutions [3]. The final assembly is one of many
possibilities for which there is no universally accepted
heuristic verification method; it is often highly redun-
dant and contains mis-assemblies that are difficult to
identify [4]. Post-assembly processing intended to reduce
redundancy typically involves reassembly or clustering of
assembled sequences. This however may lead to pro-
pagation of mis-assemblies [5] and assignment of se-
quences to unrelated gene clusters, resulting in loss of
unique annotations [6].
The main objective of transcriptome SBS is to ascribe

functional labels to assembled transcribed fragments
(transfrags). This is usually done via significant sequence
similarity [7] or domain signature annotations [8].
Similarity-based approaches predominantly rely on tran-
sfer of functional labels of the best BLAST hits to the
sequence in question [7,9,10]. However, low BLAST an-
notation coverage is often observed, in particularly in
transcriptomes of non-model organisms [11,12]. The im-
plementation of significant BLAST hit as a proxy for
functional annotation has further limitations: sequences
that produce significant similarity may be functionally
unrelated due to divergence [13], low complexity se-
quences may produce high-scoring hits but have no bio-
logical relationships [14], and functional homologs may
lack sequence similarity [15]. Consequently, a first large-
scale assessment of protein function shows that BLAST
alone is often ineffective at predicting functional labels [16].
Domain-based annotation methods (e.g. InterProScan) ap-
preciate only presence or absence of domains. Given that
domains seldom function in isolation [17], a reliable
approach should involve a method that recognises the
overall domain co-occurrence architecture of the se-
quences under examination. Prerequisite for domain-
based annotation is a reliable protein prediction method
that tolerates sequencing errors and frame shifts.
Here, we introduce IFRAT, which allows for selection

and annotation of functionally relevant transfrags (bona
fide) without clustering. This is achieved through 1) re-
moval of identical subsequences, 2) error tolerant CDS
prediction, 3) identification of coding potential, and 4)
complementation of BLAST with a multiple domain
architecture annotation (see Figure 1). The effectiveness
and versatility of this approach is shown on published
datasets from non-model organisms.

Methods
Availability of supporting data
To establish a robust workflow for prioritizing and
selecting functionally relevant (bona fide) transfrags, we
selected the fungal plant pathogen Neurospora crassa
[18] as a species with a reference genome. Publicly
available non-strand specific RNA-Seq data (SRR100067)
from wild type N. crassa 74-OR23-1VA was obtained
from the NCBI Sequence Read Archive (SRA, http://
www.ncbi.nlm.nih.gov/Traces/sra). Untranslated 5′ and
3′ regions were procured using Ensembl BioMart [19]
from http://fungi.ensembl.org release-21. The associated
genomic, predicted coding sequences and Rfam family
genes were obtained from the Neurospora crassa Se-
quencing Project, Broad Institute of Harvard and MIT
(http://www.broadinstitute.org). We verified the pipeline
using recently published transcriptomes of non-model
organisms: buckwheat (Fagopyrum esculentum) [20];
hydra (Hydra vulgaris) [21]; fresh water snail (Radix
balthica) [22]; centipede (Alipes grandidieri), marine
worm (Cerebratulus marginatus), sea cradle (Chiton
olivaceus), mediterranean sponge (Crella elegans), and
earthworm (Hormogaster samnitica) [23]. The scripts, as-
semblies and alignment outputs generated in the ensuing
analyses are available on the South Africa National Bio-
informatics Institute permanent data archive (SANBI,
ftp://ftp.sanbi.ac.za/ifrat).

Read preprocessing
Quality scores of ILLUMINA reads generally depreciate
towards the 3′-end. Prior to assembly, low quality bases
were trimmed from the 3′-end of each sequence if above
an error probability of 0.01 (PHRED base quality score
of 20) using a custom PERL script with snippets from
ConDeTri [24]. The quality-based filtering and trimming
process ensured that orphan reads whose partner failed
the quality threshold, were retained in a separate file and
used for de novo transcriptome assembly.

RNA-Seq assembly
Reference-free transcriptome reconstruction was per-
formed separately using either Trinity (release 2012-06-
08; [25]), or Velvet (version 1.2.03; [26]) in combination
with Oases (version 0.2.06; [27]). Trinity implements
greedy algorithmic traversal of the k-mer graph prior
to building a de Bruign graph from clusters of pre-
assembled sequences. As a result, assembled transfrags
are represented by actual reads. Oases on the other-

http://www.ncbi.nlm.nih.gov/Traces/sra
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http://fungi.ensembl.org
http://www.broadinstitute.org
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Figure 1 A schematic diagram of the IFRAT pipeline. Flow diagram to illustrate the method of integrating protein-coding potential and open
reading frame prediction to infer bona fide assembly derived-transscripts and multiple domain co-occurrence functional annotation.
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hand, interrogates a pre-assembly from Velvet to address
alternative splicing and coverage variation across tran-
scripts. Trinity was specifically designed for transcrip-
tome assembly using a single, fixed k-mer size (k-25).
Therefore we tested Oases k-25 and two variations of
multiple k-mer assembly: an additive assembly by poo-
ling (Oases-P) as described by [28], and a merged as-
sembly using the Oases-merge pipeline (Oases-M). Only
transfrags above 100 bp were kept for downstream
analysis.

Redundancy check
A common attribute of de novo transcriptome assem-
blies is sequence redundancy. Using in-house PERL or
PYTHON with suffix array scripts, we filtered for 100%
identical copies and subsequences (k-mer) in both, for-
ward and reverse directions. To compare our filtering
approach with a typically applied post-assembly cluster-
ing step, we used CD-HIT-EST [29] with the following
parameters: -M 0 -T 20 -g 0 -c 1.0 - b 1 -aL 1.0 -aS
1.0 -n 10 -d 0 -p 1 (duplicate removal, +\-) and -M 0 -T
20 -g 0 -c 1.0 -b 1 -aS 1.0 -n 10 -d 0 -p 1 (substring
removal, +/+). In addition, we evaluated the redundancy
in each assembly using CD-HIT-EST as describe by [6].

Coding potential assessment and conceptual translation
Assembled transcripts were evaluated for protein-
coding attributes using PORTRAIT [30]. We corrected
PORTRAIT to run ANGLE [31] in 6 frames, since the
biological orientation of transfrags from non-strand spe-
cific libraries cannot be readily ascertained. The pre-
dicted open reading frame (ORF) with the highest
dynamic programming score was chosen for conceptual
translation into protein sequence using the standard
codon usage table. Transfrags without an ORF were
classified as orphan in this study. We note that they can
be evaluated for coding capability through the protein-
independent model of PORTRAIT.

Transfrag annotation
We assigned protein domains to the predicted pro-
tein sequences using HMMER version 3.0 [32] with
the manually curated protein profile Hidden Markov
Models from Pfam (release 26.0, ftp://ftp.sanger.ac.uk).
We then applied MultiPfam2go [33] to explore co-
occurrence relationships between the domains of each
protein and assigned functional labels (gene ontology
terms) if the underlying domain architectures predicted
protein function.
To mimic annotation of non-model organisms, we gen-

erated a BLAST-able database of UniProt Knowledgebase
(FUNGI) release 2013_02 (The UniProt Consortium:
http://www.uniprot.org/), excluding N. crassa sequences.
We screened for highly significant BLASTX hits (max
E-value 1e-10) using the NCBI BLAST package (version
2.2.25) and identified the top hit (lowest E-value, best
scoring HSP covers minimum 25% of the hit) using cus-
tom PERL scripts.

ftp://ftp.sanger.ac.uk
http://www.uniprot.org/


Table 1 Quality trimming statistics of N. crassa
RNA-Seq data

Attributes Raw reads Processed
reads pairs

Processed
singletons

Total read 31,301,048 24,390,689 2,849,486

Length, mean (min-max) 76 (76, 76) 72 (36, 76) 64 (36, 76)
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Validating bona fide transfrags by mapping to reference
genome and predicted CDS
The bona fide transfrags were aligned to the reference
CDS with BLAT v. 34 [34] to assess the integrity of
assembly-derived transcripts. BLAT alignment in sim4
format were generate under intron restriction (-fastMap)
with -minScore = 30 and post-alignment processing were
performed through a series of custom PERL scripts.
Genome-base clustering was performed to assess gene

space coverage by aligning bona fide transfrags to
N. crassa reference genome with GMAP 2013-09-30.v2
[35]. The introns for N. crassa were obtained using
Ensembl API [36] from http://fungi.ensembl.org release-
17 to compute the maximum total length of intron per
gene. Information about intron length statistics in fungi
were obtain as described by [37] to parameterize trans-
frag and CDS alignment to the genome: min-intron
length = 20, max-intron length = 2000, total length =
5904. The known gene loci are compared to the loci of
aligned transfrags in a pair-wise manner using in-house
PERL scripts to avoid building cluster chains [3]. Trans-
frags that do not overlap with CDS are clustered using
Bedtools [38]. We aligned sequences belonging to the 5′
and 3′ untranslated regions of predicted genes and the
Rfam family of predicted genes to the N. crassa genome
under absolute condition of no introns using GMAP
with a threshold of 95% coverage and 95% identity. The
loci of these high-scoring alignments were compared to
those of transfrags that did not overlap with CDS.

Results
De novo assembly and filtering N. crassa transfrags
The number of reads before and after quality filtering is
shown in Table 1. Of the ~62 million reads that were
processed, 82.5% survived quality trimming and were
retained for subsequent de novo assembly.
A summary on assembly statistics for all four assembly

methods is shown in Table 2. When comparing the two
single k-mer assembly approaches (Trinity and Oases-25),
Table 2 Attributes of N. crassa assemblies produced with diff

Assembly № of TF (transfrags) № of unique TF (UTF) Median uniq

Trinity 35720 35578 240

Oases-25 19406 19193 1426

Oases-M 73215 45134 1839

Oases-P 138716 61293 1749
we see that Trinity produced twice as many transfrags as
Oases-25, but at much shorter transfrags lengths. These
two assemblies had very little redundant transfrags com-
pared to multiple k-mer assemblies. Multiple k-mer as-
semblies produced a much higher number of transfrags
than single k-mer assemblies, but 38% - 56% were redun-
dant. The median transfrag lengths for these assemblies
were seven-fold greater than for the Trinity assembly. To
compare our filtering procedure (in PERL or PYTHON
scripts) with a typically applied post-assembly clustering
method, we used CD-HIT-EST and generated a non-
redundant assembly at 100% global identity. At these set-
tings, our filtering method produced comparable results.
Typically, CD-HIT-EST is used at settings below 100%

identity. The fraction of redundant transfrags at various
identity thresholds for our N. crassa assemblies is shown
in Figure 2. For the Oases-P assembly, at 80% identity
nearly 90% of the transfrags are considered redundant
by CD-HIT-EST, ie these transfrags can be incorporated
into fewer clusters. This represents nearly 46,000 trans-
frags that are lost for downstream analysis when a repre-
sentative transfrag is selected for a cluster as compared
to clustering at 100% identity.

Selecting bona fide transfrag and their functional
annotation
Each non-redundant assembly was separated into two
categories: bona fide (coding with predicted ORF) and
orphan (non-coding, coding without ORF); numbers are
displayed in Table 3. In Trinity, the proportion of or-
phan transfrags was higher (60%) than the proportion of
bona fide transfrags. Trinity also produced a consider-
ably higher number of orphan tranfrags than any of the
three Oases assemblies. As a result, the number of bona
fide transfrags was very similar for the two single k-mer
assemblies, and Oases-P generated the highest number
of bona fide transfrags.
Figure 3 shows the distribution of transfrag lengths

between bona fide and orphans transfrags. Orphan
transfrags were generally much shorter than bona fide
transfrags. For the bona fide transfrags of the three
Oases assemblies, the median transfrag length (~2 kb)
and the distributions are very similar. We note that the
Oases assemblies had a considerable number of bona
fide transfrags that were substantially longer than 10 kb.
The median transfrag length of bona fide transfrags
erent filtering approaches

ue TF length % redundant TF PERL % redundant TF CD-HIT-EST

0.4 0.4

1.09 0.97

38.35 38.35

55.81 55.51

http://fungi.ensembl.org/
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Figure 2 An assessment of redundancy in various assemblies
using CD-HIT-EST. Comparing the fraction of redundant transfrags
across all assemblies at various identity thresholds (80-100%) in
creating clusters with CD-HIT-EST.
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assembled using Trinity was 1.5 kb, and only a few of
them were longer than 7.5 kb.
Non-redundant assemblies were annotated using

BLAST and MultiPfam2go (Table 3). We note that in all
assemblies only a small proportion of orphan transfrags
had a BLAST match. Despite the highest number of or-
phan transfrags, Trinity had the least number of BLAST
hits to transfrags in this category. In contrast, at least
70% of bona fide transfrags from all assemblies had a
BLAST hit. This represented over 94% of cumula-
tive BLASTx retrievable hit of the unfiltered assembly
(Additional file 1). This number is higher than the ones
typically reported in studies on de novo assembled tran-
scriptomes [12,39]. In addition, bona fide transfrags were
annotated with MultiPfam2go. The fraction of transfrags
that could be associated with gene ontology terms
ranged from 33%-50%, which is also high for domain
based annotation [33].

Assessing transfrag integrity and gene coverage
To evaluate the number of predicted genes represented
by the bona fide transfrags, we aligned them to the pre-
dicted coding sequences (CDS) as well as to the genome
of N. crassa (Table 4). Between 80% and 90% of the bona
fide tranfrags mapped to both datasets at high strin-
gency. Although the numbers of bona fide transfrags
between single and multiple k-mer assemblies is very
Table 3 Classification and annotation of the non-redundant N

Assembly № of UTF № of orphan UTF № of bona fide UTF

Trinity 35578 20772 14806

Oases-25 19193 5359 13834

Oases-M 45134 7453 37681

Oases-P 61293 10848 50445
different, the number of identified genes is very similar.
Most strikingly, Trinity identified the same number of
predicted genes and putative unknown N. crassa gene
loci as Oases-P, independent of the dataset and the
alignment thresholds. As a result, the number of bona
fide transfrags per gene is lower in single k-mer ver-
sus multiple k-mer assemblies. Orphan transfrags that
mapped at the same stringency represented 15-40% of
the known gene loci (Table 4), but ~ 90% were already
identified by the longer bona fide categories. Unmapped
transfrags mapped to multiple location and some were
chimeric. The number of loci occupied by orphan
transfrags ranged from 2,752 - 8,501. A look into the
biological relevance of these loci revealed that they rep-
resent intronic, 5′ and 3′ untranslated regions and genes
of the RFAM Family (Additional file 2).

Selecting bona fide assembly-derived transcripts in other
species
We also verified the suitability of the IFRAT pipeline for
selecting reconstructed transcripts in non-model organ-
isms. The analysis results for unique transfrags longer
than 100 bp from each draft assembly are show in
Table 5. We predicted that up to 70% of the published
transcriptome could be categorized as orphan transfrags.
As before, the percentage of orphan transfrags with a
BLAST hit was relatively low. In contrast, the proportion
of bona fide transfrags with significant BLAST matches
was often higher than in the unfiltered draft assemblies.

Discussion
Single k-mer assemblies of transcriptomes are consi-
dered incomplete because a short k-mer result in a highly
diverse but also fragmented and redundant assembly,
while a long k-mer provides a more contiguous assembly
but misses poorly expressed transcripts [40]. To account
for this problem the multiple k-mer transcriptome assem-
bly approach was introduced [28,41]. However, the num-
ber of sequences generated in this way exceeds by far the
number of protein coding genes likely to exist in the re-
spective organism [42], making identification of genuine
transfrags a major challenge for downstream analysis. To
reduce redundancy, clustering or merging methods are
currently being applied [4,27,43]. Yet, these methods rely
on common word heuristics, ignoring the biological
. crassa transfrags

№ of orphan UTF
with blast hit

№ of bona fide
UTF with blast hit

№ of bona fide
UTF with MultiPfam2go

266 (1.3%) 10320 (70%) 6523 (44%)

160 (3%) 11438 (83%) 6944 (50.2%)

412 (6%) 31311 (83.1%) 18173 (48.2%)

646 (6%) 41383 (82%) 24393 (48.4%)



Figure 3 Distribution of transfrag length for various assemblies.
Bona fide transfrags (blue): transfrag with coding potential and
predicted CDS; orphan (red): transfrags with no coding potential or
coding potential but no predicted CDS.
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nature of assembled transcripts [44]. Therefore, reference-
free clustering tends to mis-assign transfrags to biologic-
ally unrelated clusters [45] which leads to loss of unique
functional annotations [6] and creation of chimeric tran-
scripts [5].
Here, we propose IFRAT, a workflow that allows se-

lection of unique bona fide transfrags (with CDS and
coding potential) without clustering; and introduce
domain co-occurrence analysis as means of tranfsrag as-
sembly verification. IFRAT filters unique transfrags by
removing exact duplicates, including identical forward
and reverse nucleotide subsequences. IFRAT filtering
removes slightly more transfrags than CD-HIT-EST at
100% identity because this program does not properly
Table 4 Summary of bona fide† and orphan* transfrags integ

Assembly № of bona
fide UTF

№ of chimeras
in unmapped
transfrags ζ

Alignment of TF to refere

№ of TF
Cov 50%,
ID 50%

№ of
reference
unigenes

Trinity† 14806 282 9879 6263

Oases-25† 13834 469 8653 5699

Oases-M† 37681 3293 22080 5991

Oases-P† 50445 3417 30278 6179

Trinity* 20772 49 5016 1887

Oases-25* 5359 22 1292 844

Oases-M* 7453 268 1512 916

Oases-P* 10848 247 2355 1234
†Bona fide: transfrags with coding potential and predicted CDS.
*Orphan: transfrags with no coding potential or with coding potential but no predi
ζ Possible chimera with a distinct breakpoint.
process transfrags containing N’s (author’s personal
communication). Our results suggest that single k-mer
assemblies may not need this filtering step since the
proportion of redundant transfrags in the Trinity and
Oases-25 datasets were only about 1%. In contrast, re-
dundancy filtering is particularly important in multiple
k-mer assemblies, considering that nearly half the trans-
frags in the Oases-M and Oases-P datasets were exact
copies or substrings of other transfrags. It is unknown at
what percent identity clustering results in significant loss
of unique functional annotations. However, as suggested
by our analysis, clustering without biological insight
should be handled with caution because at 99% identity
a significant subset of potentially unique transfrags is re-
moved by CD-HIT-EST.
After filtering, IFRAT classifies the sequences into

bona fide and orphan transfrags based on CDS predic-
tion and coding potential. Our subsequent BLAST ana-
lysis corroborated this categorization, since 70-80% of
bona fide transfrags had significant BLAST matches
while this was true for only 1-6% of orphan tranfrags.
We note that the median length of bona fide transfrags
ranged from 1.5kb (Trinity) to 2kb (Oases), which is
consistent with the average coding sequence length in
fungi [46] while most of the orphan transfrags were
short (med. 147-198 bp). However, our results confirmed
previous findings that length is not the only indicator of
coding potential [47] and ‘non-blastable’ transfrags [20],
since 6-26% of the orphan transfrags with BLAST
matches were less than 200 bp long.
All four assembly methods produced high quality data-

sets, as 76-90% of the transfrags mapped to the genome
and the predicted CDS of N. crassa at high identity and
coverage. Bona fide transfrags represented approximately
73% of the 10,785 known gene loci in the N. crassa
genome. In addition, they indicated the existence of
rity and validity

nce genes (CDS) Alignment of TF to reference genome

№ of TF
Cov 90%,
ID 90%

№ of
reference
unigenes

№ of TF
uniquely
mapped

№ of N. crassa genes
identified by TF

2593 1609 13339 7915

1086 784 11679 7345

2751 1009 27931 7787

4115 1249 39693 7906

4063 1543 18553 3875

1008 679 4918 1287

976 653 6148 1483

1458 882 9203 1919

cted CDS.



Table 5 Allocation of BLASTX hits between bona fide and orphan transfrags inferred with IFRAT

Organism № of TF in
publication

№ of TF with
hit in publication

№ of
UTF > = 100

№ of
orphan UTF

№ of orphan UTF
with blast hit

№ of bona
fide UTF

№ of bona fide
with blast hit

Hydra vulgaris 48909 17587 (36%) 44484 9806 (22%) 1086 (11.1%) 34717 15310 (44.1%)

Radix balthica 41590 7347 (17.7%) 38790 26846 (69%) 1360 (5.1%) 11944 6723 (56.3%)

Alipes grandidieri 66199 16688 (25.2%) 66297 31355 (47%) 1809 (5.8%) 34942 12253 (35.1%)

Cerebratulus marginatus 80865 11062 (13.7%) 81021 46345 (57%) 782 (1.7%) 34676 9995 (28.8%)

Chiton olivaceus 93879 24495 (26.1%) 93885 52461 (56%) 1692 (3.2%) 41424 11001 (26.6%)

Crella elegans 31703 13984 (44.1%) 31172 10930 (35%) 1364 (12.5%) 20242 7439 (36.8%)

Hormogaster samnitica 90928 25681 (28.2%) 90928 41271 (45%) 1003 (2.4%) 49657 15392 (31%)

Fagopyrum tataricum 25041 19072 (76.1%) 25040 5747 (23%) 1909 (33.2%) 19294 16326 (84.6%)
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715-1168 unknown potentially coding gene locations.
Orphan transfrags also mapped to known gene locations,
but most of these locations were represented by longer
bona fide transfrags. These orphan transfrags may re-
present biologically interesting data, such as truncated
assemblies (e.g. rare exons, poorly expressed genes, tran-
script with under-sampled regions), or immature mRNA
with intronic regions and long UTRs for which coding
potential could not be predicted [20,48,49]. Orphan
transfrags that mapped to non-coding regions of the ge-
nomes represented ribosomal and non-coding RNA [50],
and may be of interest. In any case, it is advisable to
verify the correct assembly of orphan transfrags and re-
move mis-assemblies using a suitable reference dataset,
such as a reference genome or EST collection. We inte-
grated multi-domain co-occurrence architecture [33] to
complement BLAST annotation. This avoids non-specific
annotation of promiscuous domains resulting from trun-
cated transfrags. Between 44% and 50% of the bona fide
tranfrag peptides from N. crassa were assigned at least
one GO term. Using IFRAT, we improved annotation
coverage of published transcriptome datasets from non-
model organisms. The choice of database and to a larger
extend the coverage filter threshold accounts for small dif-
ferences in the number of BLAST hits between bona fide
transfrags and unfiltered assemblies. We attribute this
high annotation coverage to the error tolerant CDS pre-
diction [31] and selection of longer proteins with coding
potential by IFRAT.
IFRAT is able to select bona fide transfrags irrespective

of the assembler or assembly method used. Profound dif-
ferences between transcriptome assemblers and assembly
methods have been elaborately dealt with elsewhere
[4,41,51,52]. We note however that Trinity performed very
similar to Oases-P in identifying CDS and known gene
loci, requiring substantially less computational resources.
Other technical limitations, such as runtime and data-size,
may influence the choice of one assembler over the other
[53]. Since many more transfrags were produced by the
multiple k-mer assemblies that identified a comparable
number of gene loci, they may be suitable for studies with
interest on splice variants.

Conclusion
We have proposed a framework for post-assembly ana-
lysis of transcriptome assembly that is flexible enough to
accommodate sequencing error and frame-shifts and
that does not rely on the availability of a reference
genome. Through this, a catalogue of reliable protein
coding transfrags is established that represents a refe-
rence transcriptome. The method described herein is
potentially applicable not only to assemblies of tran-
scribed fragments generated with Trinity or Oases but
also to assemblies produced by de Bruijn graph assem-
blers where no reliable sequenced genome is available,
as demonstrated with the published datasets. Our frame-
work performs well in segregating functionally relevant
transcripts. We note that the main challenge remains
the quality of assembly-derived-transcripts, which is
undermined by incorporation of non-coding fragments
that reduces the coding potential signal. One possible
avenue for improvement is to screen RNA-seq reads
for non-coding transcribed fragments prior to de novo
assembly.

Additional files

Additional file 1: Distribution of BLASTx hits between bona fide
and orphan transfrags. The bona fide transfrags are enriched with
sequences that have a potential BLAST hit (34k).

Additional file 2: Number of orphan transfrags that overlap with
genic features and non-protein coding genes (33k).
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