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ABSTRACT

The standard method of studying period changes in variable stars is to study the timing
residuals or O—C values of light-curve maxima or minima. The advent of photometric surveys
for variability, covering large parts of the sky and stretching over years, has made available
measurements of probably hundreds of thousands of variable stars, observed at random phases.
Simple methodology is described which can be used to quickly check such measurements of
a star for indications of period changes. Effectively, the low-frequency periodogram of a
first-order estimate of the O—C function is calculated. In the case of light travel time (LTT)
effects, the projected orbital amplitude follows by robust regression of a sinusoid on the O—C.
The results can be used as input into a full non-linear least-squares regression directly on the
observations. Extensive simulations of LTT configurations are used to explore the sensitivity
of results to various parameter values (period of the variable star and signal to noise of
measurements; orbital period and amplitude; number and time baseline of observations). The
methodology is applied to observations of three previously studied stars.

Key words: methods: statistical — surveys —stars: individual: ISWASP J234401.81-212229.1,

HD 181469, ASAS 120036-3915.6.

1 INTRODUCTION

Traditional searches for period changes in variable stars are based
on the analysis of timing residuals of specific light-curve phases.
Typically, in eclipsing binaries the observed times of mid-eclipses
are compared to predicted times, whereas for large amplitude pul-
sating stars such as Miras, Cepheids or RR Lyrae, observed times
of maxima are compared to predicted times. For this reason many
observed times of maxima or minima of variable stars are pub-
lished annually. The methodology is generally referred to as ‘O—C’
(Observed minus Calculated) — see e.g. Sterken (2005), and papers
therein. In the case of pulsating stars in binary orbits, or short-
period binaries in orbit in triple systems, the O—C plots may reflect
periodic behaviour, due to the light travel time (LTT) effect.
Recent years have seen the creation of a number of very large data
bases of time series photometry of millions of stars [e.g. MACHO
(Alcock et al. 1999), OGLE (Szymanski 2005), ASAS (Pojman-
ski 1997), and SuperWASP (Pollacco et al. 2006), to mention only
a few]. The nature of the time series collected by these projects
is fundamentally different from those obtained by space missions
dedicated to wide-field photometry, such as Kepler (e.g. Basri et al.
2011). Quite aside from the superior photometric accuracy achiev-
able from space, the time sampling of the light curves measured
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from the ground is often sporadic, rather than continuous. The im-
plication is that although there may be an abundance of observations
for a given variable star, few (if any) determinations of light max-
ima or minima may be available. The methodology in this paper, by
contrast with the standard approach, makes use of measurements
at all phases at which the light curve F is not flat, i.e. the time
derivative F’ # 0. The reason for the qualification is not difficult to
see; consider, for example, a long-period eclipsing binary star: the
extended flat sections of the light curve outside of eclipses do not
carry any information about possible period changes.

The approach below relies primarily on time domain calcula-
tions. Alternative frequency domain techniques were introduced by
Shibahashi & Kurtz (2012, hereafter SK2012), and illustrated with
applications to Kepler observations. It may be speculated that the
frequency domain methodology, which relies on the identification
of frequency multiplets in power spectra, may be less efficient for
very sparse data.

2 METHOD

The following assumptions are made.

(i) The mean period (or periods, in the case of a multiperiodic
pulsating star) is known accurately enough that there are no cycle
count ambiguities across any gaps in the data.

(ii) Period changes are small, in a sense to be quantified below.
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(iii) The signal to noise of observations is large, also to be quan-
tified below.

(iv) Although there may be slow systematic changes in the peri-
ods, there is no appreciable random cycle-to-cycle period jitter (as is
particularly evident in long-period pulsating variables). Lombard &
Koen (1993) demonstrated that the presence of small random period
variations pose problems which require special analysis approaches
(see also Sterne 1934, Koen 1996).

(v) The methodology works best on continuously changing light
curves (pulsating stars, contact binaries). It is applicable, but less
efficient, if the light curve is constant over much of the cycle. Of
course, this will be true of any method, since a constant light curve
is uninformative as regards period variations.

Denote the O—C at the time ¢ of observation by A,, and the
predicted light curve by F(®, 1), where O is a vector of descriptive
parameters (zero-point, frequencies and amplitudes):

K

FO,t)=n+ Z[A" cos(wit) + By sin(wyt)] . (D

k=1

Since the ‘calculated’ time Cis t — A,, it follows that the observed
light curve is

Vi =F(O,t —A)+e, 2

where e, represents measurement noise with variance 2. A first-
order Taylor expansion gives

VR F(©O,1)— AF(O,1) + e 3)
and

A~ =1 [F(©,1),

where r, is the residual

re=y — F(@) +e,

which can of course be estimated by

r~y —F(O,t).

It follows that

A~ —[y, — F(©®,1)]/F'(©,r1) . “4)

Equation (4) is the crux of the proposed methodology. The es-
timated O—C values A, are trivially calculated from the model fit
residuals, and from the derivative of the fitted model. A, can be anal-
ysed by e.g. checking for periodicities (indicative of apsidal motion,
or a light-time effect), or by noting trends (indicative of systematic
period changes). The approximation is accurate provided higher or-
der terms in the Taylor series expansion are unimportant. This will
typically be the case if

|F'A/JFI < 1,
i.e.
oA L )]

where w, is the frequency associated with the dominant periodicity
in (1).
The residuals 7, in equation (4) consist of two terms:

r=[—FO,)]+e,

the first being due to ‘model misspecification’ and the second due
to measurement errors. In the present context, the model misspec-
ification is of course due to the non-inclusion in equation (1) of
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period changes or light-time effects. In order to be able to identify
the misspecified term at all,

1 & 1 & -
5 2 = F@, 1+ AP~ 3 [AF(©,0F ~ o}
t=1

=1
is clearly necessary. In terms of w,,

Czwz N >
=Y (A ~ o]
=1

2N

is required, where C is the amplitude associated with w,. This can

also be written as

-~ l.do, 1.4

RMS(A)) ~ R —,
Cw, w«R

where R = C/o, is the signal-to-noise ratio of the observations y;,
and RMS(A,) is the root mean square of A,.

©)

3 ESTIMATION IN THE CASE OF
THE LTT EFFECT

The relevant formulae are:

1—é? . .
Al=A|—sin@+w)+esinw |,

1+ ecos6
E
f = 2 arctan te tan — | ,
1—e 2
. 27
E —esinE = ?(t —1y) @)

(e.g. Irwin 1952). In these formulae e is the eccentricity, £ and 6 the

eccentric and true anomalies, @ the argument of periapsis, #, gives

the time of zero eccentric anomaly, and P is the orbital period of

the variable star around the system centre of mass. The amplitude

A = asini/c, with a the length of the semimajor axis, and i the

inclination of the light-time orbit with respect to the line of sight.
For circular orbits

A, = Asin | 2T 8
. = Asin {?(t—to)}. (3

From equation (8),
(D7 ~ A2,
and hence equation (6) implies
2
w«R

As an example, in the simulation experiments below in which w, =
27t x 3d~" and R = 40, orbit sizes in excess of ~230 light-second
(0.46 au) are in principle detectable. Equation (5) requires

AR

®

Aw, K 1

which is easily satisfied in all the examples which follow.

Simulated data are used to illustrate the estimation of the various
parameters appearing in equations (7) or (8). Consider N = 720
measurements of a single sinusoid with frequency 3 d~!, spread
over a time base of 7 = 3600 d. This represents an average of
about one measurement every 5 d, of a contact binary or short-
period pulsator such as a § Scuti or 8 Cephei star, observed over
the course of 10 yr. The signal-to-noise ratio is taken as R = 20,
and the LTT amplitude A = 300 s and period P = 750 d (frequency
£=10.00133 d~"). The eccentricity is e = 0.
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Figure 1. Top panel: O—C values estimated using equation (4), for a sim-
ulated data set with parameters given in the text. The outlying points are
due to near-zero derivates of the light curve in the denominator of equation
(4). Bottom panel: the result of trimming the largest 5 per cent (in absolute
value) of the points in the upper panel. The solid curve is the true A;.
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Figure 2. Top panel: the periodogram of the data in the bottom panel
of Fig. 1. Bottom panel: the periodogram of the residuals left after pre-
whitening the data by the sinusoid which best (by least squares) fits the
Fig. 1 (bottom panel) data. Note the difference in the vertical scales on the
two panels.

The estimated residuals from a simulation are plotted in the top
panel of Fig. 1. A prominent feature is the sprinkling of outliers. The
origin of these points is not hard to find: near-zero denominators
in equation (4). Trimming away the largest 5 per cent of absolute
values leaves the data points plotted in the lower panel, in which
the actual modulating function A is also plotted.

The periodogram of A, in the lower panel of Fig. 1 is shown
in the top panel of Fig. 2. There is a strong peak at a frequency
corresponding to a period of 751.6 d. Pre-whitening by this period
results in the residual spectrum in the bottom panel of the figure:
clearly, there are no further features of note, at least in the frequency
range plotted.

The sinusoid which minimizes the residual sum of squares has an
amplitude of 244 s, i.e. considerably lower than the true amplitude.
This is a result of further outlying data visible in the bottom panel
of Fig. 1: although not as extreme as the trimmed outliers, the pres-
ence of these data points none the less leads to underestimation of
the amplitude. Robust regression, rather than ordinary least-squares
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fitting, was therefore applied. The particular method used was ‘iter-
atively reweighted least squares’, i.e. minimizing a weighted sum of
squares, with weights adjusted iteratively (e.g. Holland & Welsch
1977). The weight function chosen was the bisquare form of Beaton
& Tukey (1974). The results of the robust non-linear regression of
the model (8) on the data A, are an estimated amplitude A =290 s,
LTT period of P = 753 d, and 7y = 95 d (true value 117 d).

There is a hitch in the case of elliptical orbits. Points in Fig. 3
show the estimated LTT shifts A,, with data simulated in accordance
with the same configuration as above, except that e = 0.7 and the
signal-to-noise ratio is 100. The lower (blue) line shows the true
A,, as given by equation (7): the data clearly do not follow it very
well. Instead, the data cluster around the upper (red) line, which
represents A, — A,.

The point is that A, as defined in equation (4) estimates the zero
mean function A, — A,, rather than A,. Comparison of equations
(7) and (8) shows that this is not important if e = 0 (provided the
total time baseline 7 spans a few orbital cycles), but may be quite
important if e # 0, depending on the value of @ . For the data set
plotted in Fig. 3, the estimated values of A = 234 s and e = 0.23 are
badly biased, as are the estimates of 7y = 138 (true value 70) and
@ = 2.61 (true value 2.11).

The simplest solution is to fit the model A, 4 § to the observed
A,. Estimated parameters obtained in this way are A = 276 s,
e =0.62, 1) = 64 and @ = 2.02 — a considerable improvement.
These values also compare favourably with those obtained by fitting
the full model described by equations (1), (2) and (7) directly to the
simulated observations (A = 279, e = 0.63, t) = 67 and w = 2.05).

Based on the experience above, the recommended LTT model-
fitting strategy is the following.

(i) Calculate A, and trim the largest 5-10 per cent of values
(5 per cent was used throughout this paper).

(ii) Calculate the periodogram of A,. If there is no power excess
at low frequencies, then there is no evidence for a variable period.
Otherwise, if there is an excess at a single frequency, a model with
e = 0 is indicated; if there are excesses at harmonically related fre-
quencies, a model with e > 0 is indicated; and if there are multiple,
unrelated, low frequencies with power excesses, the period is an
aperiodic function of time. The period of maximum power will be
denoted by PV,

(A caveat: if there are substantial gaps in the data, aliasing will
introduce additional structure in the periodogram.)

(iii) An estimate AV of the amplitude A follows by ordinary
least-squares fitting of a sinusoid with period P to A,.

(iv) These estimates can be improved if the sinusoid is fitted to
A, by a robust procedure, giving P¥ and A®.

(v) Fit the model (7) or (8) to A,, using robust non-linear regres-
sion. The estimates P® and A® are used as starting guesses, and the
iteratively improved estimates are P® and A®). If e # 0 is assumed,
then (! is also obtained.

(vi) The estimated parameters from (v) can now serve as initial
estimates in a direct fit of the model (2) to the observations, by
an ordinary least-squares algorithm. The final estimated parameter
values are P®, A® and e®.

4 RESULTS OF SIMULATION STUDIES

The estimation procedure developed in the previous section was
applied to a large number of simulated data sets, in order to assess
its efficacy. The base parameter set was N = 720 observations of
a f= 3 d! sinusoid, uniformly distributed over a time baseline
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Figure 3. Points represent estimated (O—C) values, for a simulated data set. The assumed parameter values are the same as for the data in Fig. 1, except that
e = 0.7 and the signal-to-noise ratio is higher at R = 100. The top (blue) line is the true underlying function A, while the bottom (red) line is the mean-adjusted

function A, — A;.

T = 3600 d, measured with a signal to noise of 20. The LTT effect
was simulated by assuming P =750 d and an amplitude of A =300s.
These parameter values were varied one at a time, in order to see
the effects on the bias and dispersion of the estimates.

Assuming uniform time spacing has the advantage that the simu-
lation results do not depend on the specifics of the times of observa-
tion. The disadvantage is that uniform coverage is not representative
of most current large-scale surveys. Results are therefore also pre-
sented for simulations using the base parameter values, but with
time spacing designed to resemble those typical of surveys con-
ducted from a single site. This was accomplished by subdividing
the 3600 d time baseline into 10 blocks of length 360 d each, con-
sisting of 260 d with uniformly distributed measurements, and a
100 d seasonal gap with no observations.

For each configuration, 2000 simulations were performed, with
to and @ randomized over [0, P] and [0, 27t], respectively. The
exercise was performed for eccentricities e = 0, 0.3, 0.7: for the zero
eccentricity case, e = 0 was assumed in the parameter estimation,
i.e. equation (8), rather than (7), was fitted to the data.

The biases and standard errors of some of the parameter estimates
are presented in Tables 1- 3. Some remarks on the information in
the tables, and other aspects of the results, follow.

(1) For circular orbits, the distributions of P and A are generally
roughly Gaussian, as judged from quantile—quantile plots. Devia-
tions from the normal are usually heavy tailed. Table 1 shows that
A" and &, aside, biases are negligible. As mentioned above, A"
is biased by the presence of outlying values of A,, and clearly the
robust regression used to determine A® and A® fixes the problem.

(2) Fig. 4 demonstrates that the upward bias in estimated 7, is due
to the presence of an extended tail to large values. Interestingly, this
bias is significantly reduced if the sample size is increased (model
5), but increased if the simulated measurement error variance o is
decreased.

(3) Although the estimated values of o, are poorest at the highest
signal to noise, the second half of Table 1 demonstrates that, as
expected, all other estimates are more accurate. The substantial
reduction in standard errors for model 3, with f = 6 is noteworthy:

the more rapid the brightness changes of the variable star, the better.
Adding a second, unrelated, frequency (model 9) also benefits the
final estimates P and A, while adding a subharmonic (model 8)
makes little difference. Interestingly, the orbital period is estimated
more accurately if A is increased, but the estimates of A itself are
not affected much (model 6).

(4) For e = 0.7, a small number of grossly outlying solutions are
obtained (0-9 of the 2000 simulations, depending on the model).
These have been ignored in the discussion which follows.

(5) Bias in estimated values of P remains small for ¢ # 0
(Tables 2 and 3, first halves). The same cannot be said for the es-
timated amplitudes A. The fact that A and A® underestimate the
true amplitude is easy to understand: these estimates are obtained
by fitting sinusoids to data which have more complicated forms
(particularly for larger ). The positive bias of A® and A®, based
on the correct functional forms of A, arises similarly to the bias in
0, — through an extended distribution tail towards large values (see
point 2 above).

(6) The bias in the estimates of A is reduced by high signal to
noise (model 7), or a denser spacing of observations (model 5). A
higher variability frequency (model 3) also reduces bias in A®) and
AW if the eccentricity is moderate. The model dependence of the
standard errors of A®) and A parallels that of the bias.

(7) Both bias and standard errors of ¢ are generally smaller
than those of e"). The distribution of estimates becomes bimodal
with increasing eccentricity — see Fig. 5. The diagram also demon-
strates the origins of the positive bias and large standard errors of
the estimated eccentricities. Interestingly, bias and standard errors
are smaller for model 6 (A = 450 instead of the usual 300), in ad-
dition to models 5 (more observations) and 7 (high signal to noise).
There is also some improvement in the estimates if the variability is
more rapid (model 3), but, as before, only in the case of moderate
eccentricity.

(8) Fig. 6 illustrates the interdependence between estimates of A
and e. It is clear that the distributions of the amplitude values have
long tails to large values: this accounts for the very large standard
errors of these estimates (Tables 2 and 3). By contrast, for most
parameter sets in the study the distribution of the estimated periods
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Table 1. Simulation results for the case e = 0. The base parameter set is P = 750 d, A = 300 s, N = 720, T = 3600 d, and assumes that the star varies
sinusoidally with a frequency f= 3 d~!. In each of models 2—7 one of these parameters is changed, in order to study its influence on the results. In
model 8, a subharmonic is added to the base model, to mimic the light curve of a contact binary. In model 9, a second sinusoidal variation with f= 6.7
is added to the model 1 parameter set, to represent multiperiodicity. Signal-to-noise ratios of the additional periodicities are set at 30 per cent of those
of the primary periodicity. The time spacing in model 10 incorporates seasonal gaps — see the text for details. The first half of the table reports biases,
and the second standard errors of estimates. The entries for a given model are based on the estimates for each of 2000 simulated data sets, assuming
Gaussian measurement errors, and values of 7o uniformly distributed over [0, P].

1 2 3 4 5 6 7 8 9 10
Base P = 1000 f=6 T=1800 N =1500 A=450 0¢,=0025 fH=15 H =66 Gaps
Bias
P —0.23 0.14 —0.42 2.19 —0.24 —0.31 —0.44 —0.71 0.14 —0.57
P —0.43 —0.62 —0.40 2.02 —0.19 —0.23 —0.34 —0.54 -0.17 —0.08
PA —043 —0.60 —042 2.02 —0.18 -023 —0.35 —0.53 —0.16 —0.10
P@ —0.14 0.01 —0.11 0.70 0.08 0.08 —0.01 —0.13 —0.03 0.22
A 1457 —19.18 —16.53 —19.09 —15.65 —23.70 —17.06 —15.87 —14.83 —14.74
AP 0.24 —3.32 —0.66 —3.80 —0.26 —1.15 —1.01 —0.46 -0.27 0.53
A® 0.18 —333 —-0.72 —391 —0.30 —125 —1.05 —0.52 —0.40 0.40
AW 0.60 0.13 0.07 1.48 0.30 0.72 0.62 1.26 1.06 2.27
G, 0.0062 0.0059 0.0060 0.0057 0.0031 0.0061 0.0097 0.0068 0.0066 0.0060
Standard errors
po 9.56 18.54 5.27 22.92 6.50 6.39 5.38 9.40 10.84 15.16
P 6.31 11.80 3.14 13.47 433 4.28 3.10 6.32 6.50 6.74
P> 6.28 11.74 3.13 13.42 4.30 427 3.10 6.29 6.49 6.74
P® 5.63 10.20 2.84 11.17 3.69 3.81 3.67 5.68 475 5.94
AD 29.18 28.29 15.01 29.25 20.20 29.22 14.52 28.61 33.00 32.88
A® 21.79 21.55 10.86 21.84 14.87 21.65 10.44 20.86 21.24 22.95
A® 21.70 21.42 10.85 21.80 14.83 21.59 10.40 20.85 21.16 22.93
A® 19.27 19.40 9.67 19.21 12.60 20.26 12.70 19.07 16.24 20.64
G 0.0079 0.0075 0.0078 0.0075 0.0041 0.0079 0.0110 0.0086 0.0082 0.0077

Table 2. As for Table 1, but for e = 0.3. For each simulated data set = was generated from a uniform distribution on [0, 27t].

1 2 3 4 5 6 7 8 9 10
Base P = 1000 f=6 T=1800 N =1500 A=450 0¢,=0025 fH=15 H=66 Gaps
Bias
P —0.65 —0.35 —0.20 1.02 —0.15 —0.33 —0.36 —0.36 —0.01 0.02
P —0.61 —0.71 —0.20 1.62 —0.06 —0.24 —0.25 —0.27 -0.23 —041
PA —0.31 -032 0.17 0.31 0.19 0.06 0.02 0.00 0.14 0.003
PW —0.28 —0.08 0.19 0.13 0.07 —0.01 0.14 0.16 0.01 0.085
AL 2842 —29.08 —29.36 —30.76 —28.58 —43.16 —29.73 —28.98 —27.98 —27.88
A®  —13.01 —14.59 —14.22 —16.60 —13.48 —20.73 —14.53 —14.13 —13.51 —13.24
A® 17.48 13.86 248 16.72 5.22 7.18 1.81 13.87 16.09 18.87
AW 13.26 13.20 2.61 14.04 4.12 6.44 3.64 14.16 7.18 17.64
e 0.065 0.059 0.013 0.063 0.024 0.023 0.008 0.060 0.062 0.071
e? 0.048 0.048 0.011 0.052 0.017 0.016 0.013 0.049 0.034 0.056
G 0.0060 0.0061 0.0058 0.0057 0.0031 0.0060 0.0096 0.0064 0.0062 0.0061
Standard errors
po 9.57 18.79 5.53 23.50 6.90 6.95 5.51 9.95 11.32 15.22
P 6.52 11.77 3.49 14.08 4.64 4.50 3.50 6.62 6.75 6.95
P® 6.55 11.56 3.25 13.20 433 424 3.21 6.55 6.60 6.90
P® 5.64 10.28 2.88 12.05 3.63 3.88 3.80 5.93 4.89 6.16
AD 29.39 29.04 15.46 29.10 20.23 30.05 15.30 28.11 32.65 23.34
A® 21.53 21.90 11.34 22.29 15.23 22.56 11.38 21.08 21.78 30.91
A® 54.31 36.76 12.82 50.40 18.85 26.69 12.89 43.15 51.40 70.50
A® 52.00 47.08 11.45 56.59 16.11 23.79 15.86 48.44 2247 60.26
e 0.16 0.16 0.08 0.16 0.11 0.10 0.08 0.16 0.17 0.17
e? 0.15 0.15 0.07 0.15 0.09 0.09 0.09 0.15 0.12 0.16
Ge 0.0076 0.0077 0.0075 0.0074 0.0044 0.0080 0.0110 0.0082 0.0077 0.0079
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Table 3. As for Table 1, but for e = 0.7. For each simulated data set zr was generated from a uniform distribution on [0, 27t].

1 2 3 4 5 6 7 8 9 10
Base P = 1000 f=6 T=1800 N=1500 A =450 0,=0025 f=15 H =66 Gaps
Bias
P 0.14 0.33 —0.15 1.49 —0.02 —0.39 —0.03 —0.28 —0.26 —0.31
P® —0.16 —0.01 —0.18 1.94 —0.11 —0.46 —0.17 —0.30 —0.33 —0.21
PO —0.03 0.13 0.07 0.50 0.16 —0.02 —0.03 0.01 —0.02 —0.18
PW 0.12 0.13 —0.05 0.26 0.11 0.04 —0.04 0.07 —0.01 —0.49
AD 8512 —85.30 —83.73 —87.63 —85.33 —131.8 —88.11 —85.51 —84.26 —83.05
A® 7495 —74.90 — 7428 —177.14 —74.34 —115.6 —176.98 —74.98 —75.82 —72.46
A® 155.1 143.6 150.0 150.3 58.63 90.79 23.39 151.4 145.8 150.51
A® 97.04 98.03 98.60 98.37 30.96 60.85 36.63 92.89 70.19 100.98
eM 0.077 0.074 0.080 0.076 0.043 0.038 0.024 0.076 0.072 0.069
e® 0.061 0.059 0.065 0.065 0.028 0.032 0.030 0.059 0.048 0.061
G 0.0058 0.0062 0.0058 0.0059 0.0031 0.0060 0.0095 0.0061 0.0064 0.0060
Standard errors
pm 12.79 23.47 13.11 28.16 8.82 9.00 6.99 12.81 14.56 17.09
P 8.76 15.65 8.91 18.85 6.11 6.23 491 8.84 8.90 9.55
PO 7.56 13.09 7.28 15.72 472 475 3.31 7.41 7.36 7.99
P@ 6.43 11.11 6.41 13.80 3.81 4.08 4.04 6.54 5.36 6.94
AD 31.67 33.00 33.24 31.87 25.20 37.26 21.18 33.05 35.4 28.40
A® 27.03 27.17 27.12 27.45 22.13 32.74 19.80 26.77 26.89 34.31
A 252.7 237.0 260.28 252.8 136.8 225.6 73.16 252.3 250.2 260.52
A® 172.8 177.4 174.6 173.2 82.71 162.7 102.4 171.0 146.1 180.76
e 0.20 0.19 0.19 0.19 0.14 0.14 0.10 0.19 0.20 0.20
e? 0.18 0.18 0.17 0.18 0.12 0.13 0.12 0.18 0.15 0.18
G, 0.0076 0.0080 0.0074 0.0079 0.0043 0.0073 0.0106 0.0078 0.0084 0.0077
P are roughly Gaussian, albeit with the occasional outlying value 200 T T T ]

or heavy tails.

(9) The estimates A® and P™ are consistently better than A®
and P®, which implies that fitting of the full non-linear model (2)
is worthwhile.

(10) It comes as no surprise that aliasing is encountered in the
simulations in which the time spacing has seasonal gaps (model 10).
What is surprising is the low level of its presence: 6, 3 and 42 cases
(out of 2000) in the simulations with e = 0, 0.3, 0.7, respectively.
Most of the aliases of the LTT period occurred near 245 d. These,
together with two outliers (P’ > 1000 d) in the case e = 0.7, were
excluded from the calculations reported in Tables 1— 3.

(11) Continuing with model 10, the biases and standard errors
of the estimates of the eccentricities and o, are similar to those
of the base model. The situation with the estimated LTT periods
and amplitudes is less clear-cut, although generally the biases and
standard errors are somewhat larger in the model 10 simulations
than in the case of model 1.

5 THREE APPLICATIONS TO REAL DATA

5.1 1SWASP J234401.81-212229.1

Variability in 1SWASP J234401.81-212229.1 (hereafter SWASP
2344-2122) was discovered by the SuperWASP enterprise (Pol-
lacco et al. 2006): the star is an eclipsing binary, with a period
of 0.213 676 d (f = 4.679 984 d~!). Traditional (O—C) studies of
SWASP 2344-2122 were published by Lohr et al. (2013a,b). The au-
thors based their analyses on 267 times of minima, estimated from
measurements spread over 6.6 yr. Koen (2014) fitted the model
(2) directly to 21540 SuperWASP measurements covering the first
5.2 yr of operation of the telescope. Here, the latter data set is
re-analysed, using the methodology of this paper.

100

Bin counts
o

100

oy

0 - . . .
0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09
Estimated o,

Figure 4. The distribution of the estimated measurement error standard
deviations o, for models 1 (top panel) and 5 (bottom panel) in the circular
orbit case. Nine values in the range (0.09, 0.11) have been excluded from
the top plot.

The A; are plotted in the top panel of Fig. 7, and the 5 per
cent trimmed values in the bottom panel. The periodogram of the
trimmed data is shown in the top panel of Fig. 8. The multiple
peaks suggest that the estimated (O—C) values are multiperiodic, but
pre-whitening by a sinusoid with a frequency of 7.85 x 107+ d~!
(P = 1274 d), leads to the residual periodogram plotted in the
bottom panel of Fig. 8. The mean level of the power in this residual
spectrum is about two orders of magnitude lower than the peak
power in the top panel.

The seasonal gaps in the data in Fig. 7 induce aliasing, as could be
demonstrated by plotting spectral window functions. For the reader
not familiar with such time series analysis tools, an equivalent, but
more transparent, demonstration follows.
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Figure 5. The distributions of the estimated eccentricities e for model 1,
for e = 0.3 (top panel) and e = 0.7 (bottom panel).
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Figure 6. Estimated eccentricities and amplitudes A for 2000 data sets
simulated using model 7 parameters with e = 0.3 (top panel) and e = 0.7
(bottom panel).
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Figure 7. As for Fig. 1, but for the SuperWASP measurements of SWASP
2344-2122.

Fig. 9 shows that the large peaks near frequencies 0.002 and
0.0035 in the top panel of Fig. 8 (reproduced in the top panel of
Fig. 9) are artefacts. A test data set was produced as follows.

(1) The frequency of the largest periodogram peak in the top
panel of Fig. 8 was used as starting guess in a robust iterative fit of
a sinusoid to A, (i.e. P? and A® were estimated).
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Figure 8. Top panel: the periodogram of the data in the bottom panel of
Fig. 7. Bottom panel: the periodogram of the residuals after pre-whitening

the highest-peak frequency selected from the periodogram in the top panel.
Note the markedly different scales on the two vertical axes.
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Figure 9. The top panel contains the periodogram of the data in Fig. 7,
while the middle panel is the periodogram of a single sinusoid with added
white noise, with the same time sampling as in the bottom panel of Fig. 7.
If the frequency corresponding to the largest peak in the middle panel is
pre-whitened from the simulated data, the periodogram in the bottom panel
results.

(ii) The fitted sinusoid was subtracted from the data, leaving a
set of residuals.

(iii) A random permutation of the residuals were performed in
order to generate an artificial noise process with the same statistical
distribution as that of the residuals.

(iv) A sinusoidal ‘signal’

AP cosmt /PP + )

(where ¥ is a random phase) was added to the noise generated in
step (iii).

The spectrum of the test data set, which is of course known to
contain a single sinusoid, is plotted in the middle panel of Fig. 9. The
remarkable similarity to the spectrum in the top panel confirms that
the two prominent additional low-frequency peaks in the spectra are
aliases, induced by the large seasonal gaps visible in Fig. 7.

It is also instructive to compare the bottom panels in Figs 8 and
9. Both are spectra of residuals, but the level in the former is much
higher than in the latter. By its construction, the noise process used
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Table 4. Estimated circular orbital parameters for
SWASP 2344-2122. The frequencies f; = 4.679 984 and
> =4.679972 d! are from Lohr et al. (2013b) and Koen
(2014), respectively.

2xfi (1-6) x fi 2xfr  (1-6) x f>
1o 882 880 859 857
P9 1272 1271 1340 1334
A® 510 511 536 538
e 0.023 0.022 0.023 0.022

to generate the lower two panels of Fig. 9 was white, hence it may
be concluded that the spectrum in the bottom panel of Fig. 8 does
not reflect white noise. This is also evident from the frequency
dependence of the residual spectrum in Fig. 8: there is an excess of
power over a range [roughly (0, 0.006) d~'] of low frequencies. The
implication is that there is some low-level aperiodic low-frequency
variability in the (O—C) values in addition to the overt sinusoidal
variability.

As afinal word on the spectra, itis noted that there is no sign of any
excess power at the first harmonic of the peak at 7.85 x 10~ d~'.
This implies that these data do not show any evidence for an ec-
centricity different from zero. As a consequence, only models with
e = 0 were fitted to A,. Initial guesses for the unknown parameters
(P, A and 1)) were generated as described in steps (i)—(v) in Sec-
tion 3. These were used in the non-linear least-squares fitting of the
models (2) and (8). Table 4 reports the results. Since the light curve
of SWASP 2344-2122 is dominated by the first harmonic, models
with this single frequency were fitted to the data, using two different
values from the literature. Additionally, since Koen (2014) showed
that the first six harmonics could be identified in spectra of all
the observations of SWASP 2344-2122 (i.e. including some of his
own photometry), sets of models using all these frequencies were

a
0.04
0.02
g | M
s
Q b

0.02

0.01
. AN\/\/\\/\NMAMI - M
0

0 0.005 0.01
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also fitted. Comparison of the different entries in Table 4 shows
non-negligible, but not alarming, differences between the different
models.

There are also 610 high-quality ASAS measurements of the
star, over an interval of 8.9 yr. Only the first harmonic of the
binary frequency is prominent in the spectrum of the data, at
2f; = 9.359 8388 = 2 x 4.6799194 d~'. This differs considerably
from the frequencies derived from the SuperWASP observations.
Although the time baseline is longer than that of the SuperWASP
data, the measurements are far fewer, and also more noisy. Only the
two frequencies f; and f; (see Table 4) are therefore used below.

Periodograms of the 5 per cent trimmed values of A,, as derived
from the ASAS observations, are plotted in Fig. 10. Results in the
top two panels are based on the assumption that the signal in the
observations was a sinusoid with frequency 2f;, while calculations
resulting in the bottom panels used 2f,. The highest peaks in panels
(a) and (b) are at frequencies of 1.6 x 107* and 1.7 x 10~* d~!,
respectively (i.e. periods of around 17 yr). This indicates a system-
atic trend in A,. Pre-whitening leads to the residual periodograms
in panels (c) and (d), in which the second-highest peaks in panels
(a) and (b) persist, at frequencies 7.7 x 10™* and 7.8 x 107* d~',
respectively (periods of 1300 and 1280 d).

The point here is that the much less voluminous and more noisy
ASAS data also show evidence for an orbital period of order 1300 d.
Additionally, there is evidence for a systematic trend in the period.

5.2 HD 181469

SK2012 performed a frequency domain LTT analysis of Kepler
observations of a § Scuti pulsator in a multiple star system (HD
181469 = KIC 4150611). The pulsator has four prominent frequen-
cies, listed in their table 3, and used in the present analysis. Professor
Kurtz kindly supplied the author with 33 078 Kepler observations

0.02

OJ /VMW
d

0
0 0.005 0.01

Frequency (c/d)

Figure 10. (a) The periodogram of A,, estimated from the ASAS observations of SWASP 2344-2122, and derived assuming a binary period of
0.213 6759 = 1/f; d. (b) As in (a), but derived assuming a binary period of 0.213 6765 = 1/f> d. (c) The periodogram of the residuals after pre-whitening by
the highest peak in (a). (d) The periodogram of the residuals after pre-whitening by the highest peak in (b). Note the different scales on the different vertical

axes.
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Figure 11. The top panel is the periodogram of A;, estimated from measure-
ments of the § Scuti star HD 181469 (KIC 4150611). The bottom panel is the
periodogram of the residuals left after pre-whitening A; by the highest-peak
frequency identified from the spectrum in the top panel.

of the star, in which eclipses had been masked and low-frequency
variations removed.

The periodogram of the 5 per cent trimmed A, is in the top panel
of Fig. 11: the prominent peak is at a frequency of 0.010 65 d~'. The
corresponding period of 93.9 d is close to the known 94.1 orbital
period. There is no power excess at the harmonic frequencies, which
is confirmed by the periodogram of the residuals after pre-whitening
the dominant frequency. This agrees with the conclusion reached
by SK2012 that the star’s orbit is circular.

Estimates from robust fitting of a sinusoid to the trimmed A, are
P® =94.0dand A® = 100.7 s. Direct fitting of equations (1), (2)
and (8) gave P¥ = 94.05 d and A® = 99.9 s. The former value
agrees very well with the results in SK2012.

The value of A® can be used to roughly estimate the inclination
of the binary orbit. Since the LTT amplitude as used in this paper
is

A =a;sini/c

(where a, is the length of the semimajor axis, and i the orbital
inclination), A® = 99.9 s implies a;sini = 0.20 au. [This is in
excellent agreement with the entries in table 2 of Shibahashi &
Kurtz (2014), which contains corrections of the erroneous values in
table 4 of SK2012.] A convenient form of Kepler’s law is

P> =a’/(m; + m)),

with the orbital period P in yr, the mean distance between the stars
a in au, and masses in M. Substituting P =94 d,

a = 0.4048(m; + my)'3

is obtained. SK2012 put the mass of the § Scuti star at m; = 1.7,
while the secondary is itself a binary consisting of two K stars.
Assuming a combined mass of 1.2 Mg for the K stars, a = 0.58
au, which is probably quite accurate given the weak dependence on
mass (the corresponding numbers for total system masses of 2 and
3.5 M are 0.51 and 0.61 au). This leads to a; = 0.24 au so that
a;sini = 0.20 implies i = 56°.

Strictly speaking some sort of goodness-of-fit test should be per-
formed for each final model fitted to data. A nod in that direction is
shown in Fig. 12, in the form of amplitude spectra of the original
HD 181469 data (top panel) and the residuals of the models (1), (2)
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Figure 12. The top panel is an amplitude spectrum of the processed
Kepler observations of HD 181469. The bottom panel is the spectrum of the
residuals left after pre-whitening the final model [equations (1), (2) and (8)]
fitted to the data. Note that the scale on the vertical axis in the top panel is a
factor of 10 larger than the scale in the bottom panel.

and (8). Note that the contrast between the two spectra would have
been greater if power, rather than amplitude, had been plotted, but
in this particular instance the direct physical interpretation of the
amplitude scale is useful. The highest peak in the residual spectrum
is at a frequency of 20.2145 d (i.e. unrelated to the four frequencies
used in the model fitted), and has an amplitude of only 0.16 mmag.
All other peaks in the residual spectrum have amplitudes below 0.09
mmag. Clearly, the model represents most of the signal information
in the data.

5.3 ASAS 120036-3915.6

As a final exercise, the (O-C) function of the star ASAS 120036-
3915.6 is calculated. A total of 630 high-quality ASAS measure-
ments, spread over 9 yr, were used for the purpose. Skelton & Smits
(2009) demonstrated a period change in this overcontact binary by
partitioning the data and studying the scatter in light curves folded
with respect to different periods. They give the overall best-fitting
period as 0.292 672 d (fy = 3.416 79 d~') and this figure is used in
the analysis which follows.

Examination of the periodogram of the ASAS 120036-3915.6
data shows peaks above the noise level only at the first three even
multiples of f, i.e. equation (1) is

3
F(©.1)=p+ Y [Aqcos(@k for) + By sin(4k for)] (10)

k=1

in this instance. The periodogram of A, can be seen in Fig. 13: it is
dominated by a peak at a frequency 2.3 x 10~*d~! (period 11.9 yr).
Such a low frequency should not be taken literally — it is more likely
to be indicative of a long-term trend in A,.

The 5 per cent trimmed values of A, are plotted in Fig. 14,
together with a weighted non-parametric regression fit. The fit is
locally linear, and only 30 per cent of the closest data are included
in the estimate of each fitted value. The data weighting function is
of the ‘loess’ form — see Cleveland & Devlin (1988), and Cleveland,
Devlin & Grosse (1988).

The regression function can largely be described as made up of
two extended linear sections, separated by the interval HID 245
3100-3500. This could be interpreted as a fairly rapid change from
one constant value of the binary period to another. The total range of
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Figure 13. The top panel is the periodogram of A,, estimated from mea-
surements of ASAS 120036-3915.6. The bottom panel is the periodogram
of the residuals left after pre-whitening A, by the highest-peak frequency
identified from the spectrum in the top panel.
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Figure 14. Points represent 5 per cent trimmed values of A;, calculated
from observations of ASAS 120036-3915.6, assuming the light curve (10).
The line is a non-parametric (loess) locally linear regression function fitted
to the points. A window function width of 0.3 was used (see text for details).

the non-parametric estimates of A, over the ~4100 cycles covering
HID 2451871-3070 is —0.0030 d; over the interval HID 2453480-
5166 there are ~5760 cycles, and A, has an estimated range of
+0.0038 d. This implies misspecifications of the binary period by
+7.1 x 1077 and —6.6 x 1077 d over the respective intervals, i.e.
the period changed from 0.292 6713 to 0.292 6727 d over the course
of roughly a year centred on HID 2453270.

Periodograms were calculated over each of the two intervals
HID 2451871-3070 and HJD 2453480-5166, and the highest-peak
frequencies were refined by least squares. The results were best-
fitting values of 6.833 611 and 6.833 566 d~'; these correspond to
periods of 0.292 6710/2 and 0.292 6729/2, in good agreement with
the values estimated from Fig. 14.

Generalized O — C 1495

It is perhaps worth stressing that, the interpretation of Fig. 14
aside, the study of the ASAS 120036-3915.6 data is fully non-
parametric — no specific model for the period change was posited.
Instead, the analysis was completely data driven.

6 CONCLUSIONS

The analyses in the previous sections demonstrate that the methodol-
ogy of Sections 2 and 3 can be usefully applied to the type of large-
scale survey data acquired by modest-sized terrestrial telescopes.
Furthermore, for higher quality photometric data the techniques
also have the potential to reveal time-resolved detail in (O—C)
behaviour which has hitherto not been explored.
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